diff options
Diffstat (limited to 'mathcomp/ssreflect')
| -rw-r--r-- | mathcomp/ssreflect/Make | 1 | ||||
| -rw-r--r-- | mathcomp/ssreflect/all_ssreflect.v | 1 | ||||
| -rw-r--r-- | mathcomp/ssreflect/fintype.v | 18 | ||||
| -rw-r--r-- | mathcomp/ssreflect/order.v | 6058 | ||||
| -rw-r--r-- | mathcomp/ssreflect/prime.v | 29 | ||||
| -rw-r--r-- | mathcomp/ssreflect/ssrnat.v | 25 | ||||
| -rw-r--r-- | mathcomp/ssreflect/tuple.v | 12 |
7 files changed, 6127 insertions, 17 deletions
diff --git a/mathcomp/ssreflect/Make b/mathcomp/ssreflect/Make index c529f21..108f545 100644 --- a/mathcomp/ssreflect/Make +++ b/mathcomp/ssreflect/Make @@ -19,6 +19,7 @@ prime.v tuple.v ssrnotations.v ssrmatching.v +order.v -I . -R . mathcomp.ssreflect diff --git a/mathcomp/ssreflect/all_ssreflect.v b/mathcomp/ssreflect/all_ssreflect.v index aae57ca..318d5ef 100644 --- a/mathcomp/ssreflect/all_ssreflect.v +++ b/mathcomp/ssreflect/all_ssreflect.v @@ -14,5 +14,6 @@ Require Export finfun. Require Export bigop. Require Export prime. Require Export finset. +Require Export order. Require Export binomial. Require Export generic_quotient. diff --git a/mathcomp/ssreflect/fintype.v b/mathcomp/ssreflect/fintype.v index b6f618d..5a42c80 100644 --- a/mathcomp/ssreflect/fintype.v +++ b/mathcomp/ssreflect/fintype.v @@ -1051,16 +1051,16 @@ End Extremum. Notation "[ 'arg[' ord ]_( i < i0 | P ) F ]" := (extremum ord i0 (fun i => P%B) (fun i => F)) (at level 0, ord, i, i0 at level 10, - format "[ 'arg[' ord ]_( i < i0 | P ) F ]") : form_scope. + format "[ 'arg[' ord ]_( i < i0 | P ) F ]") : nat_scope. Notation "[ 'arg[' ord ]_( i < i0 'in' A ) F ]" := [arg[ord]_(i < i0 | i \in A) F] (at level 0, ord, i, i0 at level 10, - format "[ 'arg[' ord ]_( i < i0 'in' A ) F ]") : form_scope. + format "[ 'arg[' ord ]_( i < i0 'in' A ) F ]") : nat_scope. Notation "[ 'arg[' ord ]_( i < i0 ) F ]" := [arg[ord]_(i < i0 | true) F] (at level 0, ord, i, i0 at level 10, - format "[ 'arg[' ord ]_( i < i0 ) F ]") : form_scope. + format "[ 'arg[' ord ]_( i < i0 ) F ]") : nat_scope. Section ArgMinMax. @@ -1086,30 +1086,30 @@ End Extrema. Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" := (arg_min i0 (fun i => P%B) (fun i => F)) (at level 0, i, i0 at level 10, - format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : form_scope. + format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : nat_scope. Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" := [arg min_(i < i0 | i \in A) F] (at level 0, i, i0 at level 10, - format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : form_scope. + format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : nat_scope. Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F] (at level 0, i, i0 at level 10, - format "[ 'arg' 'min_' ( i < i0 ) F ]") : form_scope. + format "[ 'arg' 'min_' ( i < i0 ) F ]") : nat_scope. Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" := (arg_max i0 (fun i => P%B) (fun i => F)) (at level 0, i, i0 at level 10, - format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : form_scope. + format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : nat_scope. Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" := [arg max_(i > i0 | i \in A) F] (at level 0, i, i0 at level 10, - format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : form_scope. + format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : nat_scope. Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F] (at level 0, i, i0 at level 10, - format "[ 'arg' 'max_' ( i > i0 ) F ]") : form_scope. + format "[ 'arg' 'max_' ( i > i0 ) F ]") : nat_scope. (**********************************************************************) (* *) diff --git a/mathcomp/ssreflect/order.v b/mathcomp/ssreflect/order.v new file mode 100644 index 0000000..718eea5 --- /dev/null +++ b/mathcomp/ssreflect/order.v @@ -0,0 +1,6058 @@ +(* (c) Copyright 2006-2019 Microsoft Corporation and Inria. *) +(* Distributed under the terms of CeCILL-B. *) +From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq. +From mathcomp Require Import path fintype tuple bigop finset div prime. + +(******************************************************************************) +(* This files defines types equipped with order relations. *) +(* *) +(* Use one of the following modules implementing different theories: *) +(* Order.LTheory: partially ordered types and lattices excluding complement *) +(* and totality related theorems. *) +(* Order.CTheory: complemented lattices including Order.LTheory. *) +(* Order.TTheory: totally ordered types including Order.LTheory. *) +(* Order.Theory: ordered types including all of the above theory modules *) +(* *) +(* To access the definitions, notations, and the theory from, say, *) +(* "Order.Xyz", insert "Import Order.Xyz." at the top of your scripts. *) +(* Notations are accessible by opening the scope "order_scope" bound to the *) +(* delimiting key "O". *) +(* *) +(* We provide the following structures of ordered types *) +(* porderType d == the type of partially ordered types *) +(* distrLatticeType d == the type of distributive lattices *) +(* bDistrLatticeType d == distrLatticeType with a bottom element *) +(* tbDistrLatticeType d == distrLatticeType with both a top and a bottom *) +(* cbDistrLatticeType d == the type of sectionally complemented distributive*) +(* lattices *) +(* (lattices with bottom and a difference operation)*) +(* ctbDistrLatticeType d == the type of complemented distributive lattices *) +(* (lattices with top, bottom, difference, *) +(* and complement) *) +(* orderType d == the type of totally ordered types *) +(* finPOrderType d == the type of partially ordered finite types *) +(* finDistrLatticeType d == the type of nonempty finite distributive lattices*) +(* finCDistrLatticeType d == the type of nonempty finite complemented *) +(* distributive lattices *) +(* finOrderType d == the type of nonempty totally ordered finite types*) +(* *) +(* Each generic partial order and lattice operations symbols also has a first *) +(* argument which is the display, the second which is the minimal structure *) +(* they operate on and then the operands. Here is the exhaustive list of all *) +(* such symbols for partial orders and lattices together with their default *) +(* display (as displayed by Check). We document their meaning in the *) +(* paragraph adter the next. *) +(* *) +(* For porderType T *) +(* @Order.le disp T == <=%O (in fun_scope) *) +(* @Order.lt disp T == <%O (in fun_scope) *) +(* @Order.comparable disp T == >=<%O (in fun_scope) *) +(* @Order.ge disp T == >=%O (in fun_scope) *) +(* @Order.gt disp T == >%O (in fun_scope) *) +(* @Order.leif disp T == <?=%O (in fun_scope) *) +(* For distrLatticeType T *) +(* @Order.meet disp T x y == x `&` y (in order_scope) *) +(* @Order.join disp T x y == x `|` y (in order_scope) *) +(* For bDistrLatticeType T *) +(* @Order.bottom disp T == 0 (in order_scope) *) +(* For tbDistrLatticeType T *) +(* @Order.top disp T == 1 (in order_scope) *) +(* For cbDistrLatticeType T *) +(* @Order.sub disp T x y == x `|` y (in order_scope) *) +(* For ctbDistrLatticeType T *) +(* @Order.compl disp T x == ~` x (in order_scope) *) +(* *) +(* This first argument named either d, disp or display, of type unit, *) +(* configures the printing of notations. *) +(* Instantiating d with tt or an unknown key will lead to a default *) +(* display for notations, i.e. we have: *) +(* For x, y of type T, where T is canonically a porderType d: *) +(* x <= y <-> x is less than or equal to y. *) +(* x < y <-> x is less than y (:= (y != x) && (x <= y)). *) +(* x >= y <-> x is greater than or equal to y (:= y <= x). *) +(* x > y <-> x is greater than y (:= y < x). *) +(* x <= y ?= iff C <-> x is less than y, or equal iff C is true. *) +(* x >=< y <-> x and y are comparable (:= (x <= y) || (y <= x)). *) +(* x >< y <-> x and y are incomparable (:= ~~ x >=< y). *) +(* For x, y of type T, where T is canonically a distrLatticeType d: *) +(* x `&` y == the meet of x and y. *) +(* x `|` y == the join of x and y. *) +(* In a type T, where T is canonically a bDistrLatticeType d: *) +(* 0 == the bottom element. *) +(* \join_<range> e == iterated join of a lattice with a bottom. *) +(* In a type T, where T is canonically a tbDistrLatticeType d: *) +(* 1 == the top element. *) +(* \meet_<range> e == iterated meet of a lattice with a top. *) +(* For x, y of type T, where T is canonically a cbDistrLatticeType d: *) +(* x `\` y == the (sectional) complement of y in [0, x]. *) +(* For x of type T, where T is canonically a ctbDistrLatticeType d: *) +(* ~` x == the complement of x in [0, 1]. *) +(* *) +(* There are three distinct uses of the symbols *) +(* <, <=, >, >=, _ <= _ ?= iff _, >=<, and >< *) +(* in the default display: *) +(* they can be 0-ary, unary (prefix), and binary (infix). *) +(* 0. <%O, <=%O, >%O, >=%O, <?=%O, >=<%O, and ><%O stand respectively for *) +(* lt, le, gt, ge, leif (_ <= _ ?= iff _), comparable, and incomparable. *) +(* 1. (< x), (<= x), (> x), (>= x), (>=< x), and (>< x) stand respectively *) +(* for (>%O x), (>=%O x), (<%O x), (<=%O x), (>=<%O x), and (><%O x). *) +(* So (< x) is a predicate characterizing elements smaller than x. *) +(* 2. (x < y), (x <= y), ... mean what they are expected to. *) +(* These conventions are compatible with Haskell's, *) +(* where ((< y) x) = (x < y) = ((<) x y), *) +(* except that we write <%O instead of (<). *) +(* *) +(* Alternative notation displays can be defined by : *) +(* 1. declaring a new opaque definition of type unit. Using the idiom *) +(* `Lemma my_display : unit. Proof. exact: tt. Qed.` *) +(* 2. using this symbol to tag canonical porderType structures using *) +(* `Canonical my_porderType := POrderType my_display my_type my_mixin`, *) +(* 3. declaring notations for the main operations of this library, by *) +(* setting the first argument of the definition to the display, e.g. *) +(* `Notation my_syndef_le x y := @Order.le my_display _ x y.` or *) +(* `Notation "x <<< y" := @Order.lt my_display _ x y (at level ...).` *) +(* Non overloaded notations will default to the default display. *) +(* *) +(* One may use displays either for convenience or to desambiguate between *) +(* different structures defined on "copies" of a type (as explained below.) *) +(* We provide the following "copies" of types, *) +(* the first one is a *documented example* *) +(* natdvd := nat *) +(* == a "copy" of nat which is canonically ordered using *) +(* divisibility predicate dvdn. *) +(* Notation %|, %<|, gcd, lcm are used instead of *) +(* <=, <, meet and join. *) +(* T^c := converse T, *) +(* where converse is a new definition for (fun T => T) *) +(* == a "copy" of T, such that if T is canonically ordered, *) +(* then T^c is canonically ordered with the converse *) +(* order, and displayed with an extra ^c in the notation *) +(* i.e. <=^c, <^c, >=<^c, ><^c, `&`^c, `|`^c are *) +(* used and displayed instead of *) +(* <=, <, >=<, ><, `&`, `|` *) +(* T *prod[d] T' := T * T' *) +(* == a "copy" of the cartesian product such that, *) +(* if T and T' are canonically ordered, *) +(* then T *prod[d] T' is canonically ordered in product *) +(* order. *) +(* i.e. (x1, x2) <= (y1, y2) = *) +(* (x1 <= y1) && (x2 <= y2), *) +(* and displayed in display d *) +(* T *p T' := T *prod[prod_display] T' *) +(* where prod_display adds an extra ^p to all notations *) +(* T *lexi[d] T' := T * T' *) +(* == a "copy" of the cartesian product such that, *) +(* if T and T' are canonically ordered, *) +(* then T *lexi[d] T' is canonically ordered in *) +(* lexicographic order *) +(* i.e. (x1, x2) <= (y1, y2) = *) +(* (x1 <= y1) && ((x1 >= y1) ==> (x2 <= y2)) *) +(* and (x1, x2) < (y1, y2) = *) +(* (x1 <= y1) && ((x1 >= y1) ==> (x2 < y2)) *) +(* and displayed in display d *) +(* T *l T' := T *lexi[lexi_display] T' *) +(* where lexi_display adds an extra ^l to all notations *) +(* seqprod_with d T := seq T *) +(* == a "copy" of seq, such that if T is canonically *) +(* ordered, then seqprod_with d T is canonically ordered *) +(* in product order i.e. *) +(* [:: x1, .., xn] <= [y1, .., yn] = *) +(* (x1 <= y1) && ... && (xn <= yn) *) +(* and displayed in display d *) +(* n.-tupleprod[d] T == same with n.tuple T *) +(* seqprod T := seqprod_with prod_display T *) +(* n.-tupleprod T := n.-tuple[prod_display] T *) +(* seqlexi_with d T := seq T *) +(* == a "copy" of seq, such that if T is canonically *) +(* ordered, then seqprod_with d T is canonically ordered *) +(* in lexicographic order i.e. *) +(* [:: x1, .., xn] <= [y1, .., yn] = *) +(* (x1 <= x2) && ((x1 >= y1) ==> ((x2 <= y2) && ...)) *) +(* and displayed in display d *) +(* n.-tuplelexi[d] T == same with n.tuple T *) +(* seqlexi T := lexiprod_with lexi_display T *) +(* n.-tuplelexi T := n.-tuple[lexi_display] T *) +(* *) +(* Beware that canonical structure inference will not try to find the copy of *) +(* the structures that fits the display one mentioned, but will rather *) +(* determine which canonical structure and display to use depending on the *) +(* copy of the type one provided. In this sense they are merely displays *) +(* to inform the user of what the inferrence did, rather than additional *) +(* input for the inference. *) +(* *) +(* Existing displays are either converse_display d (where d is a display), *) +(* dvd_display (both explained above), total_display (to overload meet and *) +(* join using min and max) ring_display (from algebra/ssrnum to change the *) +(* scope of the usual notations to ring_scope). We also provide lexi_display *) +(* and prod_display for lexicographic and product order respectively. *) +(* The default display is tt and users can define their own as explained *) +(* above. *) +(* *) +(* For orderType we provide the following operations (in total_display) *) +(* [arg minr_(i < i0 | P) M] == a value i : T minimizing M : R, subject to *) +(* the condition P (i may appear in P and M), and *) +(* provided P holds for i0. *) +(* [arg maxr_(i > i0 | P) M] == a value i maximizing M subject to P and *) +(* provided P holds for i0. *) +(* [arg min_(i < i0 in A) M] == an i \in A minimizing M if i0 \in A. *) +(* [arg max_(i > i0 in A) M] == an i \in A maximizing M if i0 \in A. *) +(* [arg min_(i < i0) M] == an i : T minimizing M, given i0 : T. *) +(* [arg max_(i > i0) M] == an i : T maximizing M, given i0 : T. *) +(* with head symbols Order.arg_min and Order.arg_max *) +(* *) +(* In order to build the above structures, one must provide the appropriate *) +(* mixin to the following structure constructors. The list of possible mixins *) +(* is indicated after each constructor. Each mixin is documented in the next *) +(* paragraph. *) +(* *) +(* POrderType disp T pord_mixin *) +(* == builds a porderType from a canonical choiceType *) +(* instance of T where pord_mixin can be of types *) +(* lePOrderMixin, ltPOrderMixin, meetJoinMixin, *) +(* leOrderMixin, or ltOrderMixin *) +(* or computed using PcanPOrderMixin or CanPOrderMixin. *) +(* disp is a display as explained above *) +(* *) +(* DistrLatticeType T lat_mixin *) +(* == builds a distrLatticeType from a porderType where *) +(* lat_mixin can be of types *) +(* latticeMixin, totalPOrderMixin, meetJoinMixin, *) +(* leOrderMixin, or ltOrderMixin *) +(* or computed using IsoLatticeMixin. *) +(* *) +(* BLatticeType T bot_mixin *) +(* == builds a bDistrLatticeType from a distrLatticeType and *) +(* a bottom element *) +(* *) +(* TBLatticeType T top_mixin *) +(* == builds a tbDistrLatticeType from a bDistrLatticeType *) +(* and a top element *) +(* *) +(* CBLatticeType T sub_mixin *) +(* == builds a cbDistrLatticeType from a bDistrLatticeType *) +(* and a difference operation *) +(* *) +(* CTBLatticeType T compl_mixin *) +(* == builds a ctbDistrLatticeType from a tbDistrLatticeType *) +(* and a complement operation *) +(* *) +(* OrderType T ord_mixin *) +(* == builds an orderType from a distrLatticeType where *) +(* ord_mixin can be of types *) +(* leOrderMixin, ltOrderMixin, or orderMixin, *) +(* or computed using MonoTotalMixin. *) +(* *) +(* Additionally: *) +(* - [porderType of _] ... notations are available to recover structures on *) +(* "copies" of the types, as in eqtype, choicetype, ssralg... *) +(* - [finPOrderType of _] ... notations to compute joins between finite types *) +(* and ordered types *) +(* *) +(* List of possible mixins (a.k.a. factories): *) +(* *) +(* - lePOrderMixin == on a choiceType, takes le, lt, *) +(* reflexivity, antisymmetry and transitivity of le. *) +(* (can build: porderType) *) +(* *) +(* - ltPOrderMixin == on a choiceType, takes le, lt, *) +(* irreflexivity and transitivity of lt. *) +(* (can build: porderType) *) +(* *) +(* - meetJoinMixin == on a choiceType, takes le, lt, meet, join, *) +(* commutativity and associativity of meet and join *) +(* idempotence of meet and some De Morgan laws *) +(* (can build: porderType, distrLatticeType) *) +(* *) +(* - leOrderMixin == on a choiceType, takes le, lt, meet, join *) +(* antisymmetry, transitivity and totality of le. *) +(* (can build: porderType, distrLatticeType, orderType) *) +(* *) +(* - ltOrderMixin == on a choiceType, takes le, lt, *) +(* irreflexivity, transitivity and totality of lt. *) +(* (can build: porderType, distrLatticeType, orderType) *) +(* *) +(* - totalPOrderMixin == on a porderType T, totality of the order of T *) +(* := total (<=%O : rel T) *) +(* (can build: distrLatticeType) *) +(* *) +(* - totalOrderMixin == on a distrLatticeType T, totality of the order of T *) +(* := total (<=%O : rel T) *) +(* (can build: orderType) *) +(* NB: this mixin is kept separate from totalPOrderMixin (even though it *) +(* is convertible to it), in order to avoid ambiguous coercion paths. *) +(* *) +(* - distrLatticeMixin == on a porderType T, takes meet, join *) +(* commutativity and associativity of meet and join *) +(* idempotence of meet and some De Morgan laws *) +(* (can build: distrLatticeType) *) +(* *) +(* - bDistrLatticeMixin, tbDistrLatticeMixin, cbDistrLatticeMixin, *) +(* ctbDistrLatticeMixin *) +(* == mixins with one extra operation *) +(* (respectively bottom, top, relative complement, and *) +(* total complement) *) +(* *) +(* Additionally: *) +(* - [porderMixin of T by <:] creates a porderMixin by subtyping. *) +(* - [totalOrderMixin of T by <:] creates the associated totalOrderMixin. *) +(* - PCanPOrderMixin, CanPOrderMixin create porderMixin from cancellations *) +(* - MonoTotalMixin creates a totalPOrderMixin from monotonicity *) +(* - IsoLatticeMixin creates a distrLatticeMixin from an ordered structure *) +(* isomorphism (i.e., cancel f f', cancel f' f, {mono f : x y / x <= y}) *) +(* *) +(* We provide the following canonical instances of ordered types *) +(* - all possible structures on bool *) +(* - porderType, distrLatticeType, orderType and bDistrLatticeType on nat for *) +(* the leq order *) +(* - porderType, distrLatticeType, bDistrLatticeType, cbDistrLatticeType, *) +(* ctbDistrLatticeType on nat for the dvdn order, where meet and join *) +(* are respectively gcdn and lcmn *) +(* - porderType, distrLatticeType, orderType, bDistrLatticeType, *) +(* tbDistrLatticeType, cbDistrLatticeType, ctbDistrLatticeType *) +(* on T *prod[disp] T' a "copy" of T * T' *) +(* using product order (and T *p T' its specialization to prod_display) *) +(* - porderType, distrLatticeType, and orderType, on T *lexi[disp] T' *) +(* another "copy" of T * T', with lexicographic ordering *) +(* (and T *l T' its specialization to lexi_display) *) +(* - porderType, distrLatticeType, and orderType, on {t : T & T' x} *) +(* with lexicographic ordering *) +(* - porderType, distrLatticeType, orderType, bDistrLatticeType, *) +(* cbDistrLatticeType, tbDistrLatticeType, ctbDistrLatticeType *) +(* on seqprod_with disp T a "copy" of seq T *) +(* using product order (and seqprod T' its specialization to prod_display)*) +(* - porderType, distrLatticeType, and orderType, on seqlexi_with disp T *) +(* another "copy" of seq T, with lexicographic ordering *) +(* (and seqlexi T its specialization to lexi_display) *) +(* - porderType, distrLatticeType, orderType, bDistrLatticeType, *) +(* cbDistrLatticeType, tbDistrLatticeType, ctbDistrLatticeType *) +(* on n.-tupleprod[disp] a "copy" of n.-tuple T *) +(* using product order (and n.-tupleprod T its specialization *) +(* to prod_display) *) +(* - porderType, distrLatticeType, and orderType, on n.-tuplelexi[d] T *) +(* another "copy" of n.-tuple T, with lexicographic ordering *) +(* (and n.-tuplelexi T its specialization to lexi_display) *) +(* and all possible finite type instances *) +(* *) +(* In order to get a canonical order on prod or seq, one may import modules *) +(* DefaultProdOrder or DefaultProdLexiOrder, DefaultSeqProdOrder or *) +(* DefaultSeqLexiOrder, and DefaultTupleProdOrder or DefaultTupleLexiOrder. *) +(* *) +(* On orderType, leP ltP ltgtP are the three main lemmas for case analysis. *) +(* On porderType, one may use comparableP, comparable_leP, comparable_ltP, *) +(* and comparable_ltgtP, which are the four main lemmas for case analysis. *) +(* *) +(* We also provide specialized versions of some theorems from path.v. *) +(* *) +(* This file is based on prior work by *) +(* D. Dreyer, G. Gonthier, A. Nanevski, P-Y Strub, B. Ziliani *) +(******************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Delimit Scope order_scope with O. +Local Open Scope order_scope. + +Reserved Notation "<= y" (at level 35). +Reserved Notation ">= y" (at level 35). +Reserved Notation "< y" (at level 35). +Reserved Notation "> y" (at level 35). +Reserved Notation "<= y :> T" (at level 35, y at next level). +Reserved Notation ">= y :> T" (at level 35, y at next level). +Reserved Notation "< y :> T" (at level 35, y at next level). +Reserved Notation "> y :> T" (at level 35, y at next level). +Reserved Notation "x >=< y" (at level 70, no associativity). +Reserved Notation ">=< x" (at level 35). +Reserved Notation ">=< y :> T" (at level 35, y at next level). +Reserved Notation "x >< y" (at level 70, no associativity). +Reserved Notation ">< x" (at level 35). +Reserved Notation ">< y :> T" (at level 35, y at next level). + +(* Reserved notation for lattice operations. *) +Reserved Notation "A `&` B" (at level 48, left associativity). +Reserved Notation "A `|` B" (at level 52, left associativity). +Reserved Notation "A `\` B" (at level 50, left associativity). +Reserved Notation "~` A" (at level 35, right associativity). + +(* Notations for converse partial and total order *) +Reserved Notation "x <=^c y" (at level 70, y at next level). +Reserved Notation "x >=^c y" (at level 70, y at next level, only parsing). +Reserved Notation "x <^c y" (at level 70, y at next level). +Reserved Notation "x >^c y" (at level 70, y at next level, only parsing). +Reserved Notation "x <=^c y :> T" (at level 70, y at next level). +Reserved Notation "x >=^c y :> T" (at level 70, y at next level, only parsing). +Reserved Notation "x <^c y :> T" (at level 70, y at next level). +Reserved Notation "x >^c y :> T" (at level 70, y at next level, only parsing). +Reserved Notation "<=^c y" (at level 35). +Reserved Notation ">=^c y" (at level 35). +Reserved Notation "<^c y" (at level 35). +Reserved Notation ">^c y" (at level 35). +Reserved Notation "<=^c y :> T" (at level 35, y at next level). +Reserved Notation ">=^c y :> T" (at level 35, y at next level). +Reserved Notation "<^c y :> T" (at level 35, y at next level). +Reserved Notation ">^c y :> T" (at level 35, y at next level). +Reserved Notation "x >=<^c y" (at level 70, no associativity). +Reserved Notation ">=<^c x" (at level 35). +Reserved Notation ">=<^c y :> T" (at level 35, y at next level). +Reserved Notation "x ><^c y" (at level 70, no associativity). +Reserved Notation "><^c x" (at level 35). +Reserved Notation "><^c y :> T" (at level 35, y at next level). + +Reserved Notation "x <=^c y <=^c z" (at level 70, y, z at next level). +Reserved Notation "x <^c y <=^c z" (at level 70, y, z at next level). +Reserved Notation "x <=^c y <^c z" (at level 70, y, z at next level). +Reserved Notation "x <^c y <^c z" (at level 70, y, z at next level). +Reserved Notation "x <=^c y ?= 'iff' c" (at level 70, y, c at next level, + format "x '[hv' <=^c y '/' ?= 'iff' c ']'"). +Reserved Notation "x <=^c y ?= 'iff' c :> T" (at level 70, y, c at next level, + format "x '[hv' <=^c y '/' ?= 'iff' c :> T ']'"). + +(* Reserved notation for converse lattice operations. *) +Reserved Notation "A `&^c` B" (at level 48, left associativity). +Reserved Notation "A `|^c` B" (at level 52, left associativity). +Reserved Notation "A `\^c` B" (at level 50, left associativity). +Reserved Notation "~^c` A" (at level 35, right associativity). + +(* Reserved notations for product ordering of prod or seq *) +Reserved Notation "x <=^p y" (at level 70, y at next level). +Reserved Notation "x >=^p y" (at level 70, y at next level, only parsing). +Reserved Notation "x <^p y" (at level 70, y at next level). +Reserved Notation "x >^p y" (at level 70, y at next level, only parsing). +Reserved Notation "x <=^p y :> T" (at level 70, y at next level). +Reserved Notation "x >=^p y :> T" (at level 70, y at next level, only parsing). +Reserved Notation "x <^p y :> T" (at level 70, y at next level). +Reserved Notation "x >^p y :> T" (at level 70, y at next level, only parsing). +Reserved Notation "<=^p y" (at level 35). +Reserved Notation ">=^p y" (at level 35). +Reserved Notation "<^p y" (at level 35). +Reserved Notation ">^p y" (at level 35). +Reserved Notation "<=^p y :> T" (at level 35, y at next level). +Reserved Notation ">=^p y :> T" (at level 35, y at next level). +Reserved Notation "<^p y :> T" (at level 35, y at next level). +Reserved Notation ">^p y :> T" (at level 35, y at next level). +Reserved Notation "x >=<^p y" (at level 70, no associativity). +Reserved Notation ">=<^p x" (at level 35). +Reserved Notation ">=<^p y :> T" (at level 35, y at next level). +Reserved Notation "x ><^p y" (at level 70, no associativity). +Reserved Notation "><^p x" (at level 35). +Reserved Notation "><^p y :> T" (at level 35, y at next level). + +Reserved Notation "x <=^p y <=^p z" (at level 70, y, z at next level). +Reserved Notation "x <^p y <=^p z" (at level 70, y, z at next level). +Reserved Notation "x <=^p y <^p z" (at level 70, y, z at next level). +Reserved Notation "x <^p y <^p z" (at level 70, y, z at next level). +Reserved Notation "x <=^p y ?= 'iff' c" (at level 70, y, c at next level, + format "x '[hv' <=^p y '/' ?= 'iff' c ']'"). +Reserved Notation "x <=^p y ?= 'iff' c :> T" (at level 70, y, c at next level, + format "x '[hv' <=^p y '/' ?= 'iff' c :> T ']'"). + +(* Reserved notation for converse lattice operations. *) +Reserved Notation "A `&^p` B" (at level 48, left associativity). +Reserved Notation "A `|^p` B" (at level 52, left associativity). +Reserved Notation "A `\^p` B" (at level 50, left associativity). +Reserved Notation "~^p` A" (at level 35, right associativity). + +(* Reserved notations for lexicographic ordering of prod or seq *) +Reserved Notation "x <=^l y" (at level 70, y at next level). +Reserved Notation "x >=^l y" (at level 70, y at next level, only parsing). +Reserved Notation "x <^l y" (at level 70, y at next level). +Reserved Notation "x >^l y" (at level 70, y at next level, only parsing). +Reserved Notation "x <=^l y :> T" (at level 70, y at next level). +Reserved Notation "x >=^l y :> T" (at level 70, y at next level, only parsing). +Reserved Notation "x <^l y :> T" (at level 70, y at next level). +Reserved Notation "x >^l y :> T" (at level 70, y at next level, only parsing). +Reserved Notation "<=^l y" (at level 35). +Reserved Notation ">=^l y" (at level 35). +Reserved Notation "<^l y" (at level 35). +Reserved Notation ">^l y" (at level 35). +Reserved Notation "<=^l y :> T" (at level 35, y at next level). +Reserved Notation ">=^l y :> T" (at level 35, y at next level). +Reserved Notation "<^l y :> T" (at level 35, y at next level). +Reserved Notation ">^l y :> T" (at level 35, y at next level). +Reserved Notation "x >=<^l y" (at level 70, no associativity). +Reserved Notation ">=<^l x" (at level 35). +Reserved Notation ">=<^l y :> T" (at level 35, y at next level). +Reserved Notation "x ><^l y" (at level 70, no associativity). +Reserved Notation "><^l x" (at level 35). +Reserved Notation "><^l y :> T" (at level 35, y at next level). + +Reserved Notation "x <=^l y <=^l z" (at level 70, y, z at next level). +Reserved Notation "x <^l y <=^l z" (at level 70, y, z at next level). +Reserved Notation "x <=^l y <^l z" (at level 70, y, z at next level). +Reserved Notation "x <^l y <^l z" (at level 70, y, z at next level). +Reserved Notation "x <=^l y ?= 'iff' c" (at level 70, y, c at next level, + format "x '[hv' <=^l y '/' ?= 'iff' c ']'"). +Reserved Notation "x <=^l y ?= 'iff' c :> T" (at level 70, y, c at next level, + format "x '[hv' <=^l y '/' ?= 'iff' c :> T ']'"). + +(* Reserved notations for divisibility *) +Reserved Notation "x %<| y" (at level 70, no associativity). + +Reserved Notation "\gcd_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \gcd_ i '/ ' F ']'"). +Reserved Notation "\gcd_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \gcd_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \gcd_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \gcd_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \gcd_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \gcd_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\gcd_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\gcd_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \gcd_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \gcd_ ( i < n ) F ']'"). +Reserved Notation "\gcd_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \gcd_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\gcd_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \gcd_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\lcm_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \lcm_ i '/ ' F ']'"). +Reserved Notation "\lcm_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \lcm_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \lcm_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \lcm_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \lcm_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \lcm_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\lcm_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\lcm_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \lcm_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \lcm_ ( i < n ) F ']'"). +Reserved Notation "\lcm_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \lcm_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\lcm_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \lcm_ ( i 'in' A ) '/ ' F ']'"). + +(* Reserved notation for converse lattice operations. *) +Reserved Notation "A `&^l` B" (at level 48, left associativity). +Reserved Notation "A `|^l` B" (at level 52, left associativity). +Reserved Notation "A `\^l` B" (at level 50, left associativity). +Reserved Notation "~^l` A" (at level 35, right associativity). + +Reserved Notation "\meet_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \meet_ i '/ ' F ']'"). +Reserved Notation "\meet_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \meet_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\meet_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \meet_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\meet_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \meet_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\meet_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \meet_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\meet_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \meet_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\meet_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\meet_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\meet_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \meet_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\meet_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \meet_ ( i < n ) F ']'"). +Reserved Notation "\meet_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \meet_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\meet_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \meet_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\join_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \join_ i '/ ' F ']'"). +Reserved Notation "\join_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \join_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\join_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \join_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\join_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \join_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\join_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \join_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\join_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \join_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\join_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\join_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\join_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \join_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\join_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \join_ ( i < n ) F ']'"). +Reserved Notation "\join_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \join_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\join_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \join_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\min_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \min_ i '/ ' F ']'"). +Reserved Notation "\min_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \min_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\min_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \min_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\min_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \min_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\min_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \min_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\min_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \min_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\min_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\min_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\min_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \min_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\min_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \min_ ( i < n ) F ']'"). +Reserved Notation "\min_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \min_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\min_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \min_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\meet^c_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \meet^c_ i '/ ' F ']'"). +Reserved Notation "\meet^c_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \meet^c_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \meet^c_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \meet^c_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \meet^c_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \meet^c_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\meet^c_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\meet^c_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \meet^c_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \meet^c_ ( i < n ) F ']'"). +Reserved Notation "\meet^c_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \meet^c_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\meet^c_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \meet^c_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\join^c_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \join^c_ i '/ ' F ']'"). +Reserved Notation "\join^c_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \join^c_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \join^c_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \join^c_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \join^c_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \join^c_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\join^c_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\join^c_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \join^c_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \join^c_ ( i < n ) F ']'"). +Reserved Notation "\join^c_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \join^c_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\join^c_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \join^c_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\meet^p_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \meet^p_ i '/ ' F ']'"). +Reserved Notation "\meet^p_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \meet^p_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \meet^p_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \meet^p_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \meet^p_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \meet^p_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\meet^p_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\meet^p_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \meet^p_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \meet^p_ ( i < n ) F ']'"). +Reserved Notation "\meet^p_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \meet^p_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\meet^p_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \meet^p_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\join^p_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \join^p_ i '/ ' F ']'"). +Reserved Notation "\join^p_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \join^p_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \join^p_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \join^p_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \join^p_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \join^p_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\join^p_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\join^p_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \join^p_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \join^p_ ( i < n ) F ']'"). +Reserved Notation "\join^p_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \join^p_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\join^p_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \join^p_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\min^l_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \min^l_ i '/ ' F ']'"). +Reserved Notation "\min^l_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \min^l_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \min^l_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \min^l_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \min^l_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \min^l_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\min^l_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\min^l_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \min^l_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \min^l_ ( i < n ) F ']'"). +Reserved Notation "\min^l_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \min^l_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\min^l_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \min^l_ ( i 'in' A ) '/ ' F ']'"). + +Reserved Notation "\max^l_ i F" + (at level 41, F at level 41, i at level 0, + format "'[' \max^l_ i '/ ' F ']'"). +Reserved Notation "\max^l_ ( i <- r | P ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \max^l_ ( i <- r | P ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( i <- r ) F" + (at level 41, F at level 41, i, r at level 50, + format "'[' \max^l_ ( i <- r ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( m <= i < n | P ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \max^l_ ( m <= i < n | P ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( m <= i < n ) F" + (at level 41, F at level 41, i, m, n at level 50, + format "'[' \max^l_ ( m <= i < n ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( i | P ) F" + (at level 41, F at level 41, i at level 50, + format "'[' \max^l_ ( i | P ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( i : t | P ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\max^l_ ( i : t ) F" + (at level 41, F at level 41, i at level 50, + only parsing). +Reserved Notation "\max^l_ ( i < n | P ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \max^l_ ( i < n | P ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( i < n ) F" + (at level 41, F at level 41, i, n at level 50, + format "'[' \max^l_ ( i < n ) F ']'"). +Reserved Notation "\max^l_ ( i 'in' A | P ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \max^l_ ( i 'in' A | P ) '/ ' F ']'"). +Reserved Notation "\max^l_ ( i 'in' A ) F" + (at level 41, F at level 41, i, A at level 50, + format "'[' \max^l_ ( i 'in' A ) '/ ' F ']'"). + +(* tuple extensions *) +Lemma eqEtuple n (T : eqType) (t1 t2 : n.-tuple T) : + (t1 == t2) = [forall i, tnth t1 i == tnth t2 i]. +Proof. by apply/eqP/'forall_eqP => [->|/eq_from_tnth]. Qed. + +Lemma tnth_nseq n T x (i : 'I_n) : @tnth n T [tuple of nseq n x] i = x. +Proof. +by rewrite !(tnth_nth (tnth_default (nseq_tuple n x) i)) nth_nseq ltn_ord. +Qed. + +Lemma tnthS n T x (t : n.-tuple T) i : + tnth [tuple of x :: t] (lift ord0 i) = tnth t i. +Proof. by rewrite (tnth_nth (tnth_default t i)). Qed. + +Module Order. + +(**************) +(* STRUCTURES *) +(**************) + +Module POrder. +Section ClassDef. +Record mixin_of (T : eqType) := Mixin { + le : rel T; + lt : rel T; + _ : forall x y, lt x y = (y != x) && (le x y); + _ : reflexive le; + _ : antisymmetric le; + _ : transitive le +}. + +Record class_of T := Class { + base : Choice.class_of T; + mixin : mixin_of (EqType T base) +}. + +Local Coercion base : class_of >-> Choice.class_of. + +Structure type (disp : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack disp T c. +Definition clone_with disp' c of phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack := + fun bT b & phant_id (Choice.class bT) b => + fun m => Pack disp (@Class T b m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> Choice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Canonical eqType. +Canonical choiceType. +Notation porderType := type. +Notation lePOrderMixin := mixin_of. +Notation LePOrderMixin := Mixin. +Notation POrderType disp T m := (@pack T disp _ _ id m). +Notation "[ 'porderType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'porderType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'porderType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, format "[ 'porderType' 'of' T 'for' cT 'with' disp ]") : + form_scope. +Notation "[ 'porderType' 'of' T ]" := [porderType of T for _] + (at level 0, format "[ 'porderType' 'of' T ]") : form_scope. +Notation "[ 'porderType' 'of' T 'with' disp ]" := + [porderType of T for _ with disp] + (at level 0, format "[ 'porderType' 'of' T 'with' disp ]") : form_scope. +End Exports. + +End POrder. +Import POrder.Exports. +Bind Scope cpo_sort with POrder.sort. + +Section POrderDef. + +Variable (disp : unit). +Local Notation porderType := (porderType disp). +Variable (T : porderType). + +Definition le : rel T := POrder.le (POrder.class T). +Local Notation "x <= y" := (le x y) : order_scope. + +Definition lt : rel T := POrder.lt (POrder.class T). +Local Notation "x < y" := (lt x y) : order_scope. + +Definition comparable : rel T := fun (x y : T) => (x <= y) || (y <= x). +Local Notation "x >=< y" := (comparable x y) : order_scope. +Local Notation "x >< y" := (~~ (x >=< y)) : order_scope. + +Definition ge : simpl_rel T := [rel x y | y <= x]. +Definition gt : simpl_rel T := [rel x y | y < x]. +Definition leif (x y : T) C : Prop := ((x <= y) * ((x == y) = C))%type. + +Definition le_of_leif x y C (le_xy : @leif x y C) := le_xy.1 : le x y. + +Variant le_xor_gt (x y : T) : bool -> bool -> Set := + | LeNotGt of x <= y : le_xor_gt x y true false + | GtNotLe of y < x : le_xor_gt x y false true. + +Variant lt_xor_ge (x y : T) : bool -> bool -> Set := + | LtNotGe of x < y : lt_xor_ge x y false true + | GeNotLt of y <= x : lt_xor_ge x y true false. + +Variant compare (x y : T) : + bool -> bool -> bool -> bool -> bool -> bool -> Set := + | CompareLt of x < y : compare x y + false false false true false true + | CompareGt of y < x : compare x y + false false true false true false + | CompareEq of x = y : compare x y + true true true true false false. + +Variant incompare (x y : T) : + bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> Set := + | InCompareLt of x < y : incompare x y + false false false true false true true true + | InCompareGt of y < x : incompare x y + false false true false true false true true + | InCompare of x >< y : incompare x y + false false false false false false false false + | InCompareEq of x = y : incompare x y + true true true true false false true true. + +End POrderDef. + +Prenex Implicits lt le leif. +Arguments ge {_ _}. +Arguments gt {_ _}. + +Module Import POSyntax. + +Notation "<=%O" := le : fun_scope. +Notation ">=%O" := ge : fun_scope. +Notation "<%O" := lt : fun_scope. +Notation ">%O" := gt : fun_scope. +Notation "<?=%O" := leif : fun_scope. +Notation ">=<%O" := comparable : fun_scope. +Notation "><%O" := (fun x y => ~~ (comparable x y)) : fun_scope. + +Notation "<= y" := (ge y) : order_scope. +Notation "<= y :> T" := (<= (y : T)) (only parsing) : order_scope. +Notation ">= y" := (le y) : order_scope. +Notation ">= y :> T" := (>= (y : T)) (only parsing) : order_scope. + +Notation "< y" := (gt y) : order_scope. +Notation "< y :> T" := (< (y : T)) (only parsing) : order_scope. +Notation "> y" := (lt y) : order_scope. +Notation "> y :> T" := (> (y : T)) (only parsing) : order_scope. + +Notation ">=< y" := (comparable y) : order_scope. +Notation ">=< y :> T" := (>=< (y : T)) (only parsing) : order_scope. + +Notation "x <= y" := (le x y) : order_scope. +Notation "x <= y :> T" := ((x : T) <= (y : T)) (only parsing) : order_scope. +Notation "x >= y" := (y <= x) (only parsing) : order_scope. +Notation "x >= y :> T" := ((x : T) >= (y : T)) (only parsing) : order_scope. + +Notation "x < y" := (lt x y) : order_scope. +Notation "x < y :> T" := ((x : T) < (y : T)) (only parsing) : order_scope. +Notation "x > y" := (y < x) (only parsing) : order_scope. +Notation "x > y :> T" := ((x : T) > (y : T)) (only parsing) : order_scope. + +Notation "x <= y <= z" := ((x <= y) && (y <= z)) : order_scope. +Notation "x < y <= z" := ((x < y) && (y <= z)) : order_scope. +Notation "x <= y < z" := ((x <= y) && (y < z)) : order_scope. +Notation "x < y < z" := ((x < y) && (y < z)) : order_scope. + +Notation "x <= y ?= 'iff' C" := (leif x y C) : order_scope. +Notation "x <= y ?= 'iff' C :> T" := ((x : T) <= (y : T) ?= iff C) + (only parsing) : order_scope. + +Notation ">=< x" := (comparable x) : order_scope. +Notation ">=< x :> T" := (>=< (x : T)) (only parsing) : order_scope. +Notation "x >=< y" := (comparable x y) : order_scope. + +Notation ">< x" := (fun y => ~~ (comparable x y)) : order_scope. +Notation ">< x :> T" := (>< (x : T)) (only parsing) : order_scope. +Notation "x >< y" := (~~ (comparable x y)) : order_scope. + +End POSyntax. + +Module POCoercions. +Coercion le_of_leif : leif >-> is_true. +End POCoercions. + +Module DistrLattice. +Section ClassDef. + +Record mixin_of d (T : porderType d) := Mixin { + meet : T -> T -> T; + join : T -> T -> T; + _ : commutative meet; + _ : commutative join; + _ : associative meet; + _ : associative join; + _ : forall y x, meet x (join x y) = x; + _ : forall y x, join x (meet x y) = x; + _ : forall x y, (x <= y) = (meet x y == x); + _ : left_distributive meet join; +}. + +Record class_of (T : Type) := Class { + base : POrder.class_of T; + mixin_disp : unit; + mixin : mixin_of (POrder.Pack mixin_disp base) +}. + +Local Coercion base : class_of >-> POrder.class_of. + +Structure type (disp : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack disp T c. +Definition clone_with disp' c of phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack d0 b0 (m0 : mixin_of (@POrder.Pack d0 T b0)) := + fun bT b & phant_id (@POrder.class disp bT) b => + fun m & phant_id m0 m => Pack disp (@Class T b d0 m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> POrder.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion porderType : type >-> POrder.type. +Canonical eqType. +Canonical choiceType. +Canonical porderType. +Notation distrLatticeType := type. +Notation distrLatticeMixin := mixin_of. +Notation DistrLatticeMixin := Mixin. +Notation DistrLatticeType T m := (@pack T _ _ _ m _ _ id _ id). +Notation "[ 'distrLatticeType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'distrLatticeType' 'of' T 'for' cT ]") : + form_scope. +Notation "[ 'distrLatticeType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, + format "[ 'distrLatticeType' 'of' T 'for' cT 'with' disp ]") : + form_scope. +Notation "[ 'distrLatticeType' 'of' T ]" := [distrLatticeType of T for _] + (at level 0, format "[ 'distrLatticeType' 'of' T ]") : form_scope. +Notation "[ 'distrLatticeType' 'of' T 'with' disp ]" := + [distrLatticeType of T for _ with disp] + (at level 0, format "[ 'distrLatticeType' 'of' T 'with' disp ]") : + form_scope. +End Exports. + +End DistrLattice. +Export DistrLattice.Exports. + +Section DistrLatticeDef. +Context {disp : unit}. +Local Notation distrLatticeType := (distrLatticeType disp). +Context {T : distrLatticeType}. +Definition meet : T -> T -> T := DistrLattice.meet (DistrLattice.class T). +Definition join : T -> T -> T := DistrLattice.join (DistrLattice.class T). + +Variant lel_xor_gt (x y : T) : bool -> bool -> T -> T -> T -> T -> Set := + | LelNotGt of x <= y : lel_xor_gt x y true false x x y y + | GtlNotLe of y < x : lel_xor_gt x y false true y y x x. + +Variant ltl_xor_ge (x y : T) : bool -> bool -> T -> T -> T -> T -> Set := + | LtlNotGe of x < y : ltl_xor_ge x y false true x x y y + | GelNotLt of y <= x : ltl_xor_ge x y true false y y x x. + +Variant comparel (x y : T) : + bool -> bool -> bool -> bool -> bool -> bool -> T -> T -> T -> T -> Set := + | ComparelLt of x < y : comparel x y + false false false true false true x x y y + | ComparelGt of y < x : comparel x y + false false true false true false y y x x + | ComparelEq of x = y : comparel x y + true true true true false false x x x x. + +Variant incomparel (x y : T) : + bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> + T -> T -> T -> T -> Set := + | InComparelLt of x < y : incomparel x y + false false false true false true true true x x y y + | InComparelGt of y < x : incomparel x y + false false true false true false true true y y x x + | InComparel of x >< y : incomparel x y + false false false false false false false false + (meet x y) (meet x y) (join x y) (join x y) + | InComparelEq of x = y : incomparel x y + true true true true false false true true x x x x. + +End DistrLatticeDef. + +Module Import DistrLatticeSyntax. + +Notation "x `&` y" := (meet x y) : order_scope. +Notation "x `|` y" := (join x y) : order_scope. + +End DistrLatticeSyntax. + +Module Total. +Definition mixin_of d (T : distrLatticeType d) := total (<=%O : rel T). +Section ClassDef. + +Record class_of (T : Type) := Class { + base : DistrLattice.class_of T; + mixin_disp : unit; + mixin : mixin_of (DistrLattice.Pack mixin_disp base) +}. + +Local Coercion base : class_of >-> DistrLattice.class_of. + +Structure type (d : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c & phant_id class c := @Pack disp T c. +Definition clone_with disp' c & phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack d0 b0 (m0 : mixin_of (@DistrLattice.Pack d0 T b0)) := + fun bT b & phant_id (@DistrLattice.class disp bT) b => + fun m & phant_id m0 m => Pack disp (@Class T b d0 m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> DistrLattice.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion porderType : type >-> POrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical porderType. +Canonical distrLatticeType. +Notation totalOrderMixin := Total.mixin_of. +Notation orderType := type. +Notation OrderType T m := (@pack T _ _ _ m _ _ id _ id). +Notation "[ 'orderType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'orderType' 'of' T 'for' cT ]") : form_scope. +Notation "[ 'orderType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, format "[ 'orderType' 'of' T 'for' cT 'with' disp ]") : + form_scope. +Notation "[ 'orderType' 'of' T ]" := [orderType of T for _] + (at level 0, format "[ 'orderType' 'of' T ]") : form_scope. +Notation "[ 'orderType' 'of' T 'with' disp ]" := + [orderType of T for _ with disp] + (at level 0, format "[ 'orderType' 'of' T 'with' disp ]") : form_scope. +End Exports. + +End Total. +Import Total.Exports. + +Module BDistrLattice. +Section ClassDef. +Record mixin_of d (T : porderType d) := Mixin { + bottom : T; + _ : forall x, bottom <= x; +}. + +Record class_of (T : Type) := Class { + base : DistrLattice.class_of T; + mixin_disp : unit; + mixin : mixin_of (POrder.Pack mixin_disp base) +}. + +Local Coercion base : class_of >-> DistrLattice.class_of. + +Structure type (d : unit) := Pack { sort; _ : class_of sort}. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack disp T c. +Definition clone_with disp' c of phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack d0 b0 (m0 : mixin_of (@DistrLattice.Pack d0 T b0)) := + fun bT b & phant_id (@DistrLattice.class disp bT) b => + fun m & phant_id m0 m => Pack disp (@Class T b d0 m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> DistrLattice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion porderType : type >-> POrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical porderType. +Canonical distrLatticeType. +Notation bDistrLatticeType := type. +Notation bDistrLatticeMixin := mixin_of. +Notation BDistrLatticeMixin := Mixin. +Notation BDistrLatticeType T m := (@pack T _ _ _ m _ _ id _ id). +Notation "[ 'bDistrLatticeType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'bDistrLatticeType' 'of' T 'for' cT ]") : + form_scope. +Notation "[ 'bDistrLatticeType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, + format "[ 'bDistrLatticeType' 'of' T 'for' cT 'with' disp ]") : + form_scope. +Notation "[ 'bDistrLatticeType' 'of' T ]" := [bDistrLatticeType of T for _] + (at level 0, format "[ 'bDistrLatticeType' 'of' T ]") : form_scope. +Notation "[ 'bDistrLatticeType' 'of' T 'with' disp ]" := + [bDistrLatticeType of T for _ with disp] + (at level 0, format "[ 'bDistrLatticeType' 'of' T 'with' disp ]") : + form_scope. +End Exports. + +End BDistrLattice. +Export BDistrLattice.Exports. + +Definition bottom {disp : unit} {T : bDistrLatticeType disp} : T := + BDistrLattice.bottom (BDistrLattice.class T). + +Module Import BDistrLatticeSyntax. +Notation "0" := bottom : order_scope. + +Notation "\join_ ( i <- r | P ) F" := + (\big[@join _ _/0%O]_(i <- r | P%B) F%O) : order_scope. +Notation "\join_ ( i <- r ) F" := + (\big[@join _ _/0%O]_(i <- r) F%O) : order_scope. +Notation "\join_ ( i | P ) F" := + (\big[@join _ _/0%O]_(i | P%B) F%O) : order_scope. +Notation "\join_ i F" := + (\big[@join _ _/0%O]_i F%O) : order_scope. +Notation "\join_ ( i : I | P ) F" := + (\big[@join _ _/0%O]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\join_ ( i : I ) F" := + (\big[@join _ _/0%O]_(i : I) F%O) (only parsing) : order_scope. +Notation "\join_ ( m <= i < n | P ) F" := + (\big[@join _ _/0%O]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\join_ ( m <= i < n ) F" := + (\big[@join _ _/0%O]_(m <= i < n) F%O) : order_scope. +Notation "\join_ ( i < n | P ) F" := + (\big[@join _ _/0%O]_(i < n | P%B) F%O) : order_scope. +Notation "\join_ ( i < n ) F" := + (\big[@join _ _/0%O]_(i < n) F%O) : order_scope. +Notation "\join_ ( i 'in' A | P ) F" := + (\big[@join _ _/0%O]_(i in A | P%B) F%O) : order_scope. +Notation "\join_ ( i 'in' A ) F" := + (\big[@join _ _/0%O]_(i in A) F%O) : order_scope. + +End BDistrLatticeSyntax. + +Module TBDistrLattice. +Section ClassDef. +Record mixin_of d (T : porderType d) := Mixin { + top : T; + _ : forall x, x <= top; +}. + +Record class_of (T : Type) := Class { + base : BDistrLattice.class_of T; + mixin_disp : unit; + mixin : mixin_of (POrder.Pack mixin_disp base) +}. + +Local Coercion base : class_of >-> BDistrLattice.class_of. + +Structure type (d : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack disp T c. +Definition clone_with disp' c of phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack d0 b0 (m0 : mixin_of (@BDistrLattice.Pack d0 T b0)) := + fun bT b & phant_id (@BDistrLattice.class disp bT) b => + fun m & phant_id m0 m => Pack disp (@Class T b d0 m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +Definition bDistrLatticeType := @BDistrLattice.Pack disp cT xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> BDistrLattice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion porderType : type >-> POrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Coercion bDistrLatticeType : type >-> BDistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Notation tbDistrLatticeType := type. +Notation tbDistrLatticeMixin := mixin_of. +Notation TBDistrLatticeMixin := Mixin. +Notation TBDistrLatticeType T m := (@pack T _ _ _ m _ _ id _ id). +Notation "[ 'tbDistrLatticeType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'tbDistrLatticeType' 'of' T 'for' cT ]") : + form_scope. +Notation "[ 'tbDistrLatticeType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, + format "[ 'tbDistrLatticeType' 'of' T 'for' cT 'with' disp ]") : + form_scope. +Notation "[ 'tbDistrLatticeType' 'of' T ]" := [tbDistrLatticeType of T for _] + (at level 0, format "[ 'tbDistrLatticeType' 'of' T ]") : form_scope. +Notation "[ 'tbDistrLatticeType' 'of' T 'with' disp ]" := + [tbDistrLatticeType of T for _ with disp] + (at level 0, format "[ 'tbDistrLatticeType' 'of' T 'with' disp ]") : + form_scope. +End Exports. + +End TBDistrLattice. +Export TBDistrLattice.Exports. + +Definition top disp {T : tbDistrLatticeType disp} : T := + TBDistrLattice.top (TBDistrLattice.class T). + +Module Import TBDistrLatticeSyntax. + +Notation "1" := top : order_scope. + +Notation "\meet_ ( i <- r | P ) F" := + (\big[meet/1]_(i <- r | P%B) F%O) : order_scope. +Notation "\meet_ ( i <- r ) F" := + (\big[meet/1]_(i <- r) F%O) : order_scope. +Notation "\meet_ ( i | P ) F" := + (\big[meet/1]_(i | P%B) F%O) : order_scope. +Notation "\meet_ i F" := + (\big[meet/1]_i F%O) : order_scope. +Notation "\meet_ ( i : I | P ) F" := + (\big[meet/1]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\meet_ ( i : I ) F" := + (\big[meet/1]_(i : I) F%O) (only parsing) : order_scope. +Notation "\meet_ ( m <= i < n | P ) F" := + (\big[meet/1]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\meet_ ( m <= i < n ) F" := + (\big[meet/1]_(m <= i < n) F%O) : order_scope. +Notation "\meet_ ( i < n | P ) F" := + (\big[meet/1]_(i < n | P%B) F%O) : order_scope. +Notation "\meet_ ( i < n ) F" := + (\big[meet/1]_(i < n) F%O) : order_scope. +Notation "\meet_ ( i 'in' A | P ) F" := + (\big[meet/1]_(i in A | P%B) F%O) : order_scope. +Notation "\meet_ ( i 'in' A ) F" := + (\big[meet/1]_(i in A) F%O) : order_scope. + +End TBDistrLatticeSyntax. + +Module CBDistrLattice. +Section ClassDef. +Record mixin_of d (T : bDistrLatticeType d) := Mixin { + sub : T -> T -> T; + _ : forall x y, y `&` sub x y = bottom; + _ : forall x y, (x `&` y) `|` sub x y = x +}. + +Record class_of (T : Type) := Class { + base : BDistrLattice.class_of T; + mixin_disp : unit; + mixin : mixin_of (BDistrLattice.Pack mixin_disp base) +}. + +Local Coercion base : class_of >-> BDistrLattice.class_of. + +Structure type (d : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack disp T c. +Definition clone_with disp' c of phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack d0 b0 (m0 : mixin_of (@BDistrLattice.Pack d0 T b0)) := + fun bT b & phant_id (@BDistrLattice.class disp bT) b => + fun m & phant_id m0 m => Pack disp (@Class T b d0 m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +Definition bDistrLatticeType := @BDistrLattice.Pack disp cT xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> BDistrLattice.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion porderType : type >-> POrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Coercion bDistrLatticeType : type >-> BDistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Notation cbDistrLatticeType := type. +Notation cbDistrLatticeMixin := mixin_of. +Notation CBDistrLatticeMixin := Mixin. +Notation CBDistrLatticeType T m := (@pack T _ _ _ m _ _ id _ id). +Notation "[ 'cbDistrLatticeType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'cbDistrLatticeType' 'of' T 'for' cT ]") : + form_scope. +Notation "[ 'cbDistrLatticeType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, + format "[ 'cbDistrLatticeType' 'of' T 'for' cT 'with' disp ]") : + form_scope. +Notation "[ 'cbDistrLatticeType' 'of' T ]" := [cbDistrLatticeType of T for _] + (at level 0, format "[ 'cbDistrLatticeType' 'of' T ]") : form_scope. +Notation "[ 'cbDistrLatticeType' 'of' T 'with' disp ]" := + [cbDistrLatticeType of T for _ with disp] + (at level 0, format "[ 'cbDistrLatticeType' 'of' T 'with' disp ]") : + form_scope. +End Exports. + +End CBDistrLattice. +Export CBDistrLattice.Exports. + +Definition sub {disp : unit} {T : cbDistrLatticeType disp} : T -> T -> T := + CBDistrLattice.sub (CBDistrLattice.class T). + +Module Import CBDistrLatticeSyntax. +Notation "x `\` y" := (sub x y) : order_scope. +End CBDistrLatticeSyntax. + +Module CTBDistrLattice. +Section ClassDef. +Record mixin_of d (T : tbDistrLatticeType d) (sub : T -> T -> T) := Mixin { + compl : T -> T; + _ : forall x, compl x = sub top x +}. + +Record class_of (T : Type) := Class { + base : TBDistrLattice.class_of T; + mixin1_disp : unit; + mixin1 : CBDistrLattice.mixin_of (BDistrLattice.Pack mixin1_disp base); + mixin2_disp : unit; + mixin2 : @mixin_of _ (TBDistrLattice.Pack mixin2_disp base) + (CBDistrLattice.sub mixin1) +}. + +Local Coercion base : class_of >-> TBDistrLattice.class_of. +Local Coercion base2 T (c : class_of T) : CBDistrLattice.class_of T := + CBDistrLattice.Class (mixin1 c). + +Structure type (d : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Definition clone c of phant_id class c := @Pack disp T c. +Definition clone_with disp' c of phant_id class c := @Pack disp' T c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack := + fun bT b & phant_id (@TBDistrLattice.class disp bT) b => + fun disp1 m1T m1 & phant_id (@CBDistrLattice.class disp1 m1T) + (@CBDistrLattice.Class _ _ _ m1) => + fun disp2 m2 => Pack disp (@Class T b disp1 m1 disp2 m2). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +Definition bDistrLatticeType := @BDistrLattice.Pack disp cT xclass. +Definition tbDistrLatticeType := @TBDistrLattice.Pack disp cT xclass. +Definition cbDistrLatticeType := @CBDistrLattice.Pack disp cT xclass. +Definition tbd_cbDistrLatticeType := + @CBDistrLattice.Pack disp tbDistrLatticeType xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> TBDistrLattice.class_of. +Coercion base2 : class_of >-> CBDistrLattice.class_of. +Coercion mixin1 : class_of >-> CBDistrLattice.mixin_of. +Coercion mixin2 : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion porderType : type >-> POrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Coercion bDistrLatticeType : type >-> BDistrLattice.type. +Coercion tbDistrLatticeType : type >-> TBDistrLattice.type. +Coercion cbDistrLatticeType : type >-> CBDistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical cbDistrLatticeType. +Canonical tbd_cbDistrLatticeType. +Notation ctbDistrLatticeType := type. +Notation ctbDistrLatticeMixin := mixin_of. +Notation CTBDistrLatticeMixin := Mixin. +Notation CTBDistrLatticeType T m := (@pack T _ _ _ id _ _ _ id _ m). +Notation "[ 'ctbDistrLatticeType' 'of' T 'for' cT ]" := (@clone T _ cT _ id) + (at level 0, format "[ 'ctbDistrLatticeType' 'of' T 'for' cT ]") : + form_scope. +Notation "[ 'ctbDistrLatticeType' 'of' T 'for' cT 'with' disp ]" := + (@clone_with T _ cT disp _ id) + (at level 0, + format "[ 'ctbDistrLatticeType' 'of' T 'for' cT 'with' disp ]") + : form_scope. +Notation "[ 'ctbDistrLatticeType' 'of' T ]" := [ctbDistrLatticeType of T for _] + (at level 0, format "[ 'ctbDistrLatticeType' 'of' T ]") : form_scope. +Notation "[ 'ctbDistrLatticeType' 'of' T 'with' disp ]" := + [ctbDistrLatticeType of T for _ with disp] + (at level 0, format "[ 'ctbDistrLatticeType' 'of' T 'with' disp ]") : + form_scope. +Notation "[ 'default_ctbDistrLatticeType' 'of' T ]" := + (@pack T _ _ _ id _ _ id (Mixin (fun=> erefl))) + (at level 0, format "[ 'default_ctbDistrLatticeType' 'of' T ]") : + form_scope. +End Exports. + +End CTBDistrLattice. +Export CTBDistrLattice.Exports. + +Definition compl {d : unit} {T : ctbDistrLatticeType d} : T -> T := + CTBDistrLattice.compl (CTBDistrLattice.class T). + +Module Import CTBDistrLatticeSyntax. +Notation "~` A" := (compl A) : order_scope. +End CTBDistrLatticeSyntax. + +Section TotalDef. +Context {disp : unit} {T : orderType disp} {I : finType}. +Definition arg_min := @extremum T I <=%O. +Definition arg_max := @extremum T I >=%O. +End TotalDef. + +Module Import TotalSyntax. + +Fact total_display : unit. Proof. exact: tt. Qed. + +Notation max := (@join total_display _). +Notation "@ 'max' T" := + (@join total_display T) (at level 10, T at level 8, only parsing) : fun_scope. +Notation min := (@meet total_display _). +Notation "@ 'min' T" := + (@meet total_display T) (at level 10, T at level 8, only parsing) : fun_scope. + +Notation "\max_ ( i <- r | P ) F" := + (\big[max/0%O]_(i <- r | P%B) F%O) : order_scope. +Notation "\max_ ( i <- r ) F" := + (\big[max/0%O]_(i <- r) F%O) : order_scope. +Notation "\max_ ( i | P ) F" := + (\big[max/0%O]_(i | P%B) F%O) : order_scope. +Notation "\max_ i F" := + (\big[max/0%O]_i F%O) : order_scope. +Notation "\max_ ( i : I | P ) F" := + (\big[max/0%O]_(i : I | P%B) F%O) (only parsing) : + order_scope. +Notation "\max_ ( i : I ) F" := + (\big[max/0%O]_(i : I) F%O) (only parsing) : order_scope. +Notation "\max_ ( m <= i < n | P ) F" := + (\big[max/0%O]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\max_ ( m <= i < n ) F" := + (\big[max/0%O]_(m <= i < n) F%O) : order_scope. +Notation "\max_ ( i < n | P ) F" := + (\big[max/0%O]_(i < n | P%B) F%O) : order_scope. +Notation "\max_ ( i < n ) F" := + (\big[max/0%O]_(i < n) F%O) : order_scope. +Notation "\max_ ( i 'in' A | P ) F" := + (\big[max/0%O]_(i in A | P%B) F%O) : order_scope. +Notation "\max_ ( i 'in' A ) F" := + (\big[max/0%O]_(i in A) F%O) : order_scope. + +Notation "\min_ ( i <- r | P ) F" := + (\big[min/1%O]_(i <- r | P%B) F%O) : order_scope. +Notation "\min_ ( i <- r ) F" := + (\big[min/1%O]_(i <- r) F%O) : order_scope. +Notation "\min_ ( i | P ) F" := + (\big[min/1%O]_(i | P%B) F%O) : order_scope. +Notation "\min_ i F" := + (\big[min/1%O]_i F%O) : order_scope. +Notation "\min_ ( i : I | P ) F" := + (\big[min/1%O]_(i : I | P%B) F%O) (only parsing) : + order_scope. +Notation "\min_ ( i : I ) F" := + (\big[min/1%O]_(i : I) F%O) (only parsing) : order_scope. +Notation "\min_ ( m <= i < n | P ) F" := + (\big[min/1%O]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\min_ ( m <= i < n ) F" := + (\big[min/1%O]_(m <= i < n) F%O) : order_scope. +Notation "\min_ ( i < n | P ) F" := + (\big[min/1%O]_(i < n | P%B) F%O) : order_scope. +Notation "\min_ ( i < n ) F" := + (\big[min/1%O]_(i < n) F%O) : order_scope. +Notation "\min_ ( i 'in' A | P ) F" := + (\big[min/1%O]_(i in A | P%B) F%O) : order_scope. +Notation "\min_ ( i 'in' A ) F" := + (\big[min/1%O]_(i in A) F%O) : order_scope. + +Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" := + (arg_min i0 (fun i => P%B) (fun i => F)) + (at level 0, i, i0 at level 10, + format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : order_scope. + +Notation "[ 'arg' 'min_' ( i < i0 'in' A ) F ]" := + [arg min_(i < i0 | i \in A) F] + (at level 0, i, i0 at level 10, + format "[ 'arg' 'min_' ( i < i0 'in' A ) F ]") : order_scope. + +Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F] + (at level 0, i, i0 at level 10, + format "[ 'arg' 'min_' ( i < i0 ) F ]") : order_scope. + +Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" := + (arg_max i0 (fun i => P%B) (fun i => F)) + (at level 0, i, i0 at level 10, + format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : order_scope. + +Notation "[ 'arg' 'max_' ( i > i0 'in' A ) F ]" := + [arg max_(i > i0 | i \in A) F] + (at level 0, i, i0 at level 10, + format "[ 'arg' 'max_' ( i > i0 'in' A ) F ]") : order_scope. + +Notation "[ 'arg' 'max_' ( i > i0 ) F ]" := [arg max_(i > i0 | true) F] + (at level 0, i, i0 at level 10, + format "[ 'arg' 'max_' ( i > i0 ) F ]") : order_scope. + +End TotalSyntax. + +(**********) +(* FINITE *) +(**********) + +Module FinPOrder. +Section ClassDef. + +Record class_of T := Class { + base : POrder.class_of T; + mixin : Finite.mixin_of (Equality.Pack base) +}. + +Local Coercion base : class_of >-> POrder.class_of. +Local Coercion base2 T (c : class_of T) : Finite.class_of T := + Finite.Class (mixin c). + +Structure type (disp : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack := + fun bT b & phant_id (@POrder.class disp bT) b => + fun mT m & phant_id (@Finite.class mT) (@Finite.Class _ _ m) => + Pack disp (@Class T b m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition countType := @Countable.Pack cT xclass. +Definition finType := @Finite.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition count_porderType := @POrder.Pack disp countType xclass. +Definition fin_porderType := @POrder.Pack disp finType xclass. +End ClassDef. + +Module Exports. +Coercion base : class_of >-> POrder.class_of. +Coercion base2 : class_of >-> Finite.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion countType : type >-> Countable.type. +Coercion finType : type >-> Finite.type. +Coercion porderType : type >-> POrder.type. +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical count_porderType. +Canonical fin_porderType. +Notation finPOrderType := type. +Notation "[ 'finPOrderType' 'of' T ]" := (@pack T _ _ _ id _ _ id) + (at level 0, format "[ 'finPOrderType' 'of' T ]") : form_scope. +End Exports. + +End FinPOrder. +Import FinPOrder.Exports. +Bind Scope cpo_sort with FinPOrder.sort. + +Module FinDistrLattice. +Section ClassDef. + +Record class_of (T : Type) := Class { + base : TBDistrLattice.class_of T; + mixin : Finite.mixin_of (Equality.Pack base); +}. + +Local Coercion base : class_of >-> TBDistrLattice.class_of. +Local Coercion base2 T (c : class_of T) : Finite.class_of T := + Finite.Class (mixin c). +Local Coercion base3 T (c : class_of T) : FinPOrder.class_of T := + @FinPOrder.Class T c c. + +Structure type (disp : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack := + fun bT b & phant_id (@TBDistrLattice.class disp bT) b => + fun mT m & phant_id (@Finite.class mT) (@Finite.Class _ _ m) => + Pack disp (@Class T b m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition countType := @Countable.Pack cT xclass. +Definition finType := @Finite.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition finPOrderType := @FinPOrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +Definition bDistrLatticeType := @BDistrLattice.Pack disp cT xclass. +Definition tbDistrLatticeType := @TBDistrLattice.Pack disp cT xclass. +Definition count_distrLatticeType := @DistrLattice.Pack disp countType xclass. +Definition count_bDistrLatticeType := @BDistrLattice.Pack disp countType xclass. +Definition count_tbDistrLatticeType := + @TBDistrLattice.Pack disp countType xclass. +Definition fin_distrLatticeType := @DistrLattice.Pack disp finType xclass. +Definition fin_bDistrLatticeType := @BDistrLattice.Pack disp finType xclass. +Definition fin_tbDistrLatticeType := @TBDistrLattice.Pack disp finType xclass. +Definition finPOrder_distrLatticeType := + @DistrLattice.Pack disp finPOrderType xclass. +Definition finPOrder_bDistrLatticeType := + @BDistrLattice.Pack disp finPOrderType xclass. +Definition finPOrder_tbDistrLatticeType := + @TBDistrLattice.Pack disp finPOrderType xclass. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> TBDistrLattice.class_of. +Coercion base2 : class_of >-> Finite.class_of. +Coercion base3 : class_of >-> FinPOrder.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion countType : type >-> Countable.type. +Coercion finType : type >-> Finite.type. +Coercion porderType : type >-> POrder.type. +Coercion finPOrderType : type >-> FinPOrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Coercion bDistrLatticeType : type >-> BDistrLattice.type. +Coercion tbDistrLatticeType : type >-> TBDistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical finPOrderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical count_distrLatticeType. +Canonical count_bDistrLatticeType. +Canonical count_tbDistrLatticeType. +Canonical fin_distrLatticeType. +Canonical fin_bDistrLatticeType. +Canonical fin_tbDistrLatticeType. +Canonical finPOrder_distrLatticeType. +Canonical finPOrder_bDistrLatticeType. +Canonical finPOrder_tbDistrLatticeType. +Notation finDistrLatticeType := type. +Notation "[ 'finDistrLatticeType' 'of' T ]" := (@pack T _ _ _ id _ _ id) + (at level 0, format "[ 'finDistrLatticeType' 'of' T ]") : form_scope. +End Exports. + +End FinDistrLattice. +Export FinDistrLattice.Exports. + +Module FinCDistrLattice. +Section ClassDef. + +Record class_of (T : Type) := Class { + base : CTBDistrLattice.class_of T; + mixin : Finite.mixin_of (Equality.Pack base); +}. + +Local Coercion base : class_of >-> CTBDistrLattice.class_of. +Local Coercion base2 T (c : class_of T) : Finite.class_of T := + Finite.Class (mixin c). +Local Coercion base3 T (c : class_of T) : FinDistrLattice.class_of T := + @FinDistrLattice.Class T c c. + +Structure type (disp : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack := + fun bT b & phant_id (@CTBDistrLattice.class disp bT) b => + fun mT m & phant_id (@Finite.class mT) (@Finite.Class _ _ m) => + Pack disp (@Class T b m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition countType := @Countable.Pack cT xclass. +Definition finType := @Finite.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition finPOrderType := @FinPOrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +Definition bDistrLatticeType := @BDistrLattice.Pack disp cT xclass. +Definition tbDistrLatticeType := @TBDistrLattice.Pack disp cT xclass. +Definition finDistrLatticeType := @FinDistrLattice.Pack disp cT xclass. +Definition cbDistrLatticeType := @CBDistrLattice.Pack disp cT xclass. +Definition ctbDistrLatticeType := @CTBDistrLattice.Pack disp cT xclass. +Definition count_cbDistrLatticeType := + @CBDistrLattice.Pack disp countType xclass. +Definition count_ctbDistrLatticeType := + @CTBDistrLattice.Pack disp countType xclass. +Definition fin_cbDistrLatticeType := @CBDistrLattice.Pack disp finType xclass. +Definition fin_ctbDistrLatticeType := @CTBDistrLattice.Pack disp finType xclass. +Definition finPOrder_cbDistrLatticeType := + @CBDistrLattice.Pack disp finPOrderType xclass. +Definition finPOrder_ctbDistrLatticeType := + @CTBDistrLattice.Pack disp finPOrderType xclass. +Definition finDistrLattice_cbDistrLatticeType := + @CBDistrLattice.Pack disp finDistrLatticeType xclass. +Definition finDistrLattice_ctbDistrLatticeType := + @CTBDistrLattice.Pack disp finDistrLatticeType xclass. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> CTBDistrLattice.class_of. +Coercion base2 : class_of >-> Finite.class_of. +Coercion base3 : class_of >-> FinDistrLattice.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion countType : type >-> Countable.type. +Coercion finType : type >-> Finite.type. +Coercion porderType : type >-> POrder.type. +Coercion finPOrderType : type >-> FinPOrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Coercion bDistrLatticeType : type >-> BDistrLattice.type. +Coercion tbDistrLatticeType : type >-> TBDistrLattice.type. +Coercion finDistrLatticeType : type >-> FinDistrLattice.type. +Coercion cbDistrLatticeType : type >-> CBDistrLattice.type. +Coercion ctbDistrLatticeType : type >-> CTBDistrLattice.type. +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical finPOrderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical finDistrLatticeType. +Canonical cbDistrLatticeType. +Canonical ctbDistrLatticeType. +Canonical count_cbDistrLatticeType. +Canonical count_ctbDistrLatticeType. +Canonical fin_cbDistrLatticeType. +Canonical fin_ctbDistrLatticeType. +Canonical finPOrder_cbDistrLatticeType. +Canonical finPOrder_ctbDistrLatticeType. +Canonical finDistrLattice_cbDistrLatticeType. +Canonical finDistrLattice_ctbDistrLatticeType. +Notation finCDistrLatticeType := type. +Notation "[ 'finCDistrLatticeType' 'of' T ]" := (@pack T _ _ _ id _ _ id) + (at level 0, format "[ 'finCDistrLatticeType' 'of' T ]") : form_scope. +End Exports. + +End FinCDistrLattice. +Export FinCDistrLattice.Exports. + +Module FinTotal. +Section ClassDef. + +Record class_of (T : Type) := Class { + base : FinDistrLattice.class_of T; + mixin_disp : unit; + mixin : totalOrderMixin (DistrLattice.Pack mixin_disp base) +}. + +Local Coercion base : class_of >-> FinDistrLattice.class_of. +Local Coercion base2 T (c : class_of T) : Total.class_of T := + @Total.Class _ c _ (mixin (c := c)). + +Structure type (disp : unit) := Pack { sort; _ : class_of sort }. + +Local Coercion sort : type >-> Sortclass. + +Variables (T : Type) (disp : unit) (cT : type disp). + +Definition class := let: Pack _ c as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition pack := + fun bT b & phant_id (@FinDistrLattice.class disp bT) b => + fun disp' mT m & phant_id (@Total.class disp mT) (@Total.Class _ _ _ m) => + Pack disp (@Class T b disp' m). + +Definition eqType := @Equality.Pack cT xclass. +Definition choiceType := @Choice.Pack cT xclass. +Definition countType := @Countable.Pack cT xclass. +Definition finType := @Finite.Pack cT xclass. +Definition porderType := @POrder.Pack disp cT xclass. +Definition finPOrderType := @FinPOrder.Pack disp cT xclass. +Definition distrLatticeType := @DistrLattice.Pack disp cT xclass. +Definition bDistrLatticeType := @BDistrLattice.Pack disp cT xclass. +Definition tbDistrLatticeType := @TBDistrLattice.Pack disp cT xclass. +Definition finDistrLatticeType := @FinDistrLattice.Pack disp cT xclass. +Definition orderType := @Total.Pack disp cT xclass. +Definition order_countType := @Countable.Pack orderType xclass. +Definition order_finType := @Finite.Pack orderType xclass. +Definition order_finPOrderType := @FinPOrder.Pack disp orderType xclass. +Definition order_bDistrLatticeType := @BDistrLattice.Pack disp orderType xclass. +Definition order_tbDistrLatticeType := + @TBDistrLattice.Pack disp orderType xclass. +Definition order_finDistrLatticeType := + @FinDistrLattice.Pack disp orderType xclass. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> FinDistrLattice.class_of. +Coercion base2 : class_of >-> Total.class_of. +Coercion sort : type >-> Sortclass. +Coercion eqType : type >-> Equality.type. +Coercion choiceType : type >-> Choice.type. +Coercion countType : type >-> Countable.type. +Coercion finType : type >-> Finite.type. +Coercion porderType : type >-> POrder.type. +Coercion finPOrderType : type >-> FinPOrder.type. +Coercion distrLatticeType : type >-> DistrLattice.type. +Coercion bDistrLatticeType : type >-> BDistrLattice.type. +Coercion tbDistrLatticeType : type >-> TBDistrLattice.type. +Coercion finDistrLatticeType : type >-> FinDistrLattice.type. +Coercion orderType : type >-> Total.type. +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical finPOrderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical finDistrLatticeType. +Canonical orderType. +Canonical order_countType. +Canonical order_finType. +Canonical order_finPOrderType. +Canonical order_bDistrLatticeType. +Canonical order_tbDistrLatticeType. +Canonical order_finDistrLatticeType. +Notation finOrderType := type. +Notation "[ 'finOrderType' 'of' T ]" := (@pack T _ _ _ id _ _ _ id) + (at level 0, format "[ 'finOrderType' 'of' T ]") : form_scope. +End Exports. + +End FinTotal. +Export FinTotal.Exports. + +(************) +(* CONVERSE *) +(************) + +Definition converse T : Type := T. +Definition converse_display : unit -> unit. Proof. exact. Qed. +Local Notation "T ^c" := (converse T) (at level 2, format "T ^c") : type_scope. + +Module Import ConverseSyntax. + +Notation "<=^c%O" := (@le (converse_display _) _) : fun_scope. +Notation ">=^c%O" := (@ge (converse_display _) _) : fun_scope. +Notation ">=^c%O" := (@ge (converse_display _) _) : fun_scope. +Notation "<^c%O" := (@lt (converse_display _) _) : fun_scope. +Notation ">^c%O" := (@gt (converse_display _) _) : fun_scope. +Notation "<?=^c%O" := (@leif (converse_display _) _) : fun_scope. +Notation ">=<^c%O" := (@comparable (converse_display _) _) : fun_scope. +Notation "><^c%O" := (fun x y => ~~ (@comparable (converse_display _) _ x y)) : + fun_scope. + +Notation "<=^c y" := (>=^c%O y) : order_scope. +Notation "<=^c y :> T" := (<=^c (y : T)) (only parsing) : order_scope. +Notation ">=^c y" := (<=^c%O y) : order_scope. +Notation ">=^c y :> T" := (>=^c (y : T)) (only parsing) : order_scope. + +Notation "<^c y" := (>^c%O y) : order_scope. +Notation "<^c y :> T" := (<^c (y : T)) (only parsing) : order_scope. +Notation ">^c y" := (<^c%O y) : order_scope. +Notation ">^c y :> T" := (>^c (y : T)) (only parsing) : order_scope. + +Notation ">=<^c y" := (>=<^c%O y) : order_scope. +Notation ">=<^c y :> T" := (>=<^c (y : T)) (only parsing) : order_scope. + +Notation "x <=^c y" := (<=^c%O x y) : order_scope. +Notation "x <=^c y :> T" := ((x : T) <=^c (y : T)) (only parsing) : order_scope. +Notation "x >=^c y" := (y <=^c x) (only parsing) : order_scope. +Notation "x >=^c y :> T" := ((x : T) >=^c (y : T)) (only parsing) : order_scope. + +Notation "x <^c y" := (<^c%O x y) : order_scope. +Notation "x <^c y :> T" := ((x : T) <^c (y : T)) (only parsing) : order_scope. +Notation "x >^c y" := (y <^c x) (only parsing) : order_scope. +Notation "x >^c y :> T" := ((x : T) >^c (y : T)) (only parsing) : order_scope. + +Notation "x <=^c y <=^c z" := ((x <=^c y) && (y <=^c z)) : order_scope. +Notation "x <^c y <=^c z" := ((x <^c y) && (y <=^c z)) : order_scope. +Notation "x <=^c y <^c z" := ((x <=^c y) && (y <^c z)) : order_scope. +Notation "x <^c y <^c z" := ((x <^c y) && (y <^c z)) : order_scope. + +Notation "x <=^c y ?= 'iff' C" := (<?=^c%O x y C) : order_scope. +Notation "x <=^c y ?= 'iff' C :> T" := ((x : T) <=^c (y : T) ?= iff C) + (only parsing) : order_scope. + +Notation ">=<^c x" := (>=<^c%O x) : order_scope. +Notation ">=<^c x :> T" := (>=<^c (x : T)) (only parsing) : order_scope. +Notation "x >=<^c y" := (>=<^c%O x y) : order_scope. + +Notation "><^c x" := (fun y => ~~ (>=<^c%O x y)) : order_scope. +Notation "><^c x :> T" := (><^c (x : T)) (only parsing) : order_scope. +Notation "x ><^c y" := (~~ (><^c%O x y)) : order_scope. + +Notation "x `&^c` y" := (@meet (converse_display _) _ x y) : order_scope. +Notation "x `|^c` y" := (@join (converse_display _) _ x y) : order_scope. + +Local Notation "0" := bottom. +Local Notation "1" := top. +Local Notation join := (@join (converse_display _) _). +Local Notation meet := (@meet (converse_display _) _). + +Notation "\join^c_ ( i <- r | P ) F" := + (\big[join/0]_(i <- r | P%B) F%O) : order_scope. +Notation "\join^c_ ( i <- r ) F" := + (\big[join/0]_(i <- r) F%O) : order_scope. +Notation "\join^c_ ( i | P ) F" := + (\big[join/0]_(i | P%B) F%O) : order_scope. +Notation "\join^c_ i F" := + (\big[join/0]_i F%O) : order_scope. +Notation "\join^c_ ( i : I | P ) F" := + (\big[join/0]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\join^c_ ( i : I ) F" := + (\big[join/0]_(i : I) F%O) (only parsing) : order_scope. +Notation "\join^c_ ( m <= i < n | P ) F" := + (\big[join/0]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\join^c_ ( m <= i < n ) F" := + (\big[join/0]_(m <= i < n) F%O) : order_scope. +Notation "\join^c_ ( i < n | P ) F" := + (\big[join/0]_(i < n | P%B) F%O) : order_scope. +Notation "\join^c_ ( i < n ) F" := + (\big[join/0]_(i < n) F%O) : order_scope. +Notation "\join^c_ ( i 'in' A | P ) F" := + (\big[join/0]_(i in A | P%B) F%O) : order_scope. +Notation "\join^c_ ( i 'in' A ) F" := + (\big[join/0]_(i in A) F%O) : order_scope. + +Notation "\meet^c_ ( i <- r | P ) F" := + (\big[meet/1]_(i <- r | P%B) F%O) : order_scope. +Notation "\meet^c_ ( i <- r ) F" := + (\big[meet/1]_(i <- r) F%O) : order_scope. +Notation "\meet^c_ ( i | P ) F" := + (\big[meet/1]_(i | P%B) F%O) : order_scope. +Notation "\meet^c_ i F" := + (\big[meet/1]_i F%O) : order_scope. +Notation "\meet^c_ ( i : I | P ) F" := + (\big[meet/1]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\meet^c_ ( i : I ) F" := + (\big[meet/1]_(i : I) F%O) (only parsing) : order_scope. +Notation "\meet^c_ ( m <= i < n | P ) F" := + (\big[meet/1]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\meet^c_ ( m <= i < n ) F" := + (\big[meet/1]_(m <= i < n) F%O) : order_scope. +Notation "\meet^c_ ( i < n | P ) F" := + (\big[meet/1]_(i < n | P%B) F%O) : order_scope. +Notation "\meet^c_ ( i < n ) F" := + (\big[meet/1]_(i < n) F%O) : order_scope. +Notation "\meet^c_ ( i 'in' A | P ) F" := + (\big[meet/1]_(i in A | P%B) F%O) : order_scope. +Notation "\meet^c_ ( i 'in' A ) F" := + (\big[meet/1]_(i in A) F%O) : order_scope. + +End ConverseSyntax. + +(**********) +(* THEORY *) +(**********) + +Module Import POrderTheory. +Section POrderTheory. + +Context {disp : unit}. +Local Notation porderType := (porderType disp). +Context {T : porderType}. + +Implicit Types x y : T. + +Lemma geE x y : ge x y = (y <= x). Proof. by []. Qed. +Lemma gtE x y : gt x y = (y < x). Proof. by []. Qed. + +Lemma lexx (x : T) : x <= x. +Proof. by case: T x => ? [? []]. Qed. +Hint Resolve lexx : core. + +Definition le_refl : reflexive le := lexx. +Definition ge_refl : reflexive ge := lexx. +Hint Resolve le_refl : core. + +Lemma le_anti: antisymmetric (<=%O : rel T). +Proof. by case: T => ? [? []]. Qed. + +Lemma ge_anti: antisymmetric (>=%O : rel T). +Proof. by move=> x y /le_anti. Qed. + +Lemma le_trans: transitive (<=%O : rel T). +Proof. by case: T => ? [? []]. Qed. + +Lemma ge_trans: transitive (>=%O : rel T). +Proof. by move=> ? ? ? ? /le_trans; apply. Qed. + +Lemma lt_def x y: (x < y) = (y != x) && (x <= y). +Proof. by case: T x y => ? [? []]. Qed. + +Lemma lt_neqAle x y: (x < y) = (x != y) && (x <= y). +Proof. by rewrite lt_def eq_sym. Qed. + +Lemma ltxx x: x < x = false. +Proof. by rewrite lt_def eqxx. Qed. + +Definition lt_irreflexive : irreflexive lt := ltxx. +Hint Resolve lt_irreflexive : core. + +Definition ltexx := (lexx, ltxx). + +Lemma le_eqVlt x y: (x <= y) = (x == y) || (x < y). +Proof. by rewrite lt_neqAle; case: eqP => //= ->; rewrite lexx. Qed. + +Lemma lt_eqF x y: x < y -> x == y = false. +Proof. by rewrite lt_neqAle => /andP [/negbTE->]. Qed. + +Lemma gt_eqF x y : y < x -> x == y = false. +Proof. by apply: contraTF => /eqP ->; rewrite ltxx. Qed. + +Lemma eq_le x y: (x == y) = (x <= y <= x). +Proof. by apply/eqP/idP => [->|/le_anti]; rewrite ?lexx. Qed. + +Lemma ltW x y: x < y -> x <= y. +Proof. by rewrite le_eqVlt orbC => ->. Qed. + +Lemma lt_le_trans y x z: x < y -> y <= z -> x < z. +Proof. +rewrite !lt_neqAle => /andP [nexy lexy leyz]; rewrite (le_trans lexy) // andbT. +by apply: contraNneq nexy => eqxz; rewrite eqxz eq_le leyz andbT in lexy *. +Qed. + +Lemma lt_trans: transitive (<%O : rel T). +Proof. by move=> y x z le1 /ltW le2; apply/(@lt_le_trans y). Qed. + +Lemma le_lt_trans y x z: x <= y -> y < z -> x < z. +Proof. by rewrite le_eqVlt => /orP [/eqP ->|/lt_trans t /t]. Qed. + +Lemma lt_nsym x y : x < y -> y < x -> False. +Proof. by move=> xy /(lt_trans xy); rewrite ltxx. Qed. + +Lemma lt_asym x y : x < y < x = false. +Proof. by apply/negP => /andP []; apply: lt_nsym. Qed. + +Lemma le_gtF x y: x <= y -> y < x = false. +Proof. +by move=> le_xy; apply/negP => /lt_le_trans /(_ le_xy); rewrite ltxx. +Qed. + +Lemma lt_geF x y : (x < y) -> y <= x = false. +Proof. +by move=> le_xy; apply/negP => /le_lt_trans /(_ le_xy); rewrite ltxx. +Qed. + +Definition lt_gtF x y hxy := le_gtF (@ltW x y hxy). + +Lemma lt_leAnge x y : (x < y) = (x <= y) && ~~ (y <= x). +Proof. +apply/idP/idP => [ltxy|/andP[lexy Nleyx]]; first by rewrite ltW // lt_geF. +by rewrite lt_neqAle lexy andbT; apply: contraNneq Nleyx => ->. +Qed. + +Lemma lt_le_asym x y : x < y <= x = false. +Proof. by rewrite lt_neqAle -andbA -eq_le eq_sym andNb. Qed. + +Lemma le_lt_asym x y : x <= y < x = false. +Proof. by rewrite andbC lt_le_asym. Qed. + +Definition lte_anti := (=^~ eq_le, lt_asym, lt_le_asym, le_lt_asym). + +Lemma lt_sorted_uniq_le (s : seq T) : + sorted lt s = uniq s && sorted le s. +Proof. +case: s => //= n s; elim: s n => //= m s IHs n. +rewrite inE lt_neqAle negb_or IHs -!andbA. +case sn: (n \in s); last do !bool_congr. +rewrite andbF; apply/and5P=> [[ne_nm lenm _ _ le_ms]]; case/negP: ne_nm. +by rewrite eq_le lenm /=; apply: (allP (order_path_min le_trans le_ms)). +Qed. + +Lemma eq_sorted_lt (s1 s2 : seq T) : + sorted lt s1 -> sorted lt s2 -> s1 =i s2 -> s1 = s2. +Proof. by apply: eq_sorted_irr => //; apply: lt_trans. Qed. + +Lemma eq_sorted_le (s1 s2 : seq T) : + sorted le s1 -> sorted le s2 -> perm_eq s1 s2 -> s1 = s2. +Proof. by apply: eq_sorted; [apply: le_trans|apply: le_anti]. Qed. + +Lemma comparable_leNgt x y : x >=< y -> (x <= y) = ~~ (y < x). +Proof. +move=> c_xy; apply/idP/idP => [/le_gtF/negP/negP//|]; rewrite lt_neqAle. +by move: c_xy => /orP [] -> //; rewrite andbT negbK => /eqP ->. +Qed. + +Lemma comparable_ltNge x y : x >=< y -> (x < y) = ~~ (y <= x). +Proof. +move=> c_xy; apply/idP/idP => [/lt_geF/negP/negP//|]. +by rewrite lt_neqAle eq_le; move: c_xy => /orP [] -> //; rewrite andbT. +Qed. + +Lemma comparable_ltgtP x y : x >=< y -> + compare x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). +Proof. +rewrite />=<%O !le_eqVlt [y == x]eq_sym. +have := (altP (x =P y), (boolP (x < y), boolP (y < x))). +move=> [[->//|neq_xy /=] [[] xy [] //=]] ; do ?by rewrite ?ltxx; constructor. + by rewrite ltxx in xy. +by rewrite le_gtF // ltW. +Qed. + +Lemma comparable_leP x y : x >=< y -> le_xor_gt x y (x <= y) (y < x). +Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed. + +Lemma comparable_ltP x y : x >=< y -> lt_xor_ge x y (y <= x) (x < y). +Proof. by move=> /comparable_ltgtP [?|?|->]; constructor; rewrite // ltW. Qed. + +Lemma comparable_sym x y : (y >=< x) = (x >=< y). +Proof. by rewrite /comparable orbC. Qed. + +Lemma comparablexx x : x >=< x. +Proof. by rewrite /comparable lexx. Qed. + +Lemma incomparable_eqF x y : (x >< y) -> (x == y) = false. +Proof. by apply: contraNF => /eqP ->; rewrite comparablexx. Qed. + +Lemma incomparable_leF x y : (x >< y) -> (x <= y) = false. +Proof. by apply: contraNF; rewrite /comparable => ->. Qed. + +Lemma incomparable_ltF x y : (x >< y) -> (x < y) = false. +Proof. by rewrite lt_neqAle => /incomparable_leF ->; rewrite andbF. Qed. + +Lemma comparableP x y : incompare x y + (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) + (y >=< x) (x >=< y). +Proof. +rewrite ![y >=< _]comparable_sym; have [c_xy|i_xy] := boolP (x >=< y). + by case: (comparable_ltgtP c_xy) => ?; constructor. +by rewrite ?incomparable_eqF ?incomparable_leF ?incomparable_ltF // + 1?comparable_sym //; constructor. +Qed. + +Lemma le_comparable (x y : T) : x <= y -> x >=< y. +Proof. by case: comparableP. Qed. + +Lemma lt_comparable (x y : T) : x < y -> x >=< y. +Proof. by case: comparableP. Qed. + +Lemma ge_comparable (x y : T) : y <= x -> x >=< y. +Proof. by case: comparableP. Qed. + +Lemma gt_comparable (x y : T) : y < x -> x >=< y. +Proof. by case: comparableP. Qed. + +Lemma leifP x y C : reflect (x <= y ?= iff C) (if C then x == y else x < y). +Proof. +rewrite /leif le_eqVlt; apply: (iffP idP)=> [|[]]. + by case: C => [/eqP->|lxy]; rewrite ?eqxx // lxy lt_eqF. +by move=> /orP[/eqP->|lxy] <-; rewrite ?eqxx // lt_eqF. +Qed. + +Lemma leif_refl x C : reflect (x <= x ?= iff C) C. +Proof. by apply: (iffP idP) => [-> | <-] //; split; rewrite ?eqxx. Qed. + +Lemma leif_trans x1 x2 x3 C12 C23 : + x1 <= x2 ?= iff C12 -> x2 <= x3 ?= iff C23 -> x1 <= x3 ?= iff C12 && C23. +Proof. +move=> ltx12 ltx23; apply/leifP; rewrite -ltx12. +case eqx12: (x1 == x2). + by rewrite (eqP eqx12) lt_neqAle !ltx23 andbT; case C23. +by rewrite (@lt_le_trans x2) ?ltx23 // lt_neqAle eqx12 ltx12. +Qed. + +Lemma leif_le x y : x <= y -> x <= y ?= iff (x >= y). +Proof. by move=> lexy; split=> //; rewrite eq_le lexy. Qed. + +Lemma leif_eq x y : x <= y -> x <= y ?= iff (x == y). +Proof. by []. Qed. + +Lemma ge_leif x y C : x <= y ?= iff C -> (y <= x) = C. +Proof. by case=> le_xy; rewrite eq_le le_xy. Qed. + +Lemma lt_leif x y C : x <= y ?= iff C -> (x < y) = ~~ C. +Proof. by move=> le_xy; rewrite lt_neqAle !le_xy andbT. Qed. + +Lemma ltNleif x y C : x <= y ?= iff ~~ C -> (x < y) = C. +Proof. by move=> /lt_leif; rewrite negbK. Qed. + +Lemma eq_leif x y C : x <= y ?= iff C -> (x == y) = C. +Proof. by move=> /leifP; case: C comparableP => [] []. Qed. + +Lemma eqTleif x y C : x <= y ?= iff C -> C -> x = y. +Proof. by move=> /eq_leif<-/eqP. Qed. + +Lemma mono_in_leif (A : {pred T}) (f : T -> T) C : + {in A &, {mono f : x y / x <= y}} -> + {in A &, forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C)}. +Proof. by move=> mf x y Ax Ay; rewrite /leif !eq_le !mf. Qed. + +Lemma mono_leif (f : T -> T) C : + {mono f : x y / x <= y} -> + forall x y, (f x <= f y ?= iff C) = (x <= y ?= iff C). +Proof. by move=> mf x y; rewrite /leif !eq_le !mf. Qed. + +Lemma nmono_in_leif (A : {pred T}) (f : T -> T) C : + {in A &, {mono f : x y /~ x <= y}} -> + {in A &, forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C)}. +Proof. by move=> mf x y Ax Ay; rewrite /leif !eq_le !mf. Qed. + +Lemma nmono_leif (f : T -> T) C : + {mono f : x y /~ x <= y} -> + forall x y, (f x <= f y ?= iff C) = (y <= x ?= iff C). +Proof. by move=> mf x y; rewrite /leif !eq_le !mf. Qed. + +End POrderTheory. +Section POrderMonotonyTheory. + +Context {disp disp' : unit}. +Context {T : porderType disp} {T' : porderType disp'}. +Implicit Types (m n p : nat) (x y z : T) (u v w : T'). +Variables (D D' : {pred T}) (f : T -> T'). + +Hint Resolve lexx lt_neqAle (@le_anti _ T) (@le_anti _ T') lt_def : core. + +Let ge_antiT : antisymmetric (>=%O : rel T). +Proof. by move=> ? ? /le_anti. Qed. + +Lemma ltW_homo : {homo f : x y / x < y} -> {homo f : x y / x <= y}. +Proof. exact: homoW. Qed. + +Lemma ltW_nhomo : {homo f : x y /~ x < y} -> {homo f : x y /~ x <= y}. +Proof. exact: homoW. Qed. + +Lemma inj_homo_lt : + injective f -> {homo f : x y / x <= y} -> {homo f : x y / x < y}. +Proof. exact: inj_homo. Qed. + +Lemma inj_nhomo_lt : + injective f -> {homo f : x y /~ x <= y} -> {homo f : x y /~ x < y}. +Proof. exact: inj_homo. Qed. + +Lemma inc_inj : {mono f : x y / x <= y} -> injective f. +Proof. exact: mono_inj. Qed. + +Lemma dec_inj : {mono f : x y /~ x <= y} -> injective f. +Proof. exact: mono_inj. Qed. + +Lemma leW_mono : {mono f : x y / x <= y} -> {mono f : x y / x < y}. +Proof. exact: anti_mono. Qed. + +Lemma leW_nmono : {mono f : x y /~ x <= y} -> {mono f : x y /~ x < y}. +Proof. exact: anti_mono. Qed. + +(* Monotony in D D' *) +Lemma ltW_homo_in : + {in D & D', {homo f : x y / x < y}} -> {in D & D', {homo f : x y / x <= y}}. +Proof. exact: homoW_in. Qed. + +Lemma ltW_nhomo_in : + {in D & D', {homo f : x y /~ x < y}} -> {in D & D', {homo f : x y /~ x <= y}}. +Proof. exact: homoW_in. Qed. + +Lemma inj_homo_lt_in : + {in D & D', injective f} -> {in D & D', {homo f : x y / x <= y}} -> + {in D & D', {homo f : x y / x < y}}. +Proof. exact: inj_homo_in. Qed. + +Lemma inj_nhomo_lt_in : + {in D & D', injective f} -> {in D & D', {homo f : x y /~ x <= y}} -> + {in D & D', {homo f : x y /~ x < y}}. +Proof. exact: inj_homo_in. Qed. + +Lemma inc_inj_in : {in D &, {mono f : x y / x <= y}} -> + {in D &, injective f}. +Proof. exact: mono_inj_in. Qed. + +Lemma dec_inj_in : + {in D &, {mono f : x y /~ x <= y}} -> {in D &, injective f}. +Proof. exact: mono_inj_in. Qed. + +Lemma leW_mono_in : + {in D &, {mono f : x y / x <= y}} -> {in D &, {mono f : x y / x < y}}. +Proof. exact: anti_mono_in. Qed. + +Lemma leW_nmono_in : + {in D &, {mono f : x y /~ x <= y}} -> {in D &, {mono f : x y /~ x < y}}. +Proof. exact: anti_mono_in. Qed. + +End POrderMonotonyTheory. + +End POrderTheory. + +Hint Resolve lexx le_refl ltxx lt_irreflexive ltW lt_eqF : core. + +Arguments leifP {disp T x y C}. +Arguments leif_refl {disp T x C}. +Arguments mono_in_leif [disp T A f C]. +Arguments nmono_in_leif [disp T A f C]. +Arguments mono_leif [disp T f C]. +Arguments nmono_leif [disp T f C]. + +Module Import ConversePOrder. +Section ConversePOrder. +Canonical converse_eqType (T : eqType) := EqType T [eqMixin of T^c]. +Canonical converse_choiceType (T : choiceType) := [choiceType of T^c]. + +Context {disp : unit}. +Local Notation porderType := (porderType disp). +Variable T : porderType. + +Definition converse_le (x y : T) := (y <= x). +Definition converse_lt (x y : T) := (y < x). + +Lemma converse_lt_def (x y : T) : + converse_lt x y = (y != x) && (converse_le x y). +Proof. by apply: lt_neqAle. Qed. + +Fact converse_le_anti : antisymmetric converse_le. +Proof. by move=> x y /andP [xy yx]; apply/le_anti/andP; split. Qed. + +Definition converse_porderMixin := + LePOrderMixin converse_lt_def (lexx : reflexive converse_le) converse_le_anti + (fun y z x zy yx => @le_trans _ _ y x z yx zy). +Canonical converse_porderType := + POrderType (converse_display disp) (T^c) converse_porderMixin. + +End ConversePOrder. +End ConversePOrder. + +Module Import ConverseDistrLattice. +Section ConverseDistrLattice. +Context {disp : unit}. +Local Notation distrLatticeType := (distrLatticeType disp). + +Variable L : distrLatticeType. +Implicit Types (x y : L). + +Lemma meetC : commutative (@meet _ L). Proof. by case: L => [?[? ?[]]]. Qed. +Lemma joinC : commutative (@join _ L). Proof. by case: L => [?[? ?[]]]. Qed. + +Lemma meetA : associative (@meet _ L). Proof. by case: L => [?[? ?[]]]. Qed. +Lemma joinA : associative (@join _ L). Proof. by case: L => [?[? ?[]]]. Qed. + +Lemma joinKI y x : x `&` (x `|` y) = x. +Proof. by case: L x y => [?[? ?[]]]. Qed. +Lemma meetKU y x : x `|` (x `&` y) = x. +Proof. by case: L x y => [?[? ?[]]]. Qed. + +Lemma joinKIC y x : x `&` (y `|` x) = x. Proof. by rewrite joinC joinKI. Qed. +Lemma meetKUC y x : x `|` (y `&` x) = x. Proof. by rewrite meetC meetKU. Qed. + +Lemma meetUK x y : (x `&` y) `|` y = y. +Proof. by rewrite joinC meetC meetKU. Qed. +Lemma joinIK x y : (x `|` y) `&` y = y. +Proof. by rewrite joinC meetC joinKI. Qed. + +Lemma meetUKC x y : (y `&` x) `|` y = y. Proof. by rewrite meetC meetUK. Qed. +Lemma joinIKC x y : (y `|` x) `&` y = y. Proof. by rewrite joinC joinIK. Qed. + +Lemma leEmeet x y : (x <= y) = (x `&` y == x). +Proof. by case: L x y => [?[? ?[]]]. Qed. + +Lemma leEjoin x y : (x <= y) = (x `|` y == y). +Proof. by rewrite leEmeet; apply/eqP/eqP => <-; rewrite (joinKI, meetUK). Qed. + +Lemma meetUl : left_distributive (@meet _ L) (@join _ L). +Proof. by case: L => [?[? ?[]]]. Qed. + +Lemma meetUr : right_distributive (@meet _ L) (@join _ L). +Proof. by move=> x y z; rewrite meetC meetUl ![_ `&` x]meetC. Qed. + +Lemma joinIl : left_distributive (@join _ L) (@meet _ L). +Proof. by move=> x y z; rewrite meetUr joinIK meetUl -joinA meetUKC. Qed. + +Fact converse_leEmeet (x y : L^c) : (x <= y) = (x `|` y == x). +Proof. by rewrite [LHS]leEjoin joinC. Qed. + +Definition converse_distrLatticeMixin := + @DistrLatticeMixin _ [porderType of L^c] _ _ joinC meetC + joinA meetA meetKU joinKI converse_leEmeet joinIl. +Canonical converse_distrLatticeType := + DistrLatticeType L^c converse_distrLatticeMixin. +End ConverseDistrLattice. +End ConverseDistrLattice. + +Module Import DistrLatticeTheoryMeet. +Section DistrLatticeTheoryMeet. +Context {disp : unit}. +Local Notation distrLatticeType := (distrLatticeType disp). +Context {L : distrLatticeType}. +Implicit Types (x y : L). + +(* lattice theory *) +Lemma meetAC : right_commutative (@meet _ L). +Proof. by move=> x y z; rewrite -!meetA [X in _ `&` X]meetC. Qed. +Lemma meetCA : left_commutative (@meet _ L). +Proof. by move=> x y z; rewrite !meetA [X in X `&` _]meetC. Qed. +Lemma meetACA : interchange (@meet _ L) (@meet _ L). +Proof. by move=> x y z t; rewrite !meetA [X in X `&` _]meetAC. Qed. + +Lemma meetxx x : x `&` x = x. +Proof. by rewrite -[X in _ `&` X](meetKU x) joinKI. Qed. + +Lemma meetKI y x : x `&` (x `&` y) = x `&` y. +Proof. by rewrite meetA meetxx. Qed. +Lemma meetIK y x : (x `&` y) `&` y = x `&` y. +Proof. by rewrite -meetA meetxx. Qed. +Lemma meetKIC y x : x `&` (y `&` x) = x `&` y. +Proof. by rewrite meetC meetIK meetC. Qed. +Lemma meetIKC y x : y `&` x `&` y = x `&` y. +Proof. by rewrite meetAC meetC meetxx. Qed. + +(* interaction with order *) + +Lemma lexI x y z : (x <= y `&` z) = (x <= y) && (x <= z). +Proof. +rewrite !leEmeet; apply/eqP/andP => [<-|[/eqP<- /eqP<-]]. + by rewrite meetA meetIK eqxx -meetA meetACA meetxx meetAC eqxx. +by rewrite -[X in X `&` _]meetA meetIK meetA. +Qed. + +Lemma leIxl x y z : y <= x -> y `&` z <= x. +Proof. by rewrite !leEmeet meetAC => /eqP ->. Qed. + +Lemma leIxr x y z : z <= x -> y `&` z <= x. +Proof. by rewrite !leEmeet -meetA => /eqP ->. Qed. + +Lemma leIx2 x y z : (y <= x) || (z <= x) -> y `&` z <= x. +Proof. by case/orP => [/leIxl|/leIxr]. Qed. + +Lemma leIr x y : y `&` x <= x. +Proof. by rewrite leIx2 ?lexx ?orbT. Qed. + +Lemma leIl x y : x `&` y <= x. +Proof. by rewrite leIx2 ?lexx ?orbT. Qed. + +Lemma meet_idPl {x y} : reflect (x `&` y = x) (x <= y). +Proof. by rewrite leEmeet; apply/eqP. Qed. +Lemma meet_idPr {x y} : reflect (y `&` x = x) (x <= y). +Proof. by rewrite meetC; apply/meet_idPl. Qed. + +Lemma meet_l x y : x <= y -> x `&` y = x. Proof. exact/meet_idPl. Qed. +Lemma meet_r x y : y <= x -> x `&` y = y. Proof. exact/meet_idPr. Qed. + +Lemma leIidl x y : (x <= x `&` y) = (x <= y). +Proof. by rewrite !leEmeet meetKI. Qed. +Lemma leIidr x y : (x <= y `&` x) = (x <= y). +Proof. by rewrite !leEmeet meetKIC. Qed. + +Lemma eq_meetl x y : (x `&` y == x) = (x <= y). +Proof. by apply/esym/leEmeet. Qed. + +Lemma eq_meetr x y : (x `&` y == y) = (y <= x). +Proof. by rewrite meetC eq_meetl. Qed. + +Lemma leI2 x y z t : x <= z -> y <= t -> x `&` y <= z `&` t. +Proof. by move=> xz yt; rewrite lexI !leIx2 ?xz ?yt ?orbT //. Qed. + +End DistrLatticeTheoryMeet. +End DistrLatticeTheoryMeet. + +Module Import DistrLatticeTheoryJoin. +Section DistrLatticeTheoryJoin. +Context {disp : unit}. +Local Notation distrLatticeType := (distrLatticeType disp). +Context {L : distrLatticeType}. +Implicit Types (x y : L). + +(* lattice theory *) +Lemma joinAC : right_commutative (@join _ L). +Proof. exact: (@meetAC _ [distrLatticeType of L^c]). Qed. +Lemma joinCA : left_commutative (@join _ L). +Proof. exact: (@meetCA _ [distrLatticeType of L^c]). Qed. +Lemma joinACA : interchange (@join _ L) (@join _ L). +Proof. exact: (@meetACA _ [distrLatticeType of L^c]). Qed. + +Lemma joinxx x : x `|` x = x. +Proof. exact: (@meetxx _ [distrLatticeType of L^c]). Qed. + +Lemma joinKU y x : x `|` (x `|` y) = x `|` y. +Proof. exact: (@meetKI _ [distrLatticeType of L^c]). Qed. +Lemma joinUK y x : (x `|` y) `|` y = x `|` y. +Proof. exact: (@meetIK _ [distrLatticeType of L^c]). Qed. +Lemma joinKUC y x : x `|` (y `|` x) = x `|` y. +Proof. exact: (@meetKIC _ [distrLatticeType of L^c]). Qed. +Lemma joinUKC y x : y `|` x `|` y = x `|` y. +Proof. exact: (@meetIKC _ [distrLatticeType of L^c]). Qed. + +(* interaction with order *) +Lemma leUx x y z : (x `|` y <= z) = (x <= z) && (y <= z). +Proof. exact: (@lexI _ [distrLatticeType of L^c]). Qed. +Lemma lexUl x y z : x <= y -> x <= y `|` z. +Proof. exact: (@leIxl _ [distrLatticeType of L^c]). Qed. +Lemma lexUr x y z : x <= z -> x <= y `|` z. +Proof. exact: (@leIxr _ [distrLatticeType of L^c]). Qed. +Lemma lexU2 x y z : (x <= y) || (x <= z) -> x <= y `|` z. +Proof. exact: (@leIx2 _ [distrLatticeType of L^c]). Qed. + +Lemma leUr x y : x <= y `|` x. +Proof. exact: (@leIr _ [distrLatticeType of L^c]). Qed. +Lemma leUl x y : x <= x `|` y. +Proof. exact: (@leIl _ [distrLatticeType of L^c]). Qed. + +Lemma join_idPl {x y} : reflect (x `|` y = y) (x <= y). +Proof. exact: (@meet_idPr _ [distrLatticeType of L^c]). Qed. +Lemma join_idPr {x y} : reflect (y `|` x = y) (x <= y). +Proof. exact: (@meet_idPl _ [distrLatticeType of L^c]). Qed. + +Lemma join_l x y : y <= x -> x `|` y = x. Proof. exact/join_idPr. Qed. +Lemma join_r x y : x <= y -> x `|` y = y. Proof. exact/join_idPl. Qed. + +Lemma leUidl x y : (x `|` y <= y) = (x <= y). +Proof. exact: (@leIidr _ [distrLatticeType of L^c]). Qed. +Lemma leUidr x y : (y `|` x <= y) = (x <= y). +Proof. exact: (@leIidl _ [distrLatticeType of L^c]). Qed. + +Lemma eq_joinl x y : (x `|` y == x) = (y <= x). +Proof. exact: (@eq_meetl _ [distrLatticeType of L^c]). Qed. +Lemma eq_joinr x y : (x `|` y == y) = (x <= y). +Proof. exact: (@eq_meetr _ [distrLatticeType of L^c]). Qed. + +Lemma leU2 x y z t : x <= z -> y <= t -> x `|` y <= z `|` t. +Proof. exact: (@leI2 _ [distrLatticeType of L^c]). Qed. + +(* Distributive lattice theory *) +Lemma joinIr : right_distributive (@join _ L) (@meet _ L). +Proof. exact: (@meetUr _ [distrLatticeType of L^c]). Qed. + +Lemma lcomparableP x y : incomparel x y + (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) + (y >=< x) (x >=< y) (y `&` x) (x `&` y) (y `|` x) (x `|` y). +Proof. +by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy; + rewrite ?(meetxx, joinxx, meetC y, joinC y) + ?(meet_idPl hxy', meet_idPr hxy', join_idPl hxy', join_idPr hxy'); + constructor. +Qed. + +Lemma lcomparable_ltgtP x y : x >=< y -> + comparel x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y) + (y `&` x) (x `&` y) (y `|` x) (x `|` y). +Proof. by case: (lcomparableP x) => // *; constructor. Qed. + +Lemma lcomparable_leP x y : x >=< y -> + lel_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y). +Proof. by move/lcomparable_ltgtP => [/ltW xy|xy|->]; constructor. Qed. + +Lemma lcomparable_ltP x y : x >=< y -> + ltl_xor_ge x y (y <= x) (x < y) (y `&` x) (x `&` y) (y `|` x) (x `|` y). +Proof. by move=> /lcomparable_ltgtP [xy|/ltW xy|->]; constructor. Qed. + +End DistrLatticeTheoryJoin. +End DistrLatticeTheoryJoin. + +Module Import TotalTheory. +Section TotalTheory. +Context {disp : unit}. +Local Notation orderType := (orderType disp). +Context {T : orderType}. +Implicit Types (x y z t : T). + +Lemma le_total : total (<=%O : rel T). Proof. by case: T => [? [?]]. Qed. +Hint Resolve le_total : core. + +Lemma ge_total : total (>=%O : rel T). +Proof. by move=> ? ?; apply: le_total. Qed. +Hint Resolve ge_total : core. + +Lemma comparableT x y : x >=< y. Proof. exact: le_total. Qed. +Hint Resolve comparableT : core. + +Lemma sort_le_sorted (s : seq T) : sorted <=%O (sort <=%O s). +Proof. exact: sort_sorted. Qed. + +Lemma sort_lt_sorted (s : seq T) : sorted lt (sort le s) = uniq s. +Proof. by rewrite lt_sorted_uniq_le sort_uniq sort_le_sorted andbT. Qed. + +Lemma sort_le_id (s : seq T) : sorted le s -> sort le s = s. +Proof. +by move=> ss; apply: eq_sorted_le; rewrite ?sort_le_sorted // perm_sort. +Qed. + +Lemma leNgt x y : (x <= y) = ~~ (y < x). Proof. exact: comparable_leNgt. Qed. + +Lemma ltNge x y : (x < y) = ~~ (y <= x). Proof. exact: comparable_ltNge. Qed. + +Definition ltgtP x y := + DistrLatticeTheoryJoin.lcomparable_ltgtP (comparableT x y). +Definition leP x y := DistrLatticeTheoryJoin.lcomparable_leP (comparableT x y). +Definition ltP x y := DistrLatticeTheoryJoin.lcomparable_ltP (comparableT x y). + +Lemma wlog_le P : + (forall x y, P y x -> P x y) -> (forall x y, x <= y -> P x y) -> + forall x y, P x y. +Proof. by move=> sP hP x y; case: (leP x y) => [| /ltW] /hP // /sP. Qed. + +Lemma wlog_lt P : + (forall x, P x x) -> + (forall x y, (P y x -> P x y)) -> (forall x y, x < y -> P x y) -> + forall x y, P x y. +Proof. by move=> rP sP hP x y; case: (ltgtP x y) => [||->] // /hP // /sP. Qed. + +Lemma neq_lt x y : (x != y) = (x < y) || (y < x). Proof. by case: ltgtP. Qed. + +Lemma lt_total x y : x != y -> (x < y) || (y < x). Proof. by case: ltgtP. Qed. + +Lemma eq_leLR x y z t : + (x <= y -> z <= t) -> (y < x -> t < z) -> (x <= y) = (z <= t). +Proof. by rewrite !ltNge => ? /contraTT ?; apply/idP/idP. Qed. + +Lemma eq_leRL x y z t : + (x <= y -> z <= t) -> (y < x -> t < z) -> (z <= t) = (x <= y). +Proof. by move=> *; symmetry; apply: eq_leLR. Qed. + +Lemma eq_ltLR x y z t : + (x < y -> z < t) -> (y <= x -> t <= z) -> (x < y) = (z < t). +Proof. by rewrite !leNgt => ? /contraTT ?; apply/idP/idP. Qed. + +Lemma eq_ltRL x y z t : + (x < y -> z < t) -> (y <= x -> t <= z) -> (z < t) = (x < y). +Proof. by move=> *; symmetry; apply: eq_ltLR. Qed. + +(* interaction with lattice operations *) + +Lemma leIx x y z : (meet y z <= x) = (y <= x) || (z <= x). +Proof. +by case: (leP y z) => hyz; case: leP => ?; + rewrite ?(orbT, orbF) //=; apply/esym/negbTE; + rewrite -ltNge ?(lt_le_trans _ hyz) ?(lt_trans _ hyz). +Qed. + +Lemma lexU x y z : (x <= join y z) = (x <= y) || (x <= z). +Proof. +by case: (leP y z) => hyz; case: leP => ?; + rewrite ?(orbT, orbF) //=; apply/esym/negbTE; + rewrite -ltNge ?(le_lt_trans hyz) ?(lt_trans hyz). +Qed. + +Lemma ltxI x y z : (x < meet y z) = (x < y) && (x < z). +Proof. by rewrite !ltNge leIx negb_or. Qed. + +Lemma ltIx x y z : (meet y z < x) = (y < x) || (z < x). +Proof. by rewrite !ltNge lexI negb_and. Qed. + +Lemma ltxU x y z : (x < join y z) = (x < y) || (x < z). +Proof. by rewrite !ltNge leUx negb_and. Qed. + +Lemma ltUx x y z : (join y z < x) = (y < x) && (z < x). +Proof. by rewrite !ltNge lexU negb_or. Qed. + +Definition ltexI := (@lexI _ T, ltxI). +Definition lteIx := (leIx, ltIx). +Definition ltexU := (lexU, ltxU). +Definition lteUx := (@leUx _ T, ltUx). + +Section ArgExtremum. + +Context (I : finType) (i0 : I) (P : {pred I}) (F : I -> T) (Pi0 : P i0). + +Definition arg_minnP := arg_minP. +Definition arg_maxnP := arg_maxP. + +Lemma arg_minP: extremum_spec <=%O P F (arg_min i0 P F). +Proof. by apply: extremumP => //; apply: le_trans. Qed. + +Lemma arg_maxP: extremum_spec >=%O P F (arg_max i0 P F). +Proof. by apply: extremumP => //; [apply: ge_refl | apply: ge_trans]. Qed. + +End ArgExtremum. + +End TotalTheory. +Section TotalMonotonyTheory. + +Context {disp : unit} {disp' : unit}. +Context {T : orderType disp} {T' : porderType disp'}. +Variables (D : {pred T}) (f : T -> T'). +Implicit Types (x y z : T) (u v w : T'). + +Hint Resolve (@le_anti _ T) (@le_anti _ T') (@lt_neqAle _ T) : core. +Hint Resolve (@lt_neqAle _ T') (@lt_def _ T) (@le_total _ T) : core. + +Lemma le_mono : {homo f : x y / x < y} -> {mono f : x y / x <= y}. +Proof. exact: total_homo_mono. Qed. + +Lemma le_nmono : {homo f : x y /~ x < y} -> {mono f : x y /~ x <= y}. +Proof. exact: total_homo_mono. Qed. + +Lemma le_mono_in : + {in D &, {homo f : x y / x < y}} -> {in D &, {mono f : x y / x <= y}}. +Proof. exact: total_homo_mono_in. Qed. + +Lemma le_nmono_in : + {in D &, {homo f : x y /~ x < y}} -> {in D &, {mono f : x y /~ x <= y}}. +Proof. exact: total_homo_mono_in. Qed. + +End TotalMonotonyTheory. +End TotalTheory. + +Module Import BDistrLatticeTheory. +Section BDistrLatticeTheory. +Context {disp : unit}. +Local Notation bDistrLatticeType := (bDistrLatticeType disp). +Context {L : bDistrLatticeType}. +Implicit Types (I : finType) (T : eqType) (x y z : L). +Local Notation "0" := bottom. + +(* Distributive lattice theory with 0 & 1*) +Lemma le0x x : 0 <= x. Proof. by case: L x => [?[? ?[]]]. Qed. +Hint Resolve le0x : core. + +Lemma lex0 x : (x <= 0) = (x == 0). +Proof. by rewrite le_eqVlt (le_gtF (le0x _)) orbF. Qed. + +Lemma ltx0 x : (x < 0) = false. +Proof. by rewrite lt_neqAle lex0 andNb. Qed. + +Lemma lt0x x : (0 < x) = (x != 0). +Proof. by rewrite lt_neqAle le0x andbT eq_sym. Qed. + +Lemma meet0x : left_zero 0 (@meet _ L). +Proof. by move=> x; apply/eqP; rewrite -leEmeet. Qed. + +Lemma meetx0 : right_zero 0 (@meet _ L). +Proof. by move=> x; rewrite meetC meet0x. Qed. + +Lemma join0x : left_id 0 (@join _ L). +Proof. by move=> x; apply/eqP; rewrite -leEjoin. Qed. + +Lemma joinx0 : right_id 0 (@join _ L). +Proof. by move=> x; rewrite joinC join0x. Qed. + +Lemma leU2l_le y t x z : x `&` t = 0 -> x `|` y <= z `|` t -> x <= z. +Proof. +by move=> xIt0 /(leI2 (lexx x)); rewrite joinKI meetUr xIt0 joinx0 leIidl. +Qed. + +Lemma leU2r_le y t x z : x `&` t = 0 -> y `|` x <= t `|` z -> x <= z. +Proof. by rewrite joinC [_ `|` z]joinC => /leU2l_le H /H. Qed. + +Lemma disjoint_lexUl z x y : x `&` z = 0 -> (x <= y `|` z) = (x <= y). +Proof. +move=> xz0; apply/idP/idP=> xy; last by rewrite lexU2 ?xy. +by apply: (@leU2l_le x z); rewrite ?joinxx. +Qed. + +Lemma disjoint_lexUr z x y : x `&` z = 0 -> (x <= z `|` y) = (x <= y). +Proof. by move=> xz0; rewrite joinC; rewrite disjoint_lexUl. Qed. + +Lemma leU2E x y z t : x `&` t = 0 -> y `&` z = 0 -> + (x `|` y <= z `|` t) = (x <= z) && (y <= t). +Proof. +move=> dxt dyz; apply/idP/andP; last by case=> ? ?; exact: leU2. +by move=> lexyzt; rewrite (leU2l_le _ lexyzt) // (leU2r_le _ lexyzt). +Qed. + +Lemma join_eq0 x y : (x `|` y == 0) = (x == 0) && (y == 0). +Proof. +apply/idP/idP; last by move=> /andP [/eqP-> /eqP->]; rewrite joinx0. +by move=> /eqP xUy0; rewrite -!lex0 -!xUy0 ?leUl ?leUr. +Qed. + +Variant eq0_xor_gt0 x : bool -> bool -> Set := + Eq0NotPOs : x = 0 -> eq0_xor_gt0 x true false + | POsNotEq0 : 0 < x -> eq0_xor_gt0 x false true. + +Lemma posxP x : eq0_xor_gt0 x (x == 0) (0 < x). +Proof. by rewrite lt0x; have [] := altP eqP; constructor; rewrite ?lt0x. Qed. + +Canonical join_monoid := Monoid.Law (@joinA _ _) join0x joinx0. +Canonical join_comoid := Monoid.ComLaw (@joinC _ _). + +Lemma join_sup I (j : I) (P : {pred I}) (F : I -> L) : + P j -> F j <= \join_(i | P i) F i. +Proof. by move=> Pj; rewrite (bigD1 j) //= lexU2 ?lexx. Qed. + +Lemma join_min I (j : I) (l : L) (P : {pred I}) (F : I -> L) : + P j -> l <= F j -> l <= \join_(i | P i) F i. +Proof. by move=> Pj /le_trans -> //; rewrite join_sup. Qed. + +Lemma joinsP I (u : L) (P : {pred I}) (F : I -> L) : + reflect (forall i : I, P i -> F i <= u) (\join_(i | P i) F i <= u). +Proof. +have -> : \join_(i | P i) F i <= u = (\big[andb/true]_(i | P i) (F i <= u)). + by elim/big_rec2: _ => [|i y b Pi <-]; rewrite ?le0x ?leUx. +rewrite big_all_cond; apply: (iffP allP) => /= H i; +have := H i _; rewrite mem_index_enum; last by move/implyP->. +by move=> /(_ isT) /implyP. +Qed. + +Lemma join_sup_seq T (r : seq T) (P : {pred T}) (F : T -> L) (x : T) : + x \in r -> P x -> F x <= \join_(i <- r | P i) F i. +Proof. by move=> /seq_tnthP[j->] Px; rewrite big_tnth join_sup. Qed. + +Lemma join_min_seq T (r : seq T) (P : {pred T}) (F : T -> L) (x : T) (l : L) : + x \in r -> P x -> l <= F x -> l <= \join_(x <- r | P x) F x. +Proof. by move=> /seq_tnthP[j->] Px; rewrite big_tnth; apply: join_min. Qed. + +Lemma joinsP_seq T (r : seq T) (P : {pred T}) (F : T -> L) (u : L) : + reflect (forall x : T, x \in r -> P x -> F x <= u) + (\join_(x <- r | P x) F x <= u). +Proof. +rewrite big_tnth; apply: (iffP (joinsP _ _ _)) => /= F_le. + by move=> x /seq_tnthP[i ->]; apply: F_le. +by move=> i /F_le->//; rewrite mem_tnth. +Qed. + +Lemma le_joins I (A B : {set I}) (F : I -> L) : + A \subset B -> \join_(i in A) F i <= \join_(i in B) F i. +Proof. +move=> AsubB; rewrite -(setID B A). +rewrite [X in _ <= X](eq_bigl [predU B :&: A & B :\: A]); last first. + by move=> i; rewrite !inE. +rewrite bigU //=; last by rewrite -setI_eq0 setDE setIACA setICr setI0. +by rewrite lexU2 // (setIidPr _) // lexx. +Qed. + +Lemma joins_setU I (A B : {set I}) (F : I -> L) : + \join_(i in (A :|: B)) F i = \join_(i in A) F i `|` \join_(i in B) F i. +Proof. +apply/eqP; rewrite eq_le leUx !le_joins ?subsetUl ?subsetUr ?andbT //. +apply/joinsP => i; rewrite inE; move=> /orP. +by case=> ?; rewrite lexU2 //; [rewrite join_sup|rewrite orbC join_sup]. +Qed. + +Lemma join_seq I (r : seq I) (F : I -> L) : + \join_(i <- r) F i = \join_(i in r) F i. +Proof. +rewrite [RHS](eq_bigl (mem [set i | i \in r])); last by move=> i; rewrite !inE. +elim: r => [|i r ihr]; first by rewrite big_nil big1 // => i; rewrite ?inE. +rewrite big_cons {}ihr; apply/eqP; rewrite eq_le set_cons. +rewrite leUx join_sup ?inE ?eqxx // le_joins //= ?subsetUr //. +apply/joinsP => j; rewrite !inE => /predU1P [->|jr]; rewrite ?lexU2 ?lexx //. +by rewrite join_sup ?orbT ?inE. +Qed. + +Lemma joins_disjoint I (d : L) (P : {pred I}) (F : I -> L) : + (forall i : I, P i -> d `&` F i = 0) -> d `&` \join_(i | P i) F i = 0. +Proof. +move=> d_Fi_disj; have : \big[andb/true]_(i | P i) (d `&` F i == 0). + rewrite big_all_cond; apply/allP => i _ /=. + by apply/implyP => /d_Fi_disj ->. +elim/big_rec2: _ => [|i y]; first by rewrite meetx0. +case; rewrite (andbF, andbT) // => Pi /(_ isT) dy /eqP dFi. +by rewrite meetUr dy dFi joinxx. +Qed. + +End BDistrLatticeTheory. +End BDistrLatticeTheory. + +Module Import ConverseTBDistrLattice. +Section ConverseTBDistrLattice. +Context {disp : unit}. +Local Notation tbDistrLatticeType := (tbDistrLatticeType disp). +Context {L : tbDistrLatticeType}. + +Lemma lex1 (x : L) : x <= top. Proof. by case: L x => [?[? ?[]]]. Qed. + +Definition converse_bDistrLatticeMixin := + @BDistrLatticeMixin _ [distrLatticeType of L^c] top lex1. +Canonical converse_bDistrLatticeType := + BDistrLatticeType L^c converse_bDistrLatticeMixin. + +Definition converse_tbDistrLatticeMixin := + @TBDistrLatticeMixin _ [distrLatticeType of L^c] (bottom : L) (@le0x _ L). +Canonical converse_tbDIstrLatticeType := + TBDistrLatticeType L^c converse_tbDistrLatticeMixin. + +End ConverseTBDistrLattice. +End ConverseTBDistrLattice. + +Module Import TBDistrLatticeTheory. +Section TBDistrLatticeTheory. +Context {disp : unit}. +Local Notation tbDistrLatticeType := (tbDistrLatticeType disp). +Context {L : tbDistrLatticeType}. +Implicit Types (I : finType) (T : eqType) (x y : L). + +Local Notation "1" := top. + +Hint Resolve le0x lex1 : core. + +Lemma meetx1 : right_id 1 (@meet _ L). +Proof. exact: (@joinx0 _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meet1x : left_id 1 (@meet _ L). +Proof. exact: (@join0x _ [tbDistrLatticeType of L^c]). Qed. + +Lemma joinx1 : right_zero 1 (@join _ L). +Proof. exact: (@meetx0 _ [tbDistrLatticeType of L^c]). Qed. + +Lemma join1x : left_zero 1 (@join _ L). +Proof. exact: (@meet0x _ [tbDistrLatticeType of L^c]). Qed. + +Lemma le1x x : (1 <= x) = (x == 1). +Proof. exact: (@lex0 _ [tbDistrLatticeType of L^c]). Qed. + +Lemma leI2l_le y t x z : y `|` z = 1 -> x `&` y <= z `&` t -> x <= z. +Proof. rewrite joinC; exact: (@leU2l_le _ [tbDistrLatticeType of L^c]). Qed. + +Lemma leI2r_le y t x z : y `|` z = 1 -> y `&` x <= t `&` z -> x <= z. +Proof. rewrite joinC; exact: (@leU2r_le _ [tbDistrLatticeType of L^c]). Qed. + +Lemma cover_leIxl z x y : z `|` y = 1 -> (x `&` z <= y) = (x <= y). +Proof. +rewrite joinC; exact: (@disjoint_lexUl _ [tbDistrLatticeType of L^c]). +Qed. + +Lemma cover_leIxr z x y : z `|` y = 1 -> (z `&` x <= y) = (x <= y). +Proof. +rewrite joinC; exact: (@disjoint_lexUr _ [tbDistrLatticeType of L^c]). +Qed. + +Lemma leI2E x y z t : x `|` t = 1 -> y `|` z = 1 -> + (x `&` y <= z `&` t) = (x <= z) && (y <= t). +Proof. +by move=> ? ?; apply: (@leU2E _ [tbDistrLatticeType of L^c]); rewrite meetC. +Qed. + +Lemma meet_eq1 x y : (x `&` y == 1) = (x == 1) && (y == 1). +Proof. exact: (@join_eq0 _ [tbDistrLatticeType of L^c]). Qed. + +Canonical meet_monoid := Monoid.Law (@meetA _ _) meet1x meetx1. +Canonical meet_comoid := Monoid.ComLaw (@meetC _ _). + +Canonical meet_muloid := Monoid.MulLaw (@meet0x _ L) (@meetx0 _ _). +Canonical join_muloid := Monoid.MulLaw join1x joinx1. +Canonical join_addoid := Monoid.AddLaw (@meetUl _ L) (@meetUr _ _). +Canonical meet_addoid := Monoid.AddLaw (@joinIl _ L) (@joinIr _ _). + +Lemma meets_inf I (j : I) (P : {pred I}) (F : I -> L) : + P j -> \meet_(i | P i) F i <= F j. +Proof. exact: (@join_sup _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meets_max I (j : I) (u : L) (P : {pred I}) (F : I -> L) : + P j -> F j <= u -> \meet_(i | P i) F i <= u. +Proof. exact: (@join_min _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meetsP I (l : L) (P : {pred I}) (F : I -> L) : + reflect (forall i : I, P i -> l <= F i) (l <= \meet_(i | P i) F i). +Proof. exact: (@joinsP _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meet_inf_seq T (r : seq T) (P : {pred T}) (F : T -> L) (x : T) : + x \in r -> P x -> \meet_(i <- r | P i) F i <= F x. +Proof. exact: (@join_sup_seq _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meet_max_seq T (r : seq T) (P : {pred T}) (F : T -> L) (x : T) (u : L) : + x \in r -> P x -> F x <= u -> \meet_(x <- r | P x) F x <= u. +Proof. exact: (@join_min_seq _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meetsP_seq T (r : seq T) (P : {pred T}) (F : T -> L) (l : L) : + reflect (forall x : T, x \in r -> P x -> l <= F x) + (l <= \meet_(x <- r | P x) F x). +Proof. exact: (@joinsP_seq _ [tbDistrLatticeType of L^c]). Qed. + +Lemma le_meets I (A B : {set I}) (F : I -> L) : + A \subset B -> \meet_(i in B) F i <= \meet_(i in A) F i. +Proof. exact: (@le_joins _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meets_setU I (A B : {set I}) (F : I -> L) : + \meet_(i in (A :|: B)) F i = \meet_(i in A) F i `&` \meet_(i in B) F i. +Proof. exact: (@joins_setU _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meet_seq I (r : seq I) (F : I -> L) : + \meet_(i <- r) F i = \meet_(i in r) F i. +Proof. exact: (@join_seq _ [tbDistrLatticeType of L^c]). Qed. + +Lemma meets_total I (d : L) (P : {pred I}) (F : I -> L) : + (forall i : I, P i -> d `|` F i = 1) -> d `|` \meet_(i | P i) F i = 1. +Proof. exact: (@joins_disjoint _ [tbDistrLatticeType of L^c]). Qed. + +End TBDistrLatticeTheory. +End TBDistrLatticeTheory. + +Module Import CBDistrLatticeTheory. +Section CBDistrLatticeTheory. +Context {disp : unit}. +Local Notation cbDistrLatticeType := (cbDistrLatticeType disp). +Context {L : cbDistrLatticeType}. +Implicit Types (x y z : L). +Local Notation "0" := bottom. + +Lemma subKI x y : y `&` (x `\` y) = 0. +Proof. by case: L x y => ? [? ?[]]. Qed. + +Lemma subIK x y : (x `\` y) `&` y = 0. +Proof. by rewrite meetC subKI. Qed. + +Lemma meetIB z x y : (z `&` y) `&` (x `\` y) = 0. +Proof. by rewrite -meetA subKI meetx0. Qed. + +Lemma meetBI z x y : (x `\` y) `&` (z `&` y) = 0. +Proof. by rewrite meetC meetIB. Qed. + +Lemma joinIB y x : (x `&` y) `|` (x `\` y) = x. +Proof. by case: L x y => ? [? ?[]]. Qed. + +Lemma joinBI y x : (x `\` y) `|` (x `&` y) = x. +Proof. by rewrite joinC joinIB. Qed. + +Lemma joinIBC y x : (y `&` x) `|` (x `\` y) = x. +Proof. by rewrite meetC joinIB. Qed. + +Lemma joinBIC y x : (x `\` y) `|` (y `&` x) = x. +Proof. by rewrite meetC joinBI. Qed. + +Lemma leBx x y : x `\` y <= x. +Proof. by rewrite -{2}[x](joinIB y) lexU2 // lexx orbT. Qed. +Hint Resolve leBx : core. + +Lemma subxx x : x `\` x = 0. +Proof. by have := subKI x x; rewrite (meet_idPr _). Qed. + +Lemma leBl z x y : x <= y -> x `\` z <= y `\` z. +Proof. +rewrite -{1}[x](joinIB z) -{1}[y](joinIB z). +by rewrite leU2E ?meetIB ?meetBI // => /andP []. +Qed. + +Lemma subKU y x : y `|` (x `\` y) = y `|` x. +Proof. +apply/eqP; rewrite eq_le leU2 //= leUx leUl. +by apply/meet_idPl; have := joinIB y x; rewrite joinIl (join_idPr _). +Qed. + +Lemma subUK y x : (x `\` y) `|` y = x `|` y. +Proof. by rewrite joinC subKU joinC. Qed. + +Lemma leBKU y x : y <= x -> y `|` (x `\` y) = x. +Proof. by move=> /join_idPl {2}<-; rewrite subKU. Qed. + +Lemma leBUK y x : y <= x -> (x `\` y) `|` y = x. +Proof. by move=> leyx; rewrite joinC leBKU. Qed. + +Lemma leBLR x y z : (x `\` y <= z) = (x <= y `|` z). +Proof. +apply/idP/idP; first by move=> /join_idPl <-; rewrite joinA subKU joinAC leUr. +by rewrite -{1}[x](joinIB y) => /(leU2r_le (subIK _ _)). +Qed. + +Lemma subUx x y z : (x `|` y) `\` z = (x `\` z) `|` (y `\` z). +Proof. +apply/eqP; rewrite eq_le leUx !leBl ?leUr ?leUl ?andbT //. +by rewrite leBLR joinA subKU joinAC subKU joinAC -joinA leUr. +Qed. + +Lemma sub_eq0 x y : (x `\` y == 0) = (x <= y). +Proof. by rewrite -lex0 leBLR joinx0. Qed. + +Lemma joinxB x y z : x `|` (y `\` z) = ((x `|` y) `\` z) `|` (x `&` z). +Proof. by rewrite subUx joinAC joinBI. Qed. + +Lemma joinBx x y z : (y `\` z) `|` x = ((y `|` x) `\` z) `|` (z `&` x). +Proof. by rewrite ![_ `|` x]joinC ![_ `&` x]meetC joinxB. Qed. + +Lemma leBr z x y : x <= y -> z `\` y <= z `\` x. +Proof. +by move=> lexy; rewrite leBLR joinxB (meet_idPr _) ?leBUK ?leUr ?lexU2 ?lexy. +Qed. + +Lemma leB2 x y z t : x <= z -> t <= y -> x `\` y <= z `\` t. +Proof. by move=> /(@leBl t) ? /(@leBr x) /le_trans ->. Qed. + +Lemma meet_eq0E_sub z x y : x <= z -> (x `&` y == 0) = (x <= z `\` y). +Proof. +move=> xz; apply/idP/idP; last by move=> /meet_idPr <-; rewrite -meetA meetBI. +by move=> /eqP xIy_eq0; rewrite -[x](joinIB y) xIy_eq0 join0x leBl. +Qed. + +Lemma leBRL x y z : (x <= z `\` y) = (x <= z) && (x `&` y == 0). +Proof. +apply/idP/idP => [xyz|]; first by rewrite (@meet_eq0E_sub z) // (le_trans xyz). +by move=> /andP [?]; rewrite -meet_eq0E_sub. +Qed. + +Lemma eq_sub x y z : (x `\` y == z) = (z <= x <= y `|` z) && (z `&` y == 0). +Proof. by rewrite eq_le leBLR leBRL andbCA andbA. Qed. + +Lemma subxU x y z : z `\` (x `|` y) = (z `\` x) `&` (z `\` y). +Proof. +apply/eqP; rewrite eq_le lexI !leBr ?leUl ?leUr //=. +rewrite leBRL leIx2 ?leBx //= meetUr meetAC subIK -meetA subIK. +by rewrite meet0x meetx0 joinx0. +Qed. + +Lemma subx0 x : x `\` 0 = x. +Proof. by apply/eqP; rewrite eq_sub join0x meetx0 lexx eqxx. Qed. + +Lemma sub0x x : 0 `\` x = 0. +Proof. by apply/eqP; rewrite eq_sub joinx0 meet0x lexx eqxx le0x. Qed. + +Lemma subIx x y z : (x `&` y) `\` z = (x `\` z) `&` (y `\` z). +Proof. +apply/eqP; rewrite eq_sub joinIr ?leI2 ?subKU ?leUr ?leBx //=. +by rewrite -meetA subIK meetx0. +Qed. + +Lemma meetxB x y z : x `&` (y `\` z) = (x `&` y) `\` z. +Proof. by rewrite subIx -{1}[x](joinBI z) meetUl meetIB joinx0. Qed. + +Lemma meetBx x y z : (x `\` y) `&` z = (x `&` z) `\` y. +Proof. by rewrite ![_ `&` z]meetC meetxB. Qed. + +Lemma subxI x y z : x `\` (y `&` z) = (x `\` y) `|` (x `\` z). +Proof. +apply/eqP; rewrite eq_sub leUx !leBx //= joinIl joinA joinCA !subKU. +rewrite joinCA -joinA [_ `|` x]joinC  //. +by rewrite -joinIl leUr /= meetUl {1}[_ `&` z]meetC ?meetBI joinx0. +Qed. + +Lemma subBx x y z : (x `\` y) `\` z = x `\` (y `|` z). +Proof. +apply/eqP; rewrite eq_sub leBr ?leUl //=. +rewrite subxU joinIr subKU -joinIr (meet_idPl _) ?leUr //=. +by rewrite -meetA subIK meetx0. +Qed. + +Lemma subxB x y z : x `\` (y `\` z) = (x `\` y) `|` (x `&` z). +Proof. +rewrite -[y in RHS](joinIB z) subxU joinIl subxI -joinA. +rewrite joinBI (join_idPl _) // joinBx [x `|` _](join_idPr _) ?leIl //. +by rewrite meetA meetAC subIK meet0x joinx0 (meet_idPr _). +Qed. + +Lemma joinBK x y : (y `|` x) `\` x = (y `\` x). +Proof. by rewrite subUx subxx joinx0. Qed. + +Lemma joinBKC x y : (x `|` y) `\` x = (y `\` x). +Proof. by rewrite subUx subxx join0x. Qed. + +Lemma disj_le x y : x `&` y == 0 -> x <= y = (x == 0). +Proof. +have [->|x_neq0] := altP (x =P 0); first by rewrite le0x. +by apply: contraTF => lexy; rewrite (meet_idPl _). +Qed. + +Lemma disj_leC x y : y `&` x == 0 -> x <= y = (x == 0). +Proof. by rewrite meetC => /disj_le. Qed. + +Lemma disj_subl x y : x `&` y == 0 -> x `\` y = x. +Proof. by move=> dxy; apply/eqP; rewrite eq_sub dxy lexx leUr. Qed. + +Lemma disj_subr x y : x `&` y == 0 -> y `\` x = y. +Proof. by rewrite meetC => /disj_subl. Qed. + +Lemma lt0B x y : x < y -> 0 < y `\` x. +Proof. +by move=> ?; rewrite lt_leAnge leBRL leBLR le0x meet0x eqxx joinx0 /= lt_geF. +Qed. + +End CBDistrLatticeTheory. +End CBDistrLatticeTheory. + +Module Import CTBDistrLatticeTheory. +Section CTBDistrLatticeTheory. +Context {disp : unit}. +Local Notation ctbDistrLatticeType := (ctbDistrLatticeType disp). +Context {L : ctbDistrLatticeType}. +Implicit Types (x y z : L). +Local Notation "0" := bottom. +Local Notation "1" := top. + +Lemma complE x : ~` x = 1 `\` x. +Proof. by case: L x => [?[? ? ? ?[]]]. Qed. + +Lemma sub1x x : 1 `\` x = ~` x. +Proof. by rewrite complE. Qed. + +Lemma subE x y : x `\` y = x `&` ~` y. +Proof. by rewrite complE meetxB meetx1. Qed. + +Lemma complK : involutive (@compl _ L). +Proof. by move=> x; rewrite !complE subxB subxx meet1x join0x. Qed. + +Lemma compl_inj : injective (@compl _ L). +Proof. exact/inv_inj/complK. Qed. + +Lemma disj_leC x y : (x `&` y == 0) = (x <= ~` y). +Proof. by rewrite -sub_eq0 subE complK. Qed. + +Lemma leC x y : (~` x <= ~` y) = (y <= x). +Proof. +gen have leC : x y / y <= x -> ~` x <= ~` y; last first. + by apply/idP/idP=> /leC; rewrite ?complK. +by move=> leyx; rewrite !complE leBr. +Qed. + +Lemma complU x y : ~` (x `|` y) = ~` x `&` ~` y. +Proof. by rewrite !complE subxU. Qed. + +Lemma complI x y : ~` (x `&` y) = ~` x `|` ~` y. +Proof. by rewrite !complE subxI. Qed. + +Lemma joinxC x : x `|` ~` x = 1. +Proof. by rewrite complE subKU joinx1. Qed. + +Lemma joinCx x : ~` x `|` x = 1. +Proof. by rewrite joinC joinxC. Qed. + +Lemma meetxC x : x `&` ~` x = 0. +Proof. by rewrite complE subKI. Qed. + +Lemma meetCx x : ~` x `&` x = 0. +Proof. by rewrite meetC meetxC. Qed. + +Lemma compl1 : ~` 1 = 0 :> L. +Proof. by rewrite complE subxx. Qed. + +Lemma compl0 : ~` 0 = 1 :> L. +Proof. by rewrite complE subx0. Qed. + +Lemma complB x y : ~` (x `\` y) = ~` x `|` y. +Proof. by rewrite !complE subxB meet1x. Qed. + +Lemma leBC x y : x `\` y <= ~` y. +Proof. by rewrite leBLR joinxC lex1. Qed. + +Lemma leCx x y : (~` x <= y) = (~` y <= x). +Proof. by rewrite !complE !leBLR joinC. Qed. + +Lemma lexC x y : (x <= ~` y) = (y <= ~` x). +Proof. by rewrite !complE !leBRL !lex1 meetC. Qed. + +Lemma compl_joins (J : Type) (r : seq J) (P : {pred J}) (F : J -> L) : + ~` (\join_(j <- r | P j) F j) = \meet_(j <- r | P j) ~` F j. +Proof. by elim/big_rec2: _=> [|i x y ? <-]; rewrite ?compl0 ?complU. Qed. + +Lemma compl_meets (J : Type) (r : seq J) (P : {pred J}) (F : J -> L) : + ~` (\meet_(j <- r | P j) F j) = \join_(j <- r | P j) ~` F j. +Proof. by elim/big_rec2: _=> [|i x y ? <-]; rewrite ?compl1 ?complI. Qed. + +End CTBDistrLatticeTheory. +End CTBDistrLatticeTheory. + +(*************) +(* FACTORIES *) +(*************) + +Module TotalPOrderMixin. +Section TotalPOrderMixin. +Variable (disp : unit) (T : porderType disp). +Definition of_ := total (<=%O : rel T). +Variable (m : of_). +Implicit Types (x y z : T). + +Let comparableT x y : x >=< y := m x y. + +Fact ltgtP x y : + compare x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y). +Proof. exact: comparable_ltgtP. Qed. + +Fact leP x y : le_xor_gt x y (x <= y) (y < x). +Proof. exact: comparable_leP. Qed. + +Fact ltP x y : lt_xor_ge x y (y <= x) (x < y). +Proof. exact: comparable_ltP. Qed. + +Definition meet x y := if x <= y then x else y. +Definition join x y := if y <= x then x else y. + +Fact meetC : commutative meet. +Proof. by move=> x y; rewrite /meet; have [] := ltgtP. Qed. + +Fact joinC : commutative join. +Proof. by move=> x y; rewrite /join; have [] := ltgtP. Qed. + +Fact meetA : associative meet. +Proof. +move=> x y z; rewrite /meet; case: (leP y z) => yz; case: (leP x y) => xy //=. +- by rewrite (le_trans xy). +- by rewrite yz. +by rewrite !lt_geF // (lt_trans yz). +Qed. + +Fact joinA : associative join. +Proof. +move=> x y z; rewrite /join; case: (leP z y) => yz; case: (leP y x) => xy //=. +- by rewrite (le_trans yz). +- by rewrite yz. +by rewrite !lt_geF // (lt_trans xy). +Qed. + +Fact joinKI y x : meet x (join x y) = x. +Proof. by rewrite /meet /join; case: (leP y x) => yx; rewrite ?lexx ?ltW. Qed. + +Fact meetKU y x : join x (meet x y) = x. +Proof. by rewrite /meet /join; case: (leP x y) => yx; rewrite ?lexx ?ltW. Qed. + +Fact leEmeet x y : (x <= y) = (meet x y == x). +Proof. by rewrite /meet; case: leP => ?; rewrite ?eqxx ?lt_eqF. Qed. + +Fact meetUl : left_distributive meet join. +Proof. +move=> x y z; rewrite /meet /join. +case: (leP y z) => yz; case: (leP y x) => xy //=; first 1 last. +- by rewrite yz [x <= z](le_trans _ yz) ?[x <= y]ltW // lt_geF. +- by rewrite lt_geF ?lexx // (lt_le_trans yz). +- by rewrite lt_geF //; have [/lt_geF->| |->] := (ltgtP x z); rewrite ?lexx. +- by have [] := (leP x z); rewrite ?xy ?yz. +Qed. + +Definition distrLatticeMixin := + @DistrLatticeMixin _ (@POrder.Pack disp T (POrder.class T)) _ _ + meetC joinC meetA joinA joinKI meetKU leEmeet meetUl. + +Definition orderMixin : + totalOrderMixin (DistrLatticeType _ distrLatticeMixin) := + m. + +End TotalPOrderMixin. + +Module Exports. +Notation totalPOrderMixin := of_. +Coercion distrLatticeMixin : totalPOrderMixin >-> Order.DistrLattice.mixin_of. +Coercion orderMixin : totalPOrderMixin >-> totalOrderMixin. +End Exports. + +End TotalPOrderMixin. +Import TotalPOrderMixin.Exports. + +Module LtPOrderMixin. +Section LtPOrderMixin. +Variable (T : eqType). + +Record of_ := Build { + le : rel T; + lt : rel T; + le_def : forall x y, le x y = (x == y) || lt x y; + lt_irr : irreflexive lt; + lt_trans : transitive lt; +}. + +Variable (m : of_). + +Fact lt_asym x y : (lt m x y && lt m y x) = false. +Proof. +by apply/negP => /andP [] xy /(lt_trans xy); apply/negP; rewrite (lt_irr m x). +Qed. + +Fact lt_def x y : lt m x y = (y != x) && le m x y. +Proof. by rewrite le_def eq_sym; case: eqP => //= <-; rewrite lt_irr. Qed. + +Fact le_refl : reflexive (le m). +Proof. by move=> ?; rewrite le_def eqxx. Qed. + +Fact le_anti : antisymmetric (le m). +Proof. +by move=> ? ?; rewrite !le_def eq_sym -orb_andr lt_asym orbF => /eqP. +Qed. + +Fact le_trans : transitive (le m). +Proof. +by move=> y x z; rewrite !le_def => /predU1P [-> //|ltxy] /predU1P [<-|ltyz]; + rewrite ?ltxy ?(lt_trans ltxy ltyz) // ?orbT. +Qed. + +Definition lePOrderMixin : lePOrderMixin T := + @LePOrderMixin _ (le m) (lt m) lt_def le_refl le_anti le_trans. + +End LtPOrderMixin. + +Module Exports. +Notation ltPOrderMixin := of_. +Notation LtPOrderMixin := Build. +Coercion lePOrderMixin : ltPOrderMixin >-> POrder.mixin_of. +End Exports. + +End LtPOrderMixin. +Import LtPOrderMixin.Exports. + +Module MeetJoinMixin. +Section MeetJoinMixin. + +Variable (T : choiceType). + +Record of_ := Build { + le : rel T; + lt : rel T; + meet : T -> T -> T; + join : T -> T -> T; + le_def : forall x y : T, le x y = (meet x y == x); + lt_def : forall x y : T, lt x y = (y != x) && le x y; + meetC : commutative meet; + joinC : commutative join; + meetA : associative meet; + joinA : associative join; + joinKI : forall y x : T, meet x (join x y) = x; + meetKU : forall y x : T, join x (meet x y) = x; + meetUl : left_distributive meet join; + meetxx : idempotent meet; +}. + +Variable (m : of_). + +Fact le_refl : reflexive (le m). +Proof. by move=> x; rewrite le_def meetxx. Qed. + +Fact le_anti : antisymmetric (le m). +Proof. by move=> x y; rewrite !le_def meetC => /andP [] /eqP {2}<- /eqP ->. Qed. + +Fact le_trans : transitive (le m). +Proof. +move=> y x z; rewrite !le_def => /eqP lexy /eqP leyz; apply/eqP. +by rewrite -[in LHS]lexy -meetA leyz lexy. +Qed. + +Definition porderMixin : lePOrderMixin T := + LePOrderMixin (lt_def m) le_refl le_anti le_trans. + +Let T_porderType := POrderType tt T porderMixin. + +Definition distrLatticeMixin : distrLatticeMixin T_porderType := + @DistrLatticeMixin tt (POrderType tt T porderMixin) (meet m) (join m) + (meetC m) (joinC m) (meetA m) (joinA m) + (joinKI m) (meetKU m) (le_def m) (meetUl m). + +End MeetJoinMixin. + +Module Exports. +Notation meetJoinMixin := of_. +Notation MeetJoinMixin := Build. +Coercion porderMixin : meetJoinMixin >-> lePOrderMixin. +Coercion distrLatticeMixin : meetJoinMixin >-> DistrLattice.mixin_of. +End Exports. + +End MeetJoinMixin. +Import MeetJoinMixin.Exports. + +Module LeOrderMixin. +Section LeOrderMixin. + +Variables (T : choiceType). + +Record of_ := Build { + le : rel T; + lt : rel T; + meet : T -> T -> T; + join : T -> T -> T; + lt_def : forall x y, lt x y = (y != x) && le x y; + meet_def : forall x y, meet x y = if le x y then x else y; + join_def : forall x y, join x y = if le y x then x else y; + le_anti : antisymmetric le; + le_trans : transitive le; + le_total : total le; +}. + +Variables (m : of_). + +Fact le_refl : reflexive (le m). +Proof. by move=> x; case: (le m x x) (le_total m x x). Qed. + +Definition lePOrderMixin := + LePOrderMixin (lt_def m) le_refl (@le_anti m) (@le_trans m). + +Let T_total_porderType : porderType tt := POrderType tt T lePOrderMixin. + +Let T_total_distrLatticeType : distrLatticeType tt := + DistrLatticeType T_total_porderType + (le_total m : totalPOrderMixin T_total_porderType). + +Implicit Types (x y z : T_total_distrLatticeType). + +Fact meetE x y : meet m x y = x `&` y. Proof. by rewrite meet_def. Qed. +Fact joinE x y : join m x y = x `|` y. Proof. by rewrite join_def. Qed. +Fact meetC : commutative (meet m). +Proof. by move=> *; rewrite !meetE meetC. Qed. +Fact joinC : commutative (join m). +Proof. by move=> *; rewrite !joinE joinC. Qed. +Fact meetA : associative (meet m). +Proof. by move=> *; rewrite !meetE meetA. Qed. +Fact joinA : associative (join m). +Proof. by move=> *; rewrite !joinE joinA. Qed. +Fact joinKI y x : meet m x (join m x y) = x. +Proof. by rewrite meetE joinE joinKI. Qed. +Fact meetKU y x : join m x (meet m x y) = x. +Proof. by rewrite meetE joinE meetKU. Qed. +Fact meetUl : left_distributive (meet m) (join m). +Proof. by move=> *; rewrite !meetE !joinE meetUl. Qed. +Fact meetxx : idempotent (meet m). +Proof. by move=> *; rewrite meetE meetxx. Qed. +Fact le_def x y : x <= y = (meet m x y == x). +Proof. by rewrite meetE (eq_meetl x y). Qed. + +Definition distrLatticeMixin : meetJoinMixin T := + @MeetJoinMixin _ (le m) (lt m) (meet m) (join m) le_def (lt_def m) + meetC joinC meetA joinA joinKI meetKU meetUl meetxx. + +Let T_porderType := POrderType tt T distrLatticeMixin. +Let T_distrLatticeType : distrLatticeType tt := + DistrLatticeType T_porderType distrLatticeMixin. + +Definition totalMixin : totalOrderMixin T_distrLatticeType := le_total m. + +End LeOrderMixin. + +Module Exports. +Notation leOrderMixin := of_. +Notation LeOrderMixin := Build. +Coercion distrLatticeMixin : leOrderMixin >-> meetJoinMixin. +Coercion totalMixin : leOrderMixin >-> totalOrderMixin. +End Exports. + +End LeOrderMixin. +Import LeOrderMixin.Exports. + +Module LtOrderMixin. + +Record of_ (T : choiceType) := Build { + le : rel T; + lt : rel T; + meet : T -> T -> T; + join : T -> T -> T; + le_def : forall x y, le x y = (x == y) || lt x y; + meet_def : forall x y, meet x y = if lt x y then x else y; + join_def : forall x y, join x y = if lt y x then x else y; + lt_irr : irreflexive lt; + lt_trans : transitive lt; + lt_total : forall x y, x != y -> lt x y || lt y x; +}. + +Section LtOrderMixin. + +Variables (T : choiceType) (m : of_ T). + +Let T_total_porderType : porderType tt := + POrderType tt T (LtPOrderMixin (le_def m) (lt_irr m) (@lt_trans _ m)). + +Fact le_total : total (le m). +Proof. +move=> x y; rewrite !le_def (eq_sym y). +by case: (altP eqP); last exact: lt_total. +Qed. + +Let T_total_distrLatticeType : distrLatticeType tt := + DistrLatticeType T_total_porderType + (le_total : totalPOrderMixin T_total_porderType). + +Implicit Types (x y z : T_total_distrLatticeType). + +Fact leP x y : + lel_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y). +Proof. by apply/lcomparable_leP/le_total. Qed. +Fact meetE x y : meet m x y = x `&` y. +Proof. by rewrite meet_def (_ : lt m x y = (x < y)) //; case: (leP y). Qed. +Fact joinE x y : join m x y = x `|` y. +Proof. by rewrite join_def (_ : lt m y x = (y < x)) //; case: leP. Qed. +Fact meetC : commutative (meet m). +Proof. by move=> *; rewrite !meetE meetC. Qed. +Fact joinC : commutative (join m). +Proof. by move=> *; rewrite !joinE joinC. Qed. +Fact meetA : associative (meet m). +Proof. by move=> *; rewrite !meetE meetA. Qed. +Fact joinA : associative (join m). +Proof. by move=> *; rewrite !joinE joinA. Qed. +Fact joinKI y x : meet m x (join m x y) = x. +Proof. by rewrite meetE joinE joinKI. Qed. +Fact meetKU y x : join m x (meet m x y) = x. +Proof. by rewrite meetE joinE meetKU. Qed. +Fact meetUl : left_distributive (meet m) (join m). +Proof. by move=> *; rewrite !meetE !joinE meetUl. Qed. +Fact meetxx : idempotent (meet m). +Proof. by move=> *; rewrite meetE meetxx. Qed. +Fact le_def' x y : x <= y = (meet m x y == x). +Proof. by rewrite meetE (eq_meetl x y). Qed. + +Definition distrLatticeMixin : meetJoinMixin T := + @MeetJoinMixin _ (le m) (lt m) (meet m) (join m) + le_def' (@lt_def _ T_total_distrLatticeType) + meetC joinC meetA joinA joinKI meetKU meetUl meetxx. + +Let T_porderType := POrderType tt T distrLatticeMixin. +Let T_distrLatticeType : distrLatticeType tt := + DistrLatticeType T_porderType distrLatticeMixin. + +Definition totalMixin : totalOrderMixin T_distrLatticeType := le_total. + +End LtOrderMixin. + +Module Exports. +Notation ltOrderMixin := of_. +Notation LtOrderMixin := Build. +Coercion distrLatticeMixin : ltOrderMixin >-> meetJoinMixin. +Coercion totalMixin : ltOrderMixin >-> totalOrderMixin. +End Exports. + +End LtOrderMixin. +Import LtOrderMixin.Exports. + +Module CanMixin. +Section CanMixin. + +Section Total. + +Variables (disp : unit) (T : porderType disp). +Variables (disp' : unit) (T' : orderType disp) (f : T -> T'). + +Lemma MonoTotal : {mono f : x y / x <= y} -> + totalPOrderMixin T' -> totalPOrderMixin T. +Proof. by move=> f_mono T'_tot x y; rewrite -!f_mono le_total. Qed. + +End Total. + +Section Order. + +Variables (T : choiceType) (disp : unit). + +Section Partial. +Variables (T' : porderType disp) (f : T -> T'). + +Section PCan. +Variables (f' : T' -> option T) (f_can : pcancel f f'). + +Definition le (x y : T) := f x <= f y. +Definition lt (x y : T) := f x < f y. + +Fact refl : reflexive le. Proof. by move=> ?; apply: lexx. Qed. +Fact anti : antisymmetric le. +Proof. by move=> x y /le_anti /(pcan_inj f_can). Qed. +Fact trans : transitive le. Proof. by move=> y x z xy /(le_trans xy). Qed. +Fact lt_def x y : lt x y = (y != x) && le x y. +Proof. by rewrite /lt lt_def (inj_eq (pcan_inj f_can)). Qed. + +Definition PcanPOrder := LePOrderMixin lt_def refl anti trans. + +End PCan. + +Definition CanPOrder f' (f_can : cancel f f') := PcanPOrder (can_pcan f_can). + +End Partial. + +Section Total. + +Variables (T' : orderType disp) (f : T -> T'). + +Section PCan. + +Variables (f' : T' -> option T) (f_can : pcancel f f'). + +Let T_porderType := POrderType disp T (PcanPOrder f_can). + +Let total_le : total (le f). +Proof. by apply: (@MonoTotal _ T_porderType _ f) => //; apply: le_total. Qed. + +Definition PcanOrder := LeOrderMixin + (@lt_def _ _ _ f_can) (fun _ _ => erefl) (fun _ _ => erefl) + (@anti _ _ _ f_can) (@trans _ _) total_le. + +End PCan. + +Definition CanOrder f' (f_can : cancel f f') := PcanOrder (can_pcan f_can). + +End Total. +End Order. + +Section DistrLattice. + +Variables (disp : unit) (T : porderType disp). +Variables (disp' : unit) (T' : distrLatticeType disp) (f : T -> T'). + +Variables (f' : T' -> T) (f_can : cancel f f') (f'_can : cancel f' f). +Variable (f_mono : {mono f : x y / x <= y}). + +Definition meet (x y : T) := f' (meet (f x) (f y)). +Definition join (x y : T) := f' (join (f x) (f y)). + +Lemma meetC : commutative meet. Proof. by move=> x y; rewrite /meet meetC. Qed. +Lemma joinC : commutative join. Proof. by move=> x y; rewrite /join joinC. Qed. +Lemma meetA : associative meet. +Proof. by move=> y x z; rewrite /meet !f'_can meetA. Qed. +Lemma joinA : associative join. +Proof. by move=> y x z; rewrite /join !f'_can joinA. Qed. +Lemma joinKI y x : meet x (join x y) = x. +Proof. by rewrite /meet /join f'_can joinKI f_can. Qed. +Lemma meetKI y x : join x (meet x y) = x. +Proof. by rewrite /join /meet f'_can meetKU f_can. Qed. +Lemma meet_eql x y : (x <= y) = (meet x y == x). +Proof. by rewrite /meet -(can_eq f_can) f'_can eq_meetl f_mono. Qed. +Lemma meetUl : left_distributive meet join. +Proof. by move=> x y z; rewrite /meet /join !f'_can meetUl. Qed. + +Definition IsoDistrLattice := + DistrLatticeMixin meetC joinC meetA joinA joinKI meetKI meet_eql meetUl. + +End DistrLattice. + +End CanMixin. + +Module Exports. +Notation MonoTotalMixin := MonoTotal. +Notation PcanPOrderMixin := PcanPOrder. +Notation CanPOrderMixin := CanPOrder. +Notation PcanOrderMixin := PcanOrder. +Notation CanOrderMixin := CanOrder. +Notation IsoDistrLatticeMixin := IsoDistrLattice. +End Exports. +End CanMixin. +Import CanMixin.Exports. + +Module SubOrder. + +Section Partial. +Context {disp : unit} {T : porderType disp} (P : {pred T}) (sT : subType P). + +Definition sub_POrderMixin := PcanPOrderMixin (@valK _ _ sT). +Canonical sub_POrderType := Eval hnf in POrderType disp sT sub_POrderMixin. + +Lemma leEsub (x y : sT) : (x <= y) = (val x <= val y). Proof. by []. Qed. + +Lemma ltEsub (x y : sT) : (x < y) = (val x < val y). Proof. by []. Qed. + +End Partial. + +Section Total. +Context {disp : unit} {T : orderType disp} (P : {pred T}) (sT : subType P). + +Definition sub_TotalOrderMixin : totalPOrderMixin (sub_POrderType sT) := + @MonoTotalMixin _ _ _ val (fun _ _ => erefl) (@le_total _ T). +Canonical sub_DistrLatticeType := + Eval hnf in DistrLatticeType sT sub_TotalOrderMixin. +Canonical sub_OrderType := Eval hnf in OrderType sT sub_TotalOrderMixin. + +End Total. +Arguments sub_TotalOrderMixin {disp T} [P]. + +Module Exports. +Notation "[ 'porderMixin' 'of' T 'by' <: ]" := + (sub_POrderMixin _ : lePOrderMixin [eqType of T]) + (at level 0, format "[ 'porderMixin' 'of' T 'by' <: ]") : form_scope. + +Notation "[ 'totalOrderMixin' 'of' T 'by' <: ]" := + (sub_TotalOrderMixin _ : totalPOrderMixin [porderType of T]) + (at level 0, format "[ 'totalOrderMixin' 'of' T 'by' <: ]", + only parsing) : form_scope. + +Canonical sub_POrderType. +Canonical sub_DistrLatticeType. +Canonical sub_OrderType. + +Definition leEsub := @leEsub. +Definition ltEsub := @ltEsub. +End Exports. +End SubOrder. +Import SubOrder.Exports. + +(*************) +(* INSTANCES *) +(*************) + +(*******************************) +(* Canonical structures on nat *) +(*******************************) + +(******************************************************************************) +(* This is an example of creation of multiple canonical declarations on the *) +(* same type, with distinct displays, on the example of natural numbers. *) +(* We declare two distinct canonical orders: *) +(* - leq which is total, and where meet and join are minn and maxn, on nat *) +(* - dvdn which is partial, and where meet and join are gcdn and lcmn, *) +(* on a "copy" of nat we name natdiv *) +(******************************************************************************) + +(******************************************************************************) +(* The Module NatOrder defines leq as the canonical order on the type nat, *) +(* i.e. without creating a "copy". We use the predefined total_display, which *) +(* is designed to parse and print meet and join as minn and maxn. This looks *) +(* like standard canonical structure declaration, except we use a display. *) +(* We also use a single factory LeOrderMixin to instanciate three different *) +(* canonical declarations porderType, distrLatticeType, orderType *) +(* We finish by providing theorems to convert the operations of ordered and *) +(* lattice types to their definition without structure abstraction. *) +(******************************************************************************) + +Module NatOrder. +Section NatOrder. + +Lemma minnE x y : minn x y = if (x <= y)%N then x else y. +Proof. by case: leqP => [/minn_idPl|/ltnW /minn_idPr]. Qed. + +Lemma maxnE x y : maxn x y = if (y <= x)%N then x else y. +Proof. by case: leqP => [/maxn_idPl|/ltnW/maxn_idPr]. Qed. + +Lemma ltn_def x y : (x < y)%N = (y != x) && (x <= y)%N. +Proof. by rewrite ltn_neqAle eq_sym. Qed. + +Definition orderMixin := + LeOrderMixin ltn_def minnE maxnE anti_leq leq_trans leq_total. + +Canonical porderType := POrderType total_display nat orderMixin. +Canonical distrLatticeType := DistrLatticeType nat orderMixin. +Canonical orderType := OrderType nat orderMixin. +Canonical bDistrLatticeType := BDistrLatticeType nat (BDistrLatticeMixin leq0n). + +Lemma leEnat : le = leq. Proof. by []. Qed. +Lemma ltEnat (n m : nat) : (n < m) = (n < m)%N. Proof. by []. Qed. +Lemma meetEnat : meet = minn. Proof. by []. Qed. +Lemma joinEnat : join = maxn. Proof. by []. Qed. +Lemma botEnat : 0%O = 0%N :> nat. Proof. by []. Qed. + +End NatOrder. +Module Exports. +Canonical porderType. +Canonical distrLatticeType. +Canonical orderType. +Canonical bDistrLatticeType. +Definition leEnat := leEnat. +Definition ltEnat := ltEnat. +Definition meetEnat := meetEnat. +Definition joinEnat := joinEnat. +Definition botEnat := botEnat. +End Exports. +End NatOrder. + +(****************************************************************************) +(* The Module DvdSyntax introduces a new set of notations using the newly *) +(* created display dvd_display. We first define the display as an opaque *) +(* definition of type unit, and we use it as the first argument of the *) +(* operator which display we want to change from the default one (here le, *) +(* lt, dvd sdvd, meet, join, top and bottom, as well as big op notations on *) +(* gcd and lcm). This notations will now be used for any ordered type which *) +(* first parameter is set to dvd_display. *) +(****************************************************************************) + +Lemma dvd_display : unit. Proof. exact: tt. Qed. + +Module DvdSyntax. + +Notation dvd := (@le dvd_display _). +Notation "@ 'dvd' T" := + (@le dvd_display T) (at level 10, T at level 8, only parsing) : fun_scope. +Notation sdvd := (@lt dvd_display _). +Notation "@ 'sdvd' T" := + (@lt dvd_display T) (at level 10, T at level 8, only parsing) : fun_scope. + +Notation "x %| y" := (dvd x y) : order_scope. +Notation "x %<| y" := (sdvd x y) : order_scope. + +Notation gcd := (@meet dvd_display _). +Notation "@ 'gcd' T" := + (@meet dvd_display T) (at level 10, T at level 8, only parsing) : fun_scope. +Notation lcm := (@join dvd_display _). +Notation "@ 'lcm' T" := + (@join dvd_display T) (at level 10, T at level 8, only parsing) : fun_scope. + +Notation nat0 := (@top dvd_display _). +Notation nat1 := (@bottom dvd_display _). + +Notation "\gcd_ ( i <- r | P ) F" := + (\big[gcd/nat0]_(i <- r | P%B) F%O) : order_scope. +Notation "\gcd_ ( i <- r ) F" := + (\big[gcd/nat0]_(i <- r) F%O) : order_scope. +Notation "\gcd_ ( i | P ) F" := + (\big[gcd/nat0]_(i | P%B) F%O) : order_scope. +Notation "\gcd_ i F" := + (\big[gcd/nat0]_i F%O) : order_scope. +Notation "\gcd_ ( i : I | P ) F" := + (\big[gcd/nat0]_(i : I | P%B) F%O) (only parsing) : + order_scope. +Notation "\gcd_ ( i : I ) F" := + (\big[gcd/nat0]_(i : I) F%O) (only parsing) : order_scope. +Notation "\gcd_ ( m <= i < n | P ) F" := + (\big[gcd/nat0]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\gcd_ ( m <= i < n ) F" := + (\big[gcd/nat0]_(m <= i < n) F%O) : order_scope. +Notation "\gcd_ ( i < n | P ) F" := + (\big[gcd/nat0]_(i < n | P%B) F%O) : order_scope. +Notation "\gcd_ ( i < n ) F" := + (\big[gcd/nat0]_(i < n) F%O) : order_scope. +Notation "\gcd_ ( i 'in' A | P ) F" := + (\big[gcd/nat0]_(i in A | P%B) F%O) : order_scope. +Notation "\gcd_ ( i 'in' A ) F" := + (\big[gcd/nat0]_(i in A) F%O) : order_scope. + +Notation "\lcm_ ( i <- r | P ) F" := + (\big[lcm/nat1]_(i <- r | P%B) F%O) : order_scope. +Notation "\lcm_ ( i <- r ) F" := + (\big[lcm/nat1]_(i <- r) F%O) : order_scope. +Notation "\lcm_ ( i | P ) F" := + (\big[lcm/nat1]_(i | P%B) F%O) : order_scope. +Notation "\lcm_ i F" := + (\big[lcm/nat1]_i F%O) : order_scope. +Notation "\lcm_ ( i : I | P ) F" := + (\big[lcm/nat1]_(i : I | P%B) F%O) (only parsing) : + order_scope. +Notation "\lcm_ ( i : I ) F" := + (\big[lcm/nat1]_(i : I) F%O) (only parsing) : order_scope. +Notation "\lcm_ ( m <= i < n | P ) F" := + (\big[lcm/nat1]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\lcm_ ( m <= i < n ) F" := + (\big[lcm/nat1]_(m <= i < n) F%O) : order_scope. +Notation "\lcm_ ( i < n | P ) F" := + (\big[lcm/nat1]_(i < n | P%B) F%O) : order_scope. +Notation "\lcm_ ( i < n ) F" := + (\big[lcm/nat1]_(i < n) F%O) : order_scope. +Notation "\lcm_ ( i 'in' A | P ) F" := + (\big[lcm/nat1]_(i in A | P%B) F%O) : order_scope. +Notation "\lcm_ ( i 'in' A ) F" := + (\big[lcm/nat1]_(i in A) F%O) : order_scope. + +End DvdSyntax. + +(******************************************************************************) +(* The Module NatDvd defines dvdn as the canonical order on NatDvd.t, which *) +(* is abbreviated using the notation natdvd at the end of the module. *) +(* We use the newly defined dvd_display, described above. This looks *) +(* like standard canonical structure declaration, except we use a display and *) +(* we declare it on a "copy" of the type. *) +(* We first recover structures that are common to both nat and natdiv *) +(* (eqType, choiceType, countType) through the clone mechanisms, then we use *) +(* a single factory MeetJoinMixin to instanciate both porderType and *) +(* distrLatticeType canonical structures,and end with top and bottom. *) +(* We finish by providing theorems to convert the operations of ordered and *) +(* lattice types to their definition without structure abstraction. *) +(******************************************************************************) + +Module NatDvd. +Section NatDvd. + +Implicit Types m n p : nat. + +Lemma lcmnn n : lcmn n n = n. +Proof. by case: n => // n; rewrite /lcmn gcdnn mulnK. Qed. + +Lemma le_def m n : m %| n = (gcdn m n == m)%N. +Proof. by apply/gcdn_idPl/eqP. Qed. + +Lemma joinKI n m : gcdn m (lcmn m n) = m. +Proof. by rewrite (gcdn_idPl _)// dvdn_lcml. Qed. + +Lemma meetKU n m : lcmn m (gcdn m n) = m. +Proof. by rewrite (lcmn_idPl _)// dvdn_gcdl. Qed. + +Lemma meetUl : left_distributive gcdn lcmn. +Proof. +move=> [|m'] [|n'] [|p'] //=; rewrite ?lcmnn ?lcm0n ?lcmn0 ?gcd0n ?gcdn0//. +- by rewrite gcdnC meetKU. +- by rewrite lcmnC gcdnC meetKU. +apply: eqn_from_log; rewrite ?(gcdn_gt0, lcmn_gt0)//= => p. +by rewrite !(logn_gcd, logn_lcm) ?(gcdn_gt0, lcmn_gt0)// minn_maxl. +Qed. + +Definition t_distrLatticeMixin := MeetJoinMixin le_def (fun _ _ => erefl _) + gcdnC lcmnC gcdnA lcmnA joinKI meetKU meetUl gcdnn. + +Definition t := nat. + +Canonical eqType := [eqType of t]. +Canonical choiceType := [choiceType of t]. +Canonical countType := [countType of t]. +Canonical porderType := POrderType dvd_display t t_distrLatticeMixin. +Canonical distrLatticeType := DistrLatticeType t t_distrLatticeMixin. +Canonical bDistrLatticeType := BDistrLatticeType t + (BDistrLatticeMixin (dvd1n : forall m : t, 1 %| m)). +Canonical tbDistrLatticeType := TBDistrLatticeType t + (TBDistrLatticeMixin (dvdn0 : forall m : t, m %| 0)). + +Import DvdSyntax. +Lemma dvdE : dvd = dvdn :> rel t. Proof. by []. Qed. +Lemma sdvdE (m n : t) : m %<| n = (n != m) && (m %| n). Proof. by []. Qed. +Lemma gcdE : gcd = gcdn :> (t -> t -> t). Proof. by []. Qed. +Lemma lcmE : lcm = lcmn :> (t -> t -> t). Proof. by []. Qed. +Lemma nat1E : nat1 = 1%N :> t. Proof. by []. Qed. +Lemma nat0E : nat0 = 0%N :> t. Proof. by []. Qed. + +End NatDvd. +Module Exports. +Notation natdvd := t. +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Definition dvdEnat := dvdE. +Definition sdvdEnat := sdvdE. +Definition gcdEnat := gcdE. +Definition lcmEnat := lcmE. +Definition nat1E := nat1E. +Definition nat0E := nat0E. +End Exports. +End NatDvd. + +(*******************************) +(* Canonical structure on bool *) +(*******************************) + +Module BoolOrder. +Section BoolOrder. +Implicit Types (x y : bool). + +Fact andbE x y : x && y = if (x <= y)%N then x else y. +Proof. by case: x y => [] []. Qed. + +Fact orbE x y : x || y = if (y <= x)%N then x else y. +Proof. by case: x y => [] []. Qed. + +Fact ltn_def x y : (x < y)%N = (y != x) && (x <= y)%N. +Proof. by case: x y => [] []. Qed. + +Fact anti : antisymmetric (leq : rel bool). +Proof. by move=> x y /anti_leq /(congr1 odd); rewrite !oddb. Qed. + +Definition sub x y := x && ~~ y. + +Lemma subKI x y : y && sub x y = false. +Proof. by case: x y => [] []. Qed. + +Lemma joinIB x y : (x && y) || sub x y = x. +Proof. by case: x y => [] []. Qed. + +Definition orderMixin := + LeOrderMixin ltn_def andbE orbE anti leq_trans leq_total. + +Canonical porderType := POrderType total_display bool orderMixin. +Canonical distrLatticeType := DistrLatticeType bool orderMixin. +Canonical orderType := OrderType bool orderMixin. +Canonical bDistrLatticeType := BDistrLatticeType bool + (@BDistrLatticeMixin _ _ false (fun b : bool => leq0n b)). +Canonical tbDistrLatticeType := + TBDistrLatticeType bool (@TBDistrLatticeMixin _ _ true leq_b1). +Canonical cbDistrLatticeType := CBDistrLatticeType bool + (@CBDistrLatticeMixin _ _ (fun x y => x && ~~ y) subKI joinIB). +Canonical ctbDistrLatticeType := CTBDistrLatticeType bool + (@CTBDistrLatticeMixin _ _ sub negb (fun x => erefl : ~~ x = sub true x)). + +Canonical finPOrderType := [finPOrderType of bool]. +Canonical finDistrLatticeType := [finDistrLatticeType of bool]. +Canonical finCDistrLatticeType := [finCDistrLatticeType of bool]. +Canonical finOrderType := [finOrderType of bool]. + +Lemma leEbool : le = (leq : rel bool). Proof. by []. Qed. +Lemma ltEbool x y : (x < y) = (x < y)%N. Proof. by []. Qed. +Lemma andEbool : meet = andb. Proof. by []. Qed. +Lemma orEbool : meet = andb. Proof. by []. Qed. +Lemma subEbool x y : x `\` y = x && ~~ y. Proof. by []. Qed. +Lemma complEbool : compl = negb. Proof. by []. Qed. + +End BoolOrder. +Module Exports. +Canonical porderType. +Canonical distrLatticeType. +Canonical orderType. +Canonical bDistrLatticeType. +Canonical cbDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical ctbDistrLatticeType. +Canonical finPOrderType. +Canonical finDistrLatticeType. +Canonical finOrderType. +Canonical finCDistrLatticeType. +Definition leEbool := leEbool. +Definition ltEbool := ltEbool. +Definition andEbool := andEbool. +Definition orEbool := orEbool. +Definition subEbool := subEbool. +Definition complEbool := complEbool. +End Exports. +End BoolOrder. + +(*******************************) +(* Definition of prod_display. *) +(*******************************) + +Fact prod_display : unit. Proof. by []. Qed. + +Module Import ProdSyntax. + +Notation "<=^p%O" := (@le prod_display _) : fun_scope. +Notation ">=^p%O" := (@ge prod_display _) : fun_scope. +Notation ">=^p%O" := (@ge prod_display _) : fun_scope. +Notation "<^p%O" := (@lt prod_display _) : fun_scope. +Notation ">^p%O" := (@gt prod_display _) : fun_scope. +Notation "<?=^p%O" := (@leif prod_display _) : fun_scope. +Notation ">=<^p%O" := (@comparable prod_display _) : fun_scope. +Notation "><^p%O" := (fun x y => ~~ (@comparable prod_display _ x y)) : + fun_scope. + +Notation "<=^p y" := (>=^p%O y) : order_scope. +Notation "<=^p y :> T" := (<=^p (y : T)) (only parsing) : order_scope. +Notation ">=^p y" := (<=^p%O y) : order_scope. +Notation ">=^p y :> T" := (>=^p (y : T)) (only parsing) : order_scope. + +Notation "<^p y" := (>^p%O y) : order_scope. +Notation "<^p y :> T" := (<^p (y : T)) (only parsing) : order_scope. +Notation ">^p y" := (<^p%O y) : order_scope. +Notation ">^p y :> T" := (>^p (y : T)) (only parsing) : order_scope. + +Notation ">=<^p y" := (>=<^p%O y) : order_scope. +Notation ">=<^p y :> T" := (>=<^p (y : T)) (only parsing) : order_scope. + +Notation "x <=^p y" := (<=^p%O x y) : order_scope. +Notation "x <=^p y :> T" := ((x : T) <=^p (y : T)) (only parsing) : order_scope. +Notation "x >=^p y" := (y <=^p x) (only parsing) : order_scope. +Notation "x >=^p y :> T" := ((x : T) >=^p (y : T)) (only parsing) : order_scope. + +Notation "x <^p y" := (<^p%O x y) : order_scope. +Notation "x <^p y :> T" := ((x : T) <^p (y : T)) (only parsing) : order_scope. +Notation "x >^p y" := (y <^p x) (only parsing) : order_scope. +Notation "x >^p y :> T" := ((x : T) >^p (y : T)) (only parsing) : order_scope. + +Notation "x <=^p y <=^p z" := ((x <=^p y) && (y <=^p z)) : order_scope. +Notation "x <^p y <=^p z" := ((x <^p y) && (y <=^p z)) : order_scope. +Notation "x <=^p y <^p z" := ((x <=^p y) && (y <^p z)) : order_scope. +Notation "x <^p y <^p z" := ((x <^p y) && (y <^p z)) : order_scope. + +Notation "x <=^p y ?= 'iff' C" := (<?=^p%O x y C) : order_scope. +Notation "x <=^p y ?= 'iff' C :> T" := ((x : T) <=^p (y : T) ?= iff C) + (only parsing) : order_scope. + +Notation ">=<^p x" := (>=<^p%O x) : order_scope. +Notation ">=<^p x :> T" := (>=<^p (x : T)) (only parsing) : order_scope. +Notation "x >=<^p y" := (>=<^p%O x y) : order_scope. + +Notation "><^p x" := (fun y => ~~ (>=<^p%O x y)) : order_scope. +Notation "><^p x :> T" := (><^p (x : T)) (only parsing) : order_scope. +Notation "x ><^p y" := (~~ (><^p%O x y)) : order_scope. + +Notation "x `&^p` y" := (@meet prod_display _ x y) : order_scope. +Notation "x `|^p` y" := (@join prod_display _ x y) : order_scope. + +Notation "\join^p_ ( i <- r | P ) F" := + (\big[join/0]_(i <- r | P%B) F%O) : order_scope. +Notation "\join^p_ ( i <- r ) F" := + (\big[join/0]_(i <- r) F%O) : order_scope. +Notation "\join^p_ ( i | P ) F" := + (\big[join/0]_(i | P%B) F%O) : order_scope. +Notation "\join^p_ i F" := + (\big[join/0]_i F%O) : order_scope. +Notation "\join^p_ ( i : I | P ) F" := + (\big[join/0]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\join^p_ ( i : I ) F" := + (\big[join/0]_(i : I) F%O) (only parsing) : order_scope. +Notation "\join^p_ ( m <= i < n | P ) F" := + (\big[join/0]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\join^p_ ( m <= i < n ) F" := + (\big[join/0]_(m <= i < n) F%O) : order_scope. +Notation "\join^p_ ( i < n | P ) F" := + (\big[join/0]_(i < n | P%B) F%O) : order_scope. +Notation "\join^p_ ( i < n ) F" := + (\big[join/0]_(i < n) F%O) : order_scope. +Notation "\join^p_ ( i 'in' A | P ) F" := + (\big[join/0]_(i in A | P%B) F%O) : order_scope. +Notation "\join^p_ ( i 'in' A ) F" := + (\big[join/0]_(i in A) F%O) : order_scope. + +Notation "\meet^p_ ( i <- r | P ) F" := + (\big[meet/1]_(i <- r | P%B) F%O) : order_scope. +Notation "\meet^p_ ( i <- r ) F" := + (\big[meet/1]_(i <- r) F%O) : order_scope. +Notation "\meet^p_ ( i | P ) F" := + (\big[meet/1]_(i | P%B) F%O) : order_scope. +Notation "\meet^p_ i F" := + (\big[meet/1]_i F%O) : order_scope. +Notation "\meet^p_ ( i : I | P ) F" := + (\big[meet/1]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\meet^p_ ( i : I ) F" := + (\big[meet/1]_(i : I) F%O) (only parsing) : order_scope. +Notation "\meet^p_ ( m <= i < n | P ) F" := + (\big[meet/1]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\meet^p_ ( m <= i < n ) F" := + (\big[meet/1]_(m <= i < n) F%O) : order_scope. +Notation "\meet^p_ ( i < n | P ) F" := + (\big[meet/1]_(i < n | P%B) F%O) : order_scope. +Notation "\meet^p_ ( i < n ) F" := + (\big[meet/1]_(i < n) F%O) : order_scope. +Notation "\meet^p_ ( i 'in' A | P ) F" := + (\big[meet/1]_(i in A | P%B) F%O) : order_scope. +Notation "\meet^p_ ( i 'in' A ) F" := + (\big[meet/1]_(i in A) F%O) : order_scope. + +End ProdSyntax. + +(*******************************) +(* Definition of lexi_display. *) +(*******************************) + +Fact lexi_display : unit. Proof. by []. Qed. + +Module Import LexiSyntax. + +Notation "<=^l%O" := (@le lexi_display _) : fun_scope. +Notation ">=^l%O" := (@ge lexi_display _) : fun_scope. +Notation ">=^l%O" := (@ge lexi_display _) : fun_scope. +Notation "<^l%O" := (@lt lexi_display _) : fun_scope. +Notation ">^l%O" := (@gt lexi_display _) : fun_scope. +Notation "<?=^l%O" := (@leif lexi_display _) : fun_scope. +Notation ">=<^l%O" := (@comparable lexi_display _) : fun_scope. +Notation "><^l%O" := (fun x y => ~~ (@comparable lexi_display _ x y)) : + fun_scope. + +Notation "<=^l y" := (>=^l%O y) : order_scope. +Notation "<=^l y :> T" := (<=^l (y : T)) (only parsing) : order_scope. +Notation ">=^l y" := (<=^l%O y) : order_scope. +Notation ">=^l y :> T" := (>=^l (y : T)) (only parsing) : order_scope. + +Notation "<^l y" := (>^l%O y) : order_scope. +Notation "<^l y :> T" := (<^l (y : T)) (only parsing) : order_scope. +Notation ">^l y" := (<^l%O y) : order_scope. +Notation ">^l y :> T" := (>^l (y : T)) (only parsing) : order_scope. + +Notation ">=<^l y" := (>=<^l%O y) : order_scope. +Notation ">=<^l y :> T" := (>=<^l (y : T)) (only parsing) : order_scope. + +Notation "x <=^l y" := (<=^l%O x y) : order_scope. +Notation "x <=^l y :> T" := ((x : T) <=^l (y : T)) (only parsing) : order_scope. +Notation "x >=^l y" := (y <=^l x) (only parsing) : order_scope. +Notation "x >=^l y :> T" := ((x : T) >=^l (y : T)) (only parsing) : order_scope. + +Notation "x <^l y" := (<^l%O x y) : order_scope. +Notation "x <^l y :> T" := ((x : T) <^l (y : T)) (only parsing) : order_scope. +Notation "x >^l y" := (y <^l x) (only parsing) : order_scope. +Notation "x >^l y :> T" := ((x : T) >^l (y : T)) (only parsing) : order_scope. + +Notation "x <=^l y <=^l z" := ((x <=^l y) && (y <=^l z)) : order_scope. +Notation "x <^l y <=^l z" := ((x <^l y) && (y <=^l z)) : order_scope. +Notation "x <=^l y <^l z" := ((x <=^l y) && (y <^l z)) : order_scope. +Notation "x <^l y <^l z" := ((x <^l y) && (y <^l z)) : order_scope. + +Notation "x <=^l y ?= 'iff' C" := (<?=^l%O x y C) : order_scope. +Notation "x <=^l y ?= 'iff' C :> T" := ((x : T) <=^l (y : T) ?= iff C) + (only parsing) : order_scope. + +Notation ">=<^l x" := (>=<^l%O x) : order_scope. +Notation ">=<^l x :> T" := (>=<^l (x : T)) (only parsing) : order_scope. +Notation "x >=<^l y" := (>=<^l%O x y) : order_scope. + +Notation "><^l x" := (fun y => ~~ (>=<^l%O x y)) : order_scope. +Notation "><^l x :> T" := (><^l (x : T)) (only parsing) : order_scope. +Notation "x ><^l y" := (~~ (><^l%O x y)) : order_scope. + +Notation minlexi := (@meet lexi_display _). +Notation maxlexi := (@join lexi_display _). + +Notation "x `&^l` y" := (minlexi x y) : order_scope. +Notation "x `|^l` y" := (maxlexi x y) : order_scope. + +Notation "\max^l_ ( i <- r | P ) F" := + (\big[maxlexi/0]_(i <- r | P%B) F%O) : order_scope. +Notation "\max^l_ ( i <- r ) F" := + (\big[maxlexi/0]_(i <- r) F%O) : order_scope. +Notation "\max^l_ ( i | P ) F" := + (\big[maxlexi/0]_(i | P%B) F%O) : order_scope. +Notation "\max^l_ i F" := + (\big[maxlexi/0]_i F%O) : order_scope. +Notation "\max^l_ ( i : I | P ) F" := + (\big[maxlexi/0]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\max^l_ ( i : I ) F" := + (\big[maxlexi/0]_(i : I) F%O) (only parsing) : order_scope. +Notation "\max^l_ ( m <= i < n | P ) F" := + (\big[maxlexi/0]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\max^l_ ( m <= i < n ) F" := + (\big[maxlexi/0]_(m <= i < n) F%O) : order_scope. +Notation "\max^l_ ( i < n | P ) F" := + (\big[maxlexi/0]_(i < n | P%B) F%O) : order_scope. +Notation "\max^l_ ( i < n ) F" := + (\big[maxlexi/0]_(i < n) F%O) : order_scope. +Notation "\max^l_ ( i 'in' A | P ) F" := + (\big[maxlexi/0]_(i in A | P%B) F%O) : order_scope. +Notation "\max^l_ ( i 'in' A ) F" := + (\big[maxlexi/0]_(i in A) F%O) : order_scope. + +Notation "\min^l_ ( i <- r | P ) F" := + (\big[minlexi/1]_(i <- r | P%B) F%O) : order_scope. +Notation "\min^l_ ( i <- r ) F" := + (\big[minlexi/1]_(i <- r) F%O) : order_scope. +Notation "\min^l_ ( i | P ) F" := + (\big[minlexi/1]_(i | P%B) F%O) : order_scope. +Notation "\min^l_ i F" := + (\big[minlexi/1]_i F%O) : order_scope. +Notation "\min^l_ ( i : I | P ) F" := + (\big[minlexi/1]_(i : I | P%B) F%O) (only parsing) : order_scope. +Notation "\min^l_ ( i : I ) F" := + (\big[minlexi/1]_(i : I) F%O) (only parsing) : order_scope. +Notation "\min^l_ ( m <= i < n | P ) F" := + (\big[minlexi/1]_(m <= i < n | P%B) F%O) : order_scope. +Notation "\min^l_ ( m <= i < n ) F" := + (\big[minlexi/1]_(m <= i < n) F%O) : order_scope. +Notation "\min^l_ ( i < n | P ) F" := + (\big[minlexi/1]_(i < n | P%B) F%O) : order_scope. +Notation "\min^l_ ( i < n ) F" := + (\big[minlexi/1]_(i < n) F%O) : order_scope. +Notation "\min^l_ ( i 'in' A | P ) F" := + (\big[minlexi/1]_(i in A | P%B) F%O) : order_scope. +Notation "\min^l_ ( i 'in' A ) F" := + (\big[minlexi/1]_(i in A) F%O) : order_scope. + +End LexiSyntax. + +(*************************************************) +(* We declare a "copy" of the cartesian product, *) +(* which has canonical product order. *) +(*************************************************) + +Module ProdOrder. +Section ProdOrder. + +Definition type (disp : unit) (T T' : Type) := (T * T')%type. + +Context {disp1 disp2 disp3 : unit}. + +Local Notation "T * T'" := (type disp3 T T') : type_scope. + +Canonical eqType (T T' : eqType):= Eval hnf in [eqType of T * T']. +Canonical choiceType (T T' : choiceType):= Eval hnf in [choiceType of T * T']. +Canonical countType (T T' : countType):= Eval hnf in [countType of T * T']. +Canonical finType (T T' : finType):= Eval hnf in [finType of T * T']. + +Section POrder. +Variable (T : porderType disp1) (T' : porderType disp2). +Implicit Types (x y : T * T'). + +Definition le x y := (x.1 <= y.1) && (x.2 <= y.2). + +Fact refl : reflexive le. +Proof. by move=> ?; rewrite /le !lexx. Qed. + +Fact anti : antisymmetric le. +Proof. +case=> [? ?] [? ?]. +by rewrite andbAC andbA andbAC -andbA => /= /andP [] /le_anti -> /le_anti ->. +Qed. + +Fact trans : transitive le. +Proof. +rewrite /le => y x z /andP [] hxy ? /andP [] /(le_trans hxy) ->. +by apply: le_trans. +Qed. + +Definition porderMixin := LePOrderMixin (rrefl _) refl anti trans. +Canonical porderType := POrderType disp3 (T * T') porderMixin. + +Lemma leEprod x y : (x <= y) = (x.1 <= y.1) && (x.2 <= y.2). +Proof. by []. Qed. + +Lemma ltEprod x y : (x < y) = [&& x != y, x.1 <= y.1 & x.2 <= y.2]. +Proof. by rewrite lt_neqAle. Qed. + +Lemma le_pair (x1 y1 : T) (x2 y2 : T') : + (x1, x2) <= (y1, y2) :> T * T' = (x1 <= y1) && (x2 <= y2). +Proof. by []. Qed. + +Lemma lt_pair (x1 y1 : T) (x2 y2 : T') : (x1, x2) < (y1, y2) :> T * T' = + [&& (x1 != y1) || (x2 != y2), x1 <= y1 & x2 <= y2]. +Proof. by rewrite ltEprod negb_and. Qed. + +End POrder. + +Section DistrLattice. +Variable (T : distrLatticeType disp1) (T' : distrLatticeType disp2). +Implicit Types (x y : T * T'). + +Definition meet x y := (x.1 `&` y.1, x.2 `&` y.2). +Definition join x y := (x.1 `|` y.1, x.2 `|` y.2). + +Fact meetC : commutative meet. +Proof. by move=> ? ?; congr pair; rewrite meetC. Qed. + +Fact joinC : commutative join. +Proof. by move=> ? ?; congr pair; rewrite joinC. Qed. + +Fact meetA : associative meet. +Proof. by move=> ? ? ?; congr pair; rewrite meetA. Qed. + +Fact joinA : associative join. +Proof. by move=> ? ? ?; congr pair; rewrite joinA. Qed. + +Fact joinKI y x : meet x (join x y) = x. +Proof. by case: x => ? ?; congr pair; rewrite joinKI. Qed. + +Fact meetKU y x : join x (meet x y) = x. +Proof. by case: x => ? ?; congr pair; rewrite meetKU. Qed. + +Fact leEmeet x y : (x <= y) = (meet x y == x). +Proof. by rewrite eqE /= -!leEmeet. Qed. + +Fact meetUl : left_distributive meet join. +Proof. by move=> ? ? ?; congr pair; rewrite meetUl. Qed. + +Definition distrLatticeMixin := + DistrLattice.Mixin meetC joinC meetA joinA joinKI meetKU leEmeet meetUl. +Canonical distrLatticeType := DistrLatticeType (T * T') distrLatticeMixin. + +Lemma meetEprod x y : x `&` y = (x.1 `&` y.1, x.2 `&` y.2). +Proof. by []. Qed. + +Lemma joinEprod x y : x `|` y = (x.1 `|` y.1, x.2 `|` y.2). +Proof. by []. Qed. + +End DistrLattice. + +Section BDistrLattice. +Variable (T : bDistrLatticeType disp1) (T' : bDistrLatticeType disp2). + +Fact le0x (x : T * T') : (0, 0) <= x :> T * T'. +Proof. by rewrite /<=%O /= /le !le0x. Qed. + +Canonical bDistrLatticeType := + BDistrLatticeType (T * T') (BDistrLattice.Mixin le0x). + +Lemma botEprod : 0 = (0, 0) :> T * T'. Proof. by []. Qed. + +End BDistrLattice. + +Section TBDistrLattice. +Variable (T : tbDistrLatticeType disp1) (T' : tbDistrLatticeType disp2). + +Fact lex1 (x : T * T') : x <= (top, top). +Proof. by rewrite /<=%O /= /le !lex1. Qed. + +Canonical tbDistrLatticeType := + TBDistrLatticeType (T * T') (TBDistrLattice.Mixin lex1). + +Lemma topEprod : 1 = (1, 1) :> T * T'. Proof. by []. Qed. + +End TBDistrLattice. + +Section CBDistrLattice. +Variable (T : cbDistrLatticeType disp1) (T' : cbDistrLatticeType disp2). +Implicit Types (x y : T * T'). + +Definition sub x y := (x.1 `\` y.1, x.2 `\` y.2). + +Lemma subKI x y : y `&` sub x y = 0. +Proof. by congr pair; rewrite subKI. Qed. + +Lemma joinIB x y : x `&` y `|` sub x y = x. +Proof. by case: x => ? ?; congr pair; rewrite joinIB. Qed. + +Definition cbDistrLatticeMixin := CBDistrLattice.Mixin subKI joinIB. +Canonical cbDistrLatticeType := CBDistrLatticeType (T * T') cbDistrLatticeMixin. + +Lemma subEprod x y : x `\` y = (x.1 `\` y.1, x.2 `\` y.2). +Proof. by []. Qed. + +End CBDistrLattice. + +Section CTBDistrLattice. +Variable (T : ctbDistrLatticeType disp1) (T' : ctbDistrLatticeType disp2). +Implicit Types (x y : T * T'). + +Definition compl x : T * T' := (~` x.1, ~` x.2). + +Lemma complE x : compl x = sub 1 x. +Proof. by congr pair; rewrite complE. Qed. + +Definition ctbDistrLatticeMixin := CTBDistrLattice.Mixin complE. +Canonical ctbDistrLatticeType := + CTBDistrLatticeType (T * T') ctbDistrLatticeMixin. + +Lemma complEprod x : ~` x = (~` x.1, ~` x.2). Proof. by []. Qed. + +End CTBDistrLattice. + +Canonical finPOrderType (T : finPOrderType disp1) + (T' : finPOrderType disp2) := [finPOrderType of T * T']. + +Canonical finDistrLatticeType (T : finDistrLatticeType disp1) + (T' : finDistrLatticeType disp2) := [finDistrLatticeType of T * T']. + +Canonical finCDistrLatticeType (T : finCDistrLatticeType disp1) + (T' : finCDistrLatticeType disp2) := [finCDistrLatticeType of T * T']. + +End ProdOrder. + +Module Exports. + +Notation "T *prod[ d ] T'" := (type d T T') + (at level 70, d at next level, format "T *prod[ d ] T'") : type_scope. +Notation "T *p T'" := (type prod_display T T') + (at level 70, format "T *p T'") : type_scope. + +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical cbDistrLatticeType. +Canonical ctbDistrLatticeType. +Canonical finPOrderType. +Canonical finDistrLatticeType. +Canonical finCDistrLatticeType. + +Definition leEprod := @leEprod. +Definition ltEprod := @ltEprod. +Definition le_pair := @le_pair. +Definition lt_pair := @lt_pair. +Definition meetEprod := @meetEprod. +Definition joinEprod := @joinEprod. +Definition botEprod := @botEprod. +Definition topEprod := @topEprod. +Definition subEprod := @subEprod. +Definition complEprod := @complEprod. + +End Exports. +End ProdOrder. +Import ProdOrder.Exports. + +Module DefaultProdOrder. +Section DefaultProdOrder. +Context {disp1 disp2 : unit}. + +Canonical prod_porderType (T : porderType disp1) (T' : porderType disp2) := + [porderType of T * T' for [porderType of T *p T']]. +Canonical prod_distrLatticeType + (T : distrLatticeType disp1) (T' : distrLatticeType disp2) := + [distrLatticeType of T * T' for [distrLatticeType of T *p T']]. +Canonical prod_bDistrLatticeType + (T : bDistrLatticeType disp1) (T' : bDistrLatticeType disp2) := + [bDistrLatticeType of T * T' for [bDistrLatticeType of T *p T']]. +Canonical prod_tbDistrLatticeType + (T : tbDistrLatticeType disp1) (T' : tbDistrLatticeType disp2) := + [tbDistrLatticeType of T * T' for [tbDistrLatticeType of T *p T']]. +Canonical prod_cbDistrLatticeType + (T : cbDistrLatticeType disp1) (T' : cbDistrLatticeType disp2) := + [cbDistrLatticeType of T * T' for [cbDistrLatticeType of T *p T']]. +Canonical prod_ctbDistrLatticeType + (T : ctbDistrLatticeType disp1) (T' : ctbDistrLatticeType disp2) := + [ctbDistrLatticeType of T * T' for [ctbDistrLatticeType of T *p T']]. +Canonical prod_finPOrderType (T : finPOrderType disp1) + (T' : finPOrderType disp2) := [finPOrderType of T * T']. +Canonical prod_finDistrLatticeType (T : finDistrLatticeType disp1) + (T' : finDistrLatticeType disp2) := [finDistrLatticeType of T * T']. +Canonical prod_finCDistrLatticeType (T : finCDistrLatticeType disp1) + (T' : finCDistrLatticeType disp2) := [finCDistrLatticeType of T * T']. + +End DefaultProdOrder. +End DefaultProdOrder. + +(********************************************************) +(* We declare lexicographic ordering on dependent pairs *) +(********************************************************) + +Module SigmaOrder. +Section SigmaOrder. + +Context {disp1 disp2 : unit}. + +Section POrder. + +Variable (T : porderType disp1) (T' : T -> porderType disp2). +Implicit Types (x y : {t : T & T' t}). + +Definition le x y := (tag x <= tag y) && + ((tag x >= tag y) ==> (tagged x <= tagged_as x y)). +Definition lt x y := (tag x <= tag y) && + ((tag x >= tag y) ==> (tagged x < tagged_as x y)). + +Fact refl : reflexive le. +Proof. by move=> [x x']; rewrite /le tagged_asE/= !lexx. Qed. + +Fact anti : antisymmetric le. +Proof. +rewrite /le => -[x x'] [y y']/=; case: comparableP => //= eq_xy. +by case: _ / eq_xy in y' *; rewrite !tagged_asE => /le_anti ->. +Qed. + +Fact trans : transitive le. +Proof. +move=> [y y'] [x x'] [z z'] /andP[/= lexy lexy'] /andP[/= leyz leyz']. +rewrite /= /le (le_trans lexy) //=; apply/implyP => lezx. +elim: _ / (@le_anti _ _ x y) in y' z' lexy' leyz' *; last first. + by rewrite lexy (le_trans leyz). +elim: _ / (@le_anti _ _ x z) in z' leyz' *; last by rewrite (le_trans lexy). +by rewrite lexx !tagged_asE/= in lexy' leyz' *; rewrite (le_trans lexy'). +Qed. + +Fact lt_def x y : lt x y = (y != x) && le x y. +Proof. +rewrite /lt /le; case: x y => [x x'] [y y']//=; rewrite andbCA. +case: (comparableP x y) => //= xy; last first. + by case: _ / xy in y' *; rewrite !tagged_asE eq_Tagged/= lt_def. +by rewrite andbT; symmetry; apply: contraTneq xy => -[yx _]; rewrite yx ltxx. +Qed. + +Definition porderMixin := LePOrderMixin lt_def refl anti trans. +Canonical porderType := POrderType disp2 {t : T & T' t} porderMixin. + +Lemma leEsig x y : x <= y = + (tag x <= tag y) && ((tag x >= tag y) ==> (tagged x <= tagged_as x y)). +Proof. by []. Qed. + +Lemma ltEsig x y : x < y = + (tag x <= tag y) && ((tag x >= tag y) ==> (tagged x < tagged_as x y)). +Proof. by []. Qed. + +Lemma le_Taggedl x (u : T' (tag x)) : (Tagged T' u <= x) = (u <= tagged x). +Proof. by case: x => [t v]/= in u *; rewrite leEsig/= lexx/= tagged_asE. Qed. + +Lemma le_Taggedr x (u : T' (tag x)) : (x <= Tagged T' u) = (tagged x <= u). +Proof. by case: x => [t v]/= in u *; rewrite leEsig/= lexx/= tagged_asE. Qed. + +Lemma lt_Taggedl x (u : T' (tag x)) : (Tagged T' u < x) = (u < tagged x). +Proof. by case: x => [t v]/= in u *; rewrite ltEsig/= lexx/= tagged_asE. Qed. + +Lemma lt_Taggedr x (u : T' (tag x)) : (x < Tagged T' u) = (tagged x < u). +Proof. by case: x => [t v]/= in u *; rewrite ltEsig/= lexx/= tagged_asE. Qed. + +End POrder. + +Section Total. +Variable (T : orderType disp1) (T' : T -> orderType disp2). +Implicit Types (x y : {t : T & T' t}). + +Fact total : totalPOrderMixin [porderType of {t : T & T' t}]. +Proof. +move=> x y; rewrite !leEsig; case: (ltgtP (tag x) (tag y)) => //=. +case: x y => [x x'] [y y']/= eqxy; elim: _ /eqxy in y' *. +by rewrite !tagged_asE le_total. +Qed. + +Canonical distrLatticeType := DistrLatticeType {t : T & T' t} total. +Canonical orderType := OrderType {t : T & T' t} total. + +End Total. + +Section FinDistrLattice. +Variable (T : finOrderType disp1) (T' : T -> finOrderType disp2). + +Fact le0x (x : {t : T & T' t}) : Tagged T' (0 : T' 0) <= x. +Proof. +rewrite leEsig /=; case: comparableP (le0x (tag x)) => //=. +by case: x => //= x px x0; rewrite x0 in px *; rewrite tagged_asE le0x. +Qed. +Canonical bDistrLatticeType := + BDistrLatticeType {t : T & T' t} (BDistrLattice.Mixin le0x). + +Lemma botEsig : 0 = Tagged T' (0 : T' 0). Proof. by []. Qed. + +Fact lex1 (x : {t : T & T' t}) : x <= Tagged T' (1 : T' 1). +Proof. +rewrite leEsig /=; case: comparableP (lex1 (tag x)) => //=. +by case: x => //= x px x0; rewrite x0 in px *; rewrite tagged_asE lex1. +Qed. +Canonical tbDistrLatticeType := + TBDistrLatticeType {t : T & T' t} (TBDistrLattice.Mixin lex1). + +Lemma topEsig : 1 = Tagged T' (1 : T' 1). Proof. by []. Qed. + +End FinDistrLattice. + +Canonical finPOrderType (T : finPOrderType disp1) + (T' : T -> finPOrderType disp2) := [finPOrderType of {t : T & T' t}]. +Canonical finDistrLatticeType (T : finOrderType disp1) + (T' : T -> finOrderType disp2) := [finDistrLatticeType of {t : T & T' t}]. +Canonical finOrderType (T : finOrderType disp1) + (T' : T -> finOrderType disp2) := [finOrderType of {t : T & T' t}]. + +End SigmaOrder. + +Module Exports. + +Canonical porderType. +Canonical distrLatticeType. +Canonical orderType. +Canonical finPOrderType. +Canonical finDistrLatticeType. +Canonical finOrderType. + +Definition leEsig := @leEsig. +Definition ltEsig := @ltEsig. +Definition le_Taggedl := @le_Taggedl. +Definition lt_Taggedl := @lt_Taggedl. +Definition le_Taggedr := @le_Taggedr. +Definition lt_Taggedr := @lt_Taggedr. +Definition topEsig := @topEsig. +Definition botEsig := @botEsig. + +End Exports. +End SigmaOrder. +Import SigmaOrder.Exports. + +(*************************************************) +(* We declare a "copy" of the cartesian product, *) +(* which has canonical lexicographic order. *) +(*************************************************) + +Module ProdLexiOrder. +Section ProdLexiOrder. + +Definition type (disp : unit) (T T' : Type) := (T * T')%type. + +Context {disp1 disp2 disp3 : unit}. + +Local Notation "T * T'" := (type disp3 T T') : type_scope. + +Canonical eqType (T T' : eqType):= Eval hnf in [eqType of T * T']. +Canonical choiceType (T T' : choiceType):= Eval hnf in [choiceType of T * T']. +Canonical countType (T T' : countType):= Eval hnf in [countType of T * T']. +Canonical finType (T T' : finType):= Eval hnf in [finType of T * T']. + +Section POrder. +Variable (T : porderType disp1) (T' : porderType disp2). + +Implicit Types (x y : T * T'). + +Definition le x y := (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 <= y.2)). +Definition lt x y := (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 < y.2)). + +Fact refl : reflexive le. +Proof. by move=> ?; rewrite /le !lexx. Qed. + +Fact anti : antisymmetric le. +Proof. +by rewrite /le => -[x x'] [y y'] /=; case: comparableP => //= -> /le_anti->. +Qed. + +Fact trans : transitive le. +Proof. +move=> y x z /andP [hxy /implyP hxy'] /andP [hyz /implyP hyz']. +rewrite /le (le_trans hxy) //=; apply/implyP => hzx. +by apply/le_trans/hxy'/(le_trans hyz): (hyz' (le_trans hzx hxy)). +Qed. + +Fact lt_def x y : lt x y = (y != x) && le x y. +Proof. +rewrite /lt /le; case: x y => [x1 x2] [y1 y2]//=; rewrite xpair_eqE. +by case: (comparableP x1 y1); rewrite lt_def. +Qed. + +Definition porderMixin := LePOrderMixin lt_def refl anti trans. +Canonical porderType := POrderType disp3 (T * T') porderMixin. + +Lemma leEprodlexi x y : + (x <= y) = (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 <= y.2)). +Proof. by []. Qed. + +Lemma ltEprodlexi x y : + (x < y) = (x.1 <= y.1) && ((x.1 >= y.1) ==> (x.2 < y.2)). +Proof. by []. Qed. + +Lemma lexi_pair (x1 y1 : T) (x2 y2 : T') : + (x1, x2) <= (y1, y2) :> T * T' = (x1 <= y1) && ((x1 >= y1) ==> (x2 <= y2)). +Proof. by []. Qed. + +Lemma ltxi_pair (x1 y1 : T) (x2 y2 : T') : + (x1, x2) < (y1, y2) :> T * T' = (x1 <= y1) && ((x1 >= y1) ==> (x2 < y2)). +Proof. by []. Qed. + +End POrder. + +Section Total. +Variable (T : orderType disp1) (T' : orderType disp2). +Implicit Types (x y : T * T'). + +Fact total : totalPOrderMixin [porderType of T * T']. +Proof. +move=> x y; rewrite /<=%O /= /le; case: ltgtP => //= _; exact: le_total. +Qed. + +Canonical distrLatticeType := DistrLatticeType (T * T') total. +Canonical orderType := OrderType (T * T') total. + +End Total. + +Section FinDistrLattice. +Variable (T : finOrderType disp1) (T' : finOrderType disp2). + +Fact le0x (x : T * T') : (0, 0) <= x :> T * T'. +Proof. by case: x => // x1 x2; rewrite leEprodlexi/= !le0x implybT. Qed. +Canonical bDistrLatticeType := + BDistrLatticeType (T * T') (BDistrLattice.Mixin le0x). + +Lemma botEprodlexi : 0 = (0, 0) :> T * T'. Proof. by []. Qed. + +Fact lex1 (x : T * T') : x <= (1, 1) :> T * T'. +Proof. by case: x => // x1 x2; rewrite leEprodlexi/= !lex1 implybT. Qed. +Canonical tbDistrLatticeType := + TBDistrLatticeType (T * T') (TBDistrLattice.Mixin lex1). + +Lemma topEprodlexi : 1 = (1, 1) :> T * T'. Proof. by []. Qed. + +End FinDistrLattice. + +Canonical finPOrderType (T : finPOrderType disp1) + (T' : finPOrderType disp2) := [finPOrderType of T * T']. +Canonical finDistrLatticeType (T : finOrderType disp1) + (T' : finOrderType disp2) := [finDistrLatticeType of T * T']. +Canonical finOrderType (T : finOrderType disp1) + (T' : finOrderType disp2) := [finOrderType of T * T']. + +Lemma sub_prod_lexi d (T : POrder.Exports.porderType disp1) + (T' : POrder.Exports.porderType disp2) : + subrel (<=%O : rel (T *prod[d] T')) (<=%O : rel (T * T')). +Proof. +by case=> [x1 x2] [y1 y2]; rewrite leEprod leEprodlexi /=; case: comparableP. +Qed. + +End ProdLexiOrder. + +Module Exports. + +Notation "T *lexi[ d ] T'" := (type d T T') + (at level 70, d at next level, format "T *lexi[ d ] T'") : type_scope. +Notation "T *l T'" := (type lexi_display T T') + (at level 70, format "T *l T'") : type_scope. + +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical distrLatticeType. +Canonical orderType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical finPOrderType. +Canonical finDistrLatticeType. +Canonical finOrderType. + +Definition leEprodlexi := @leEprodlexi. +Definition ltEprodlexi := @ltEprodlexi. +Definition lexi_pair := @lexi_pair. +Definition ltxi_pair := @ltxi_pair. +Definition topEprodlexi := @topEprodlexi. +Definition botEprodlexi := @botEprodlexi. +Definition sub_prod_lexi := @sub_prod_lexi. + +End Exports. +End ProdLexiOrder. +Import ProdLexiOrder.Exports. + +Module DefaultProdLexiOrder. +Section DefaultProdLexiOrder. +Context {disp1 disp2 : unit}. + +Canonical prodlexi_porderType + (T : porderType disp1) (T' : porderType disp2) := + [porderType of T * T' for [porderType of T *l T']]. +Canonical prodlexi_distrLatticeType + (T : orderType disp1) (T' : orderType disp2) := + [distrLatticeType of T * T' for [distrLatticeType of T *l T']]. +Canonical prodlexi_orderType + (T : orderType disp1) (T' : orderType disp2) := + [orderType of T * T' for [orderType of T *l T']]. +Canonical prodlexi_bDistrLatticeType + (T : finOrderType disp1) (T' : finOrderType disp2) := + [bDistrLatticeType of T * T' for [bDistrLatticeType of T *l T']]. +Canonical prodlexi_tbDistrLatticeType + (T : finOrderType disp1) (T' : finOrderType disp2) := + [tbDistrLatticeType of T * T' for [tbDistrLatticeType of T *l T']]. +Canonical prodlexi_finPOrderType (T : finPOrderType disp1) + (T' : finPOrderType disp2) := [finPOrderType of T * T']. +Canonical prodlexi_finDistrLatticeType (T : finOrderType disp1) + (T' : finOrderType disp2) := [finDistrLatticeType of T * T']. +Canonical prodlexi_finOrderType (T : finOrderType disp1) + (T' : finOrderType disp2) := [finOrderType of T * T']. + +End DefaultProdLexiOrder. +End DefaultProdLexiOrder. + +(*****************************************) +(* We declare a "copy" of the sequences, *) +(* which has canonical product order. *) +(*****************************************) + +Module SeqProdOrder. +Section SeqProdOrder. + +Definition type (disp : unit) T := seq T. + +Context {disp disp' : unit}. + +Local Notation seq := (type disp'). + +Canonical eqType (T : eqType):= Eval hnf in [eqType of seq T]. +Canonical choiceType (T : choiceType):= Eval hnf in [choiceType of seq T]. +Canonical countType (T : countType):= Eval hnf in [countType of seq T]. + +Section POrder. +Variable T : porderType disp. +Implicit Types s : seq T. + +Fixpoint le s1 s2 := if s1 isn't x1 :: s1' then true else + if s2 isn't x2 :: s2' then false else + (x1 <= x2) && le s1' s2'. + +Fact refl : reflexive le. Proof. by elim=> //= ? ? ?; rewrite !lexx. Qed. + +Fact anti : antisymmetric le. +Proof. +by elim=> [|x s ihs] [|y s'] //=; rewrite andbACA => /andP[/le_anti-> /ihs->]. +Qed. + +Fact trans : transitive le. +Proof. +elim=> [|y ys ihs] [|x xs] [|z zs] //= /andP[xy xys] /andP[yz yzs]. +by rewrite (le_trans xy)// ihs. +Qed. + +Definition porderMixin := LePOrderMixin (rrefl _) refl anti trans. +Canonical porderType := POrderType disp' (seq T) porderMixin. + +Lemma leEseq s1 s2 : s1 <= s2 = if s1 isn't x1 :: s1' then true else + if s2 isn't x2 :: s2' then false else + (x1 <= x2) && (s1' <= s2' :> seq _). +Proof. by case: s1. Qed. + +Lemma le0s s : [::] <= s :> seq _. Proof. by []. Qed. + +Lemma les0 s : s <= [::] = (s == [::]). Proof. by rewrite leEseq. Qed. + +Lemma le_cons x1 s1 x2 s2 : + x1 :: s1 <= x2 :: s2 :> seq _ = (x1 <= x2) && (s1 <= s2). +Proof. by []. Qed. + +End POrder. + +Section BDistrLattice. +Variable T : distrLatticeType disp. +Implicit Types s : seq T. + +Fixpoint meet s1 s2 := + match s1, s2 with + | x1 :: s1', x2 :: s2' => (x1 `&` x2) :: meet s1' s2' + | _, _ => [::] + end. + +Fixpoint join s1 s2 := + match s1, s2 with + | [::], _ => s2 | _, [::] => s1 + | x1 :: s1', x2 :: s2' => (x1 `|` x2) :: join s1' s2' + end. + +Fact meetC : commutative meet. +Proof. by elim=> [|? ? ih] [|? ?] //=; rewrite meetC ih. Qed. + +Fact joinC : commutative join. +Proof. by elim=> [|? ? ih] [|? ?] //=; rewrite joinC ih. Qed. + +Fact meetA : associative meet. +Proof. by elim=> [|? ? ih] [|? ?] [|? ?] //=; rewrite meetA ih. Qed. + +Fact joinA : associative join. +Proof. by elim=> [|? ? ih] [|? ?] [|? ?] //=; rewrite joinA ih. Qed. + +Fact meetss s : meet s s = s. +Proof. by elim: s => [|? ? ih] //=; rewrite meetxx ih. Qed. + +Fact joinKI y x : meet x (join x y) = x. +Proof. +elim: x y => [|? ? ih] [|? ?] //=; rewrite (meetxx, joinKI) ?ih //. +by congr cons; rewrite meetss. +Qed. + +Fact meetKU y x : join x (meet x y) = x. +Proof. by elim: x y => [|? ? ih] [|? ?] //=; rewrite meetKU ih. Qed. + +Fact leEmeet x y : (x <= y) = (meet x y == x). +Proof. +by rewrite /<=%O /=; elim: x y => [|? ? ih] [|? ?] //=; rewrite eqE leEmeet ih. +Qed. + +Fact meetUl : left_distributive meet join. +Proof. by elim=> [|? ? ih] [|? ?] [|? ?] //=; rewrite meetUl ih. Qed. + +Definition distrLatticeMixin := + DistrLattice.Mixin meetC joinC meetA joinA joinKI meetKU leEmeet meetUl. +Canonical distrLatticeType := DistrLatticeType (seq T) distrLatticeMixin. +Canonical bDistrLatticeType := + BDistrLatticeType (seq T) (BDistrLattice.Mixin (@le0s _)). + +Lemma botEseq : 0 = [::] :> seq T. +Proof. by []. Qed. + +Lemma meetEseq s1 s2 : s1 `&` s2 = [seq x.1 `&` x.2 | x <- zip s1 s2]. +Proof. by elim: s1 s2 => [|x s1 ihs1] [|y s2]//=; rewrite -ihs1. Qed. + +Lemma meet_cons x1 s1 x2 s2 : + (x1 :: s1 : seq T) `&` (x2 :: s2) = (x1 `&` x2) :: s1 `&` s2. +Proof. by []. Qed. + +Lemma joinEseq s1 s2 : s1 `|` s2 = + match s1, s2 with + | [::], _ => s2 | _, [::] => s1 + | x1 :: s1', x2 :: s2' => (x1 `|` x2) :: ((s1' : seq _) `|` s2') + end. +Proof. by case: s1. Qed. + +Lemma join_cons x1 s1 x2 s2 : + (x1 :: s1 : seq T) `|` (x2 :: s2) = (x1 `|` x2) :: s1 `|` s2. +Proof. by []. Qed. + +End BDistrLattice. + +End SeqProdOrder. + +Module Exports. + +Notation seqprod_with := type. +Notation seqprod := (type prod_display). + +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. + +Definition leEseq := @leEseq. +Definition le0s := @le0s. +Definition les0 := @les0. +Definition le_cons := @le_cons. +Definition botEseq := @botEseq. +Definition meetEseq := @meetEseq. +Definition meet_cons := @meet_cons. +Definition joinEseq := @joinEseq. + +End Exports. +End SeqProdOrder. +Import SeqProdOrder.Exports. + +Module DefaultSeqProdOrder. +Section DefaultSeqProdOrder. +Context {disp : unit}. + +Canonical seqprod_porderType (T : porderType disp) := + [porderType of seq T for [porderType of seqprod T]]. +Canonical seqprod_distrLatticeType (T : distrLatticeType disp) := + [distrLatticeType of seq T for [distrLatticeType of seqprod T]]. +Canonical seqprod_bDistrLatticeType (T : bDistrLatticeType disp) := + [bDistrLatticeType of seq T for [bDistrLatticeType of seqprod T]]. + +End DefaultSeqProdOrder. +End DefaultSeqProdOrder. + +(*********************************************) +(* We declare a "copy" of the sequences, *) +(* which has canonical lexicographic order. *) +(*********************************************) + +Module SeqLexiOrder. +Section SeqLexiOrder. + +Definition type (disp : unit) T := seq T. + +Context {disp disp' : unit}. + +Local Notation seq := (type disp'). + +Canonical eqType (T : eqType):= Eval hnf in [eqType of seq T]. +Canonical choiceType (T : choiceType):= Eval hnf in [choiceType of seq T]. +Canonical countType (T : countType):= Eval hnf in [countType of seq T]. + +Section POrder. +Variable T : porderType disp. +Implicit Types s : seq T. + +Fixpoint le s1 s2 := if s1 isn't x1 :: s1' then true else + if s2 isn't x2 :: s2' then false else + (x1 <= x2) && ((x1 >= x2) ==> le s1' s2'). +Fixpoint lt s1 s2 := if s2 isn't x2 :: s2' then false else + if s1 isn't x1 :: s1' then true else + (x1 <= x2) && ((x1 >= x2) ==> lt s1' s2'). + +Fact refl: reflexive le. +Proof. by elim => [|x s ih] //=; rewrite lexx. Qed. + +Fact anti: antisymmetric le. +Proof. +move=> x y /andP []; elim: x y => [|x sx ih] [|y sy] //=. +by case: comparableP => //= -> lesxsy /(ih _ lesxsy) ->. +Qed. + +Fact trans: transitive le. +Proof. +elim=> [|y sy ihs] [|x sx] [|z sz] //=; case: (comparableP x y) => //= [xy|->]. + by move=> _ /andP[/(lt_le_trans xy) xz _]; rewrite (ltW xz)// lt_geF. +by case: comparableP => //= _; apply: ihs. +Qed. + +Lemma lt_def s1 s2 : lt s1 s2 = (s2 != s1) && le s1 s2. +Proof. +elim: s1 s2 => [|x s1 ihs1] [|y s2]//=. +by rewrite eqseq_cons ihs1; case: comparableP. +Qed. + +Definition porderMixin := LePOrderMixin lt_def refl anti trans. +Canonical porderType := POrderType disp' (seq T) porderMixin. + +Lemma leEseqlexi s1 s2 : + s1 <= s2 = if s1 isn't x1 :: s1' then true else + if s2 isn't x2 :: s2' then false else + (x1 <= x2) && ((x1 >= x2) ==> (s1' <= s2' :> seq T)). +Proof. by case: s1. Qed. + +Lemma ltEseqlexi s1 s2 : + s1 < s2 = if s2 isn't x2 :: s2' then false else + if s1 isn't x1 :: s1' then true else + (x1 <= x2) && ((x1 >= x2) ==> (s1' < s2' :> seq T)). +Proof. by case: s1. Qed. + +Lemma lexi0s s : [::] <= s :> seq T. Proof. by []. Qed. + +Lemma lexis0 s : s <= [::] = (s == [::]). Proof. by rewrite leEseqlexi. Qed. + +Lemma ltxi0s s : ([::] < s :> seq T) = (s != [::]). Proof. by case: s. Qed. + +Lemma ltxis0 s : s < [::] = false. Proof. by rewrite ltEseqlexi. Qed. + +Lemma lexi_cons x1 s1 x2 s2 : + x1 :: s1 <= x2 :: s2 :> seq T = (x1 <= x2) && ((x1 >= x2) ==> (s1 <= s2)). +Proof. by []. Qed. + +Lemma ltxi_cons x1 s1 x2 s2 : + x1 :: s1 < x2 :: s2 :> seq T = (x1 <= x2) && ((x1 >= x2) ==> (s1 < s2)). +Proof. by []. Qed. + +Lemma lexi_lehead x s1 y s2 : x :: s1 <= y :: s2 :> seq T -> x <= y. +Proof. by rewrite lexi_cons => /andP[]. Qed. + +Lemma ltxi_lehead x s1 y s2 : x :: s1 < y :: s2 :> seq T -> x <= y. +Proof. by rewrite ltxi_cons => /andP[]. Qed. + +Lemma eqhead_lexiE (x : T) s1 s2 : (x :: s1 <= x :: s2 :> seq _) = (s1 <= s2). +Proof. by rewrite lexi_cons lexx. Qed. + +Lemma eqhead_ltxiE (x : T) s1 s2 : (x :: s1 < x :: s2 :> seq _) = (s1 < s2). +Proof. by rewrite ltxi_cons lexx. Qed. + +Lemma neqhead_lexiE (x y : T) s1 s2 : x != y -> + (x :: s1 <= y :: s2 :> seq _) = (x < y). +Proof. by rewrite lexi_cons; case: comparableP. Qed. + +Lemma neqhead_ltxiE (x y : T) s1 s2 : x != y -> + (x :: s1 < y :: s2 :> seq _) = (x < y). +Proof. by rewrite ltxi_cons; case: (comparableP x y). Qed. + +End POrder. + +Section Total. +Variable T : orderType disp. +Implicit Types s : seq T. + +Fact total : totalPOrderMixin [porderType of seq T]. +Proof. +suff: total (<=%O : rel (seq T)) by []. +by elim=> [|x1 s1 ihs1] [|x2 s2]//=; rewrite !lexi_cons; case: ltgtP => /=. +Qed. + +Canonical distrLatticeType := DistrLatticeType (seq T) total. +Canonical bDistrLatticeType := + BDistrLatticeType (seq T) (BDistrLattice.Mixin (@lexi0s _)). +Canonical orderType := OrderType (seq T) total. + +End Total. + +Lemma sub_seqprod_lexi d (T : POrder.Exports.porderType disp) : + subrel (<=%O : rel (seqprod_with d T)) (<=%O : rel (seq T)). +Proof. +elim=> [|x1 s1 ihs1] [|x2 s2]//=; rewrite le_cons lexi_cons /=. +by move=> /andP[-> /ihs1->]; rewrite implybT. +Qed. + +End SeqLexiOrder. + +Module Exports. + +Notation seqlexi_with := type. +Notation seqlexi := (type lexi_display). + +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical orderType. + +Definition leEseqlexi := @leEseqlexi. +Definition lexi0s := @lexi0s. +Definition lexis0 := @lexis0. +Definition lexi_cons := @lexi_cons. +Definition lexi_lehead := @lexi_lehead. +Definition eqhead_lexiE := @eqhead_lexiE. +Definition neqhead_lexiE := @neqhead_lexiE. + +Definition ltEseqltxi := @ltEseqlexi. +Definition ltxi0s := @ltxi0s. +Definition ltxis0 := @ltxis0. +Definition ltxi_cons := @ltxi_cons. +Definition ltxi_lehead := @ltxi_lehead. +Definition eqhead_ltxiE := @eqhead_ltxiE. +Definition neqhead_ltxiE := @neqhead_ltxiE. +Definition sub_seqprod_lexi := @sub_seqprod_lexi. + +End Exports. +End SeqLexiOrder. +Import SeqLexiOrder.Exports. + +Module DefaultSeqLexiOrder. +Section DefaultSeqLexiOrder. +Context {disp : unit}. + +Canonical seqlexi_porderType (T : porderType disp) := + [porderType of seq T for [porderType of seqlexi T]]. +Canonical seqlexi_distrLatticeType (T : orderType disp) := + [distrLatticeType of seq T for [distrLatticeType of seqlexi T]]. +Canonical seqlexi_bDistrLatticeType (T : orderType disp) := + [bDistrLatticeType of seq T for [bDistrLatticeType of seqlexi T]]. +Canonical seqlexi_orderType (T : orderType disp) := + [orderType of seq T for [orderType of seqlexi T]]. + +End DefaultSeqLexiOrder. +End DefaultSeqLexiOrder. + +(***************************************) +(* We declare a "copy" of the tuples, *) +(* which has canonical product order. *) +(***************************************) + +Module TupleProdOrder. +Import DefaultSeqProdOrder. + +Section TupleProdOrder. + +Definition type (disp : unit) n T := n.-tuple T. + +Context {disp disp' : unit}. +Local Notation "n .-tuple" := (type disp' n) : type_scope. + +Section Basics. +Variable (n : nat). + +Canonical eqType (T : eqType):= Eval hnf in [eqType of n.-tuple T]. +Canonical choiceType (T : choiceType):= Eval hnf in [choiceType of n.-tuple T]. +Canonical countType (T : countType):= Eval hnf in [countType of n.-tuple T]. +Canonical finType (T : finType):= Eval hnf in [finType of n.-tuple T]. +End Basics. + +Section POrder. +Implicit Types (T : porderType disp). + +Definition porderMixin n T := [porderMixin of n.-tuple T by <:]. +Canonical porderType n T := POrderType disp' (n.-tuple T) (porderMixin n T). + +Lemma leEtprod n T (t1 t2 : n.-tuple T) : + t1 <= t2 = [forall i, tnth t1 i <= tnth t2 i]. +Proof. +elim: n => [|n IHn] in t1 t2 *. + by rewrite tuple0 [t2]tuple0/= lexx; symmetry; apply/forallP => []. +case: (tupleP t1) (tupleP t2) => [x1 {t1}t1] [x2 {t2}t2]. +rewrite [_ <= _]le_cons [t1 <= t2 :> seq _]IHn. +apply/idP/forallP => [/andP[lex12 /forallP/= let12 i]|lext12]. + by case: (unliftP ord0 i) => [j ->|->]//; rewrite !tnthS. +rewrite (lext12 ord0)/=; apply/forallP=> i. +by have := lext12 (lift ord0 i); rewrite !tnthS. +Qed. + +Lemma ltEtprod n T (t1 t2 : n.-tuple T) : + t1 < t2 = [exists i, tnth t1 i != tnth t2 i] && + [forall i, tnth t1 i <= tnth t2 i]. +Proof. by rewrite lt_neqAle leEtprod eqEtuple negb_forall. Qed. + +End POrder. + +Section DistrLattice. +Variables (n : nat) (T : distrLatticeType disp). +Implicit Types (t : n.-tuple T). + +Definition meet t1 t2 : n.-tuple T := + [tuple of [seq x.1 `&` x.2 | x <- zip t1 t2]]. +Definition join t1 t2 : n.-tuple T := + [tuple of [seq x.1 `|` x.2 | x <- zip t1 t2]]. + +Fact tnth_meet t1 t2 i : tnth (meet t1 t2) i = tnth t1 i `&` tnth t2 i. +Proof. +rewrite tnth_map -(tnth_map fst) -(tnth_map snd) -/unzip1 -/unzip2. +by rewrite !(tnth_nth (tnth_default t1 i))/= unzip1_zip ?unzip2_zip ?size_tuple. +Qed. + +Fact tnth_join t1 t2 i : tnth (join t1 t2) i = tnth t1 i `|` tnth t2 i. +Proof. +rewrite tnth_map -(tnth_map fst) -(tnth_map snd) -/unzip1 -/unzip2. +by rewrite !(tnth_nth (tnth_default t1 i))/= unzip1_zip ?unzip2_zip ?size_tuple. +Qed. + +Fact meetC : commutative meet. +Proof. by move=> t1 t2; apply: eq_from_tnth => i; rewrite !tnth_meet meetC. Qed. + +Fact joinC : commutative join. +Proof. by move=> t1 t2; apply: eq_from_tnth => i; rewrite !tnth_join joinC. Qed. + +Fact meetA : associative meet. +Proof. +by move=> t1 t2 t3; apply: eq_from_tnth => i; rewrite !tnth_meet meetA. +Qed. + +Fact joinA : associative join. +Proof. +by move=> t1 t2 t3; apply: eq_from_tnth => i; rewrite !tnth_join joinA. +Qed. + +Fact joinKI t2 t1 : meet t1 (join t1 t2) = t1. +Proof. by apply: eq_from_tnth => i; rewrite tnth_meet tnth_join joinKI. Qed. + +Fact meetKU y x : join x (meet x y) = x. +Proof. by apply: eq_from_tnth => i; rewrite tnth_join tnth_meet meetKU. Qed. + +Fact leEmeet t1 t2 : (t1 <= t2) = (meet t1 t2 == t1). +Proof. +rewrite leEtprod eqEtuple; apply: eq_forallb => /= i. +by rewrite tnth_meet leEmeet. +Qed. + +Fact meetUl : left_distributive meet join. +Proof. +move=> t1 t2 t3; apply: eq_from_tnth => i. +by rewrite !(tnth_meet, tnth_join) meetUl. +Qed. + +Definition distrLatticeMixin := + DistrLattice.Mixin meetC joinC meetA joinA joinKI meetKU leEmeet meetUl. +Canonical distrLatticeType := DistrLatticeType (n.-tuple T) distrLatticeMixin. + +Lemma meetEtprod t1 t2 : + t1 `&` t2 = [tuple of [seq x.1 `&` x.2 | x <- zip t1 t2]]. +Proof. by []. Qed. + +Lemma joinEtprod t1 t2 : + t1 `|` t2 = [tuple of [seq x.1 `|` x.2 | x <- zip t1 t2]]. +Proof. by []. Qed. + +End DistrLattice. + +Section BDistrLattice. +Variables (n : nat) (T : bDistrLatticeType disp). +Implicit Types (t : n.-tuple T). + +Fact le0x t : [tuple of nseq n 0] <= t :> n.-tuple T. +Proof. by rewrite leEtprod; apply/forallP => i; rewrite tnth_nseq le0x. Qed. + +Canonical bDistrLatticeType := + BDistrLatticeType (n.-tuple T) (BDistrLattice.Mixin le0x). + +Lemma botEtprod : 0 = [tuple of nseq n 0] :> n.-tuple T. Proof. by []. Qed. + +End BDistrLattice. + +Section TBDistrLattice. +Variables (n : nat) (T : tbDistrLatticeType disp). +Implicit Types (t : n.-tuple T). + +Fact lex1 t : t <= [tuple of nseq n 1] :> n.-tuple T. +Proof. by rewrite leEtprod; apply/forallP => i; rewrite tnth_nseq lex1. Qed. + +Canonical tbDistrLatticeType := + TBDistrLatticeType (n.-tuple T) (TBDistrLattice.Mixin lex1). + +Lemma topEtprod : 1 = [tuple of nseq n 1] :> n.-tuple T. Proof. by []. Qed. + +End TBDistrLattice. + +Section CBDistrLattice. +Variables (n : nat) (T : cbDistrLatticeType disp). +Implicit Types (t : n.-tuple T). + +Definition sub t1 t2 : n.-tuple T := + [tuple of [seq x.1 `\` x.2 | x <- zip t1 t2]]. + +Fact tnth_sub t1 t2 i : tnth (sub t1 t2) i = tnth t1 i `\` tnth t2 i. +Proof. +rewrite tnth_map -(tnth_map fst) -(tnth_map snd) -/unzip1 -/unzip2. +by rewrite !(tnth_nth (tnth_default t1 i))/= unzip1_zip ?unzip2_zip ?size_tuple. +Qed. + +Lemma subKI t1 t2 : t2 `&` sub t1 t2 = 0. +Proof. +by apply: eq_from_tnth => i; rewrite tnth_meet tnth_sub subKI tnth_nseq. +Qed. + +Lemma joinIB t1 t2 : t1 `&` t2 `|` sub t1 t2 = t1. +Proof. +by apply: eq_from_tnth => i; rewrite tnth_join tnth_meet tnth_sub joinIB. +Qed. + +Definition cbDistrLatticeMixin := CBDistrLattice.Mixin subKI joinIB. +Canonical cbDistrLatticeType := + CBDistrLatticeType (n.-tuple T) cbDistrLatticeMixin. + +Lemma subEtprod t1 t2 : + t1 `\` t2 = [tuple of [seq x.1 `\` x.2 | x <- zip t1 t2]]. +Proof. by []. Qed. + +End CBDistrLattice. + +Section CTBDistrLattice. +Variables (n : nat) (T : ctbDistrLatticeType disp). +Implicit Types (t : n.-tuple T). + +Definition compl t : n.-tuple T := map_tuple compl t. + +Fact tnth_compl t i : tnth (compl t) i = ~` tnth t i. +Proof. by rewrite tnth_map. Qed. + +Lemma complE t : compl t = sub 1 t. +Proof. +by apply: eq_from_tnth => i; rewrite tnth_compl tnth_sub complE tnth_nseq. +Qed. + +Definition ctbDistrLatticeMixin := CTBDistrLattice.Mixin complE. +Canonical ctbDistrLatticeType := + CTBDistrLatticeType (n.-tuple T) ctbDistrLatticeMixin. + +Lemma complEtprod t : ~` t = [tuple of [seq ~` x | x <- t]]. +Proof. by []. Qed. + +End CTBDistrLattice. + +Canonical finPOrderType n (T : finPOrderType disp) := + [finPOrderType of n.-tuple T]. + +Canonical finDistrLatticeType n (T : finDistrLatticeType disp) := + [finDistrLatticeType of n.-tuple T]. + +Canonical finCDistrLatticeType n (T : finCDistrLatticeType disp) := + [finCDistrLatticeType of n.-tuple T]. + +End TupleProdOrder. + +Module Exports. + +Notation "n .-tupleprod[ disp ]" := (type disp n) + (at level 2, disp at next level, format "n .-tupleprod[ disp ]") : + type_scope. +Notation "n .-tupleprod" := (n.-tupleprod[prod_display]) + (at level 2, format "n .-tupleprod") : type_scope. + +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical distrLatticeType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical cbDistrLatticeType. +Canonical ctbDistrLatticeType. +Canonical finPOrderType. +Canonical finDistrLatticeType. +Canonical finCDistrLatticeType. + +Definition leEtprod := @leEtprod. +Definition ltEtprod := @ltEtprod. +Definition meetEtprod := @meetEtprod. +Definition joinEtprod := @joinEtprod. +Definition botEtprod := @botEtprod. +Definition topEtprod := @topEtprod. +Definition subEtprod := @subEtprod. +Definition complEtprod := @complEtprod. + +Definition tnth_meet := @tnth_meet. +Definition tnth_join := @tnth_join. +Definition tnth_sub := @tnth_sub. +Definition tnth_compl := @tnth_compl. + +End Exports. +End TupleProdOrder. +Import TupleProdOrder.Exports. + +Module DefaultTupleProdOrder. +Section DefaultTupleProdOrder. +Context {disp : unit}. + +Canonical tprod_porderType n (T : porderType disp) := + [porderType of n.-tuple T for [porderType of n.-tupleprod T]]. +Canonical tprod_distrLatticeType n (T : distrLatticeType disp) := + [distrLatticeType of n.-tuple T for [distrLatticeType of n.-tupleprod T]]. +Canonical tprod_bDistrLatticeType n (T : bDistrLatticeType disp) := + [bDistrLatticeType of n.-tuple T for [bDistrLatticeType of n.-tupleprod T]]. +Canonical tprod_tbDistrLatticeType n (T : tbDistrLatticeType disp) := + [tbDistrLatticeType of n.-tuple T for [tbDistrLatticeType of n.-tupleprod T]]. +Canonical tprod_cbDistrLatticeType n (T : cbDistrLatticeType disp) := + [cbDistrLatticeType of n.-tuple T for [cbDistrLatticeType of n.-tupleprod T]]. +Canonical tprod_ctbDistrLatticeType n (T : ctbDistrLatticeType disp) := + [ctbDistrLatticeType of n.-tuple T for + [ctbDistrLatticeType of n.-tupleprod T]]. +Canonical tprod_finPOrderType n (T : finPOrderType disp) := + [finPOrderType of n.-tuple T]. +Canonical tprod_finDistrLatticeType n (T : finDistrLatticeType disp) := + [finDistrLatticeType of n.-tuple T]. +Canonical tprod_finCDistrLatticeType n (T : finCDistrLatticeType disp) := + [finCDistrLatticeType of n.-tuple T]. + +End DefaultTupleProdOrder. +End DefaultTupleProdOrder. + +(*********************************************) +(* We declare a "copy" of the tuples, *) +(* which has canonical lexicographic order. *) +(*********************************************) + +Module TupleLexiOrder. +Section TupleLexiOrder. +Import DefaultSeqLexiOrder. + +Definition type (disp : unit) n T := n.-tuple T. + +Context {disp disp' : unit}. +Local Notation "n .-tuple" := (type disp' n) : type_scope. + +Section Basics. +Variable (n : nat). + +Canonical eqType (T : eqType):= Eval hnf in [eqType of n.-tuple T]. +Canonical choiceType (T : choiceType):= Eval hnf in [choiceType of n.-tuple T]. +Canonical countType (T : countType):= Eval hnf in [countType of n.-tuple T]. +Canonical finType (T : finType):= Eval hnf in [finType of n.-tuple T]. +End Basics. + +Section POrder. +Implicit Types (T : porderType disp). + +Definition porderMixin n T := [porderMixin of n.-tuple T by <:]. +Canonical porderType n T := POrderType disp' (n.-tuple T) (porderMixin n T). + + +Lemma lexi_tupleP n T (t1 t2 : n.-tuple T) : + reflect (exists k : 'I_n.+1, forall i : 'I_n, (i <= k)%N -> + tnth t1 i <= tnth t2 i ?= iff (i != k :> nat)) (t1 <= t2). +Proof. +elim: n => [|n IHn] in t1 t2 *. + by rewrite tuple0 [t2]tuple0/= lexx; constructor; exists ord0 => -[]. +case: (tupleP t1) (tupleP t2) => [x1 {t1}t1] [x2 {t2}t2]. +rewrite [_ <= _]lexi_cons; apply: (iffP idP) => [|[k leif_xt12]]. + case: comparableP => //= [ltx12 _|-> /IHn[k kP]]. + exists ord0 => i; rewrite leqn0 => /eqP/(@ord_inj n.+1 i ord0)->. + by apply/leifP; rewrite !tnth0. + exists (lift ord0 k) => i; case: (unliftP ord0 i) => [j ->|-> _]. + by rewrite !ltnS => /kP; rewrite !tnthS. + by apply/leifP; rewrite !tnth0 eqxx. +have /= := leif_xt12 ord0 isT; rewrite !tnth0 => leif_x12. +rewrite leif_x12/=; move: leif_x12 leif_xt12 => /leifP. +case: (unliftP ord0 k) => {k} [k-> /eqP<-{x2}|-> /lt_geF->//] leif_xt12. +rewrite lexx implyTb; apply/IHn; exists k => i le_ik. +by have := leif_xt12 (lift ord0 i) le_ik; rewrite !tnthS. +Qed. + +Lemma ltxi_tupleP n T (t1 t2 : n.-tuple T) : + reflect (exists k : 'I_n, forall i : 'I_n, (i <= k)%N -> + tnth t1 i <= tnth t2 i ?= iff (i != k :> nat)) (t1 < t2). +Proof. +elim: n => [|n IHn] in t1 t2 *. + by rewrite tuple0 [t2]tuple0/= ltxx; constructor => - [] []. +case: (tupleP t1) (tupleP t2) => [x1 {t1}t1] [x2 {t2}t2]. +rewrite [_ < _]ltxi_cons; apply: (iffP idP) => [|[k leif_xt12]]. + case: (comparableP x1 x2) => //= [ltx12 _|-> /IHn[k kP]]. + exists ord0 => i; rewrite leqn0 => /eqP/(@ord_inj n.+1 i ord0)->. + by apply/leifP; rewrite !tnth0. + exists (lift ord0 k) => i; case: (unliftP ord0 i) => {i} [i ->|-> _]. + by rewrite !ltnS => /kP; rewrite !tnthS. + by apply/leifP; rewrite !tnth0 eqxx. +have /= := leif_xt12 ord0 isT; rewrite !tnth0 => leif_x12. +rewrite leif_x12/=; move: leif_x12 leif_xt12 => /leifP. +case: (unliftP ord0 k) => {k} [k-> /eqP<-{x2}|-> /lt_geF->//] leif_xt12. +rewrite lexx implyTb; apply/IHn; exists k => i le_ik. +by have := leif_xt12 (lift ord0 i) le_ik; rewrite !tnthS. +Qed. + + +Lemma ltxi_tuplePlt n T (t1 t2 : n.-tuple T) : reflect + (exists2 k : 'I_n, forall i : 'I_n, (i < k)%N -> tnth t1 i = tnth t2 i + & tnth t1 k < tnth t2 k) + (t1 < t2). +Proof. +apply: (iffP (ltxi_tupleP _ _)) => [[k kP]|[k kP ltk12]]. + exists k => [i i_lt|]; last by rewrite (lt_leif (kP _ _)) ?eqxx ?leqnn. + by have /eqTleif->// := kP i (ltnW i_lt); rewrite ltn_eqF. +by exists k => i; case: ltngtP => //= [/kP-> _|/ord_inj-> _]; apply/leifP. +Qed. + +End POrder. + +Section Total. +Variables (n : nat) (T : orderType disp). +Implicit Types (t : n.-tuple T). + +Definition total : totalPOrderMixin [porderType of n.-tuple T] := + [totalOrderMixin of n.-tuple T by <:]. +Canonical distrLatticeType := DistrLatticeType (n.-tuple T) total. +Canonical orderType := OrderType (n.-tuple T) total. + +End Total. + +Section BDistrLattice. +Variables (n : nat) (T : finOrderType disp). +Implicit Types (t : n.-tuple T). + +Fact le0x t : [tuple of nseq n 0] <= t :> n.-tuple T. +Proof. by apply: sub_seqprod_lexi; apply: le0x (t : n.-tupleprod T). Qed. + +Canonical bDistrLatticeType := + BDistrLatticeType (n.-tuple T) (BDistrLattice.Mixin le0x). + +Lemma botEtlexi : 0 = [tuple of nseq n 0] :> n.-tuple T. Proof. by []. Qed. + +End BDistrLattice. + +Section TBDistrLattice. +Variables (n : nat) (T : finOrderType disp). +Implicit Types (t : n.-tuple T). + +Fact lex1 t : t <= [tuple of nseq n 1]. +Proof. by apply: sub_seqprod_lexi; apply: lex1 (t : n.-tupleprod T). Qed. + +Canonical tbDistrLatticeType := + TBDistrLatticeType (n.-tuple T) (TBDistrLattice.Mixin lex1). + +Lemma topEtlexi : 1 = [tuple of nseq n 1] :> n.-tuple T. Proof. by []. Qed. + +End TBDistrLattice. + +Canonical finPOrderType n (T : finPOrderType disp) := + [finPOrderType of n.-tuple T]. +Canonical finDistrLatticeType n (T : finOrderType disp) := + [finDistrLatticeType of n.-tuple T]. +Canonical finOrderType n (T : finOrderType disp) := + [finOrderType of n.-tuple T]. + +Lemma sub_tprod_lexi d n (T : POrder.Exports.porderType disp) : + subrel (<=%O : rel (n.-tupleprod[d] T)) (<=%O : rel (n.-tuple T)). +Proof. exact: sub_seqprod_lexi. Qed. + +End TupleLexiOrder. + +Module Exports. + +Notation "n .-tuplelexi[ disp ]" := (type disp n) + (at level 2, disp at next level, format "n .-tuplelexi[ disp ]") : + order_scope. +Notation "n .-tuplelexi" := (n.-tuplelexi[lexi_display]) + (at level 2, format "n .-tuplelexi") : order_scope. + +Canonical eqType. +Canonical choiceType. +Canonical countType. +Canonical finType. +Canonical porderType. +Canonical distrLatticeType. +Canonical orderType. +Canonical bDistrLatticeType. +Canonical tbDistrLatticeType. +Canonical finPOrderType. +Canonical finDistrLatticeType. +Canonical finOrderType. + +Definition lexi_tupleP := @lexi_tupleP. +Arguments lexi_tupleP {disp disp' n T t1 t2}. +Definition ltxi_tupleP := @ltxi_tupleP. +Arguments ltxi_tupleP {disp disp' n T t1 t2}. +Definition ltxi_tuplePlt := @ltxi_tuplePlt. +Arguments ltxi_tuplePlt {disp disp' n T t1 t2}. +Definition topEtlexi := @topEtlexi. +Definition botEtlexi := @botEtlexi. +Definition sub_tprod_lexi := @sub_tprod_lexi. + +End Exports. +End TupleLexiOrder. +Import TupleLexiOrder.Exports. + +Module DefaultTupleLexiOrder. +Section DefaultTupleLexiOrder. +Context {disp : unit}. + +Canonical tlexi_porderType n (T : porderType disp) := + [porderType of n.-tuple T for [porderType of n.-tuplelexi T]]. +Canonical tlexi_distrLatticeType n (T : orderType disp) := + [distrLatticeType of n.-tuple T for [distrLatticeType of n.-tuplelexi T]]. +Canonical tlexi_bDistrLatticeType n (T : finOrderType disp) := + [bDistrLatticeType of n.-tuple T for [bDistrLatticeType of n.-tuplelexi T]]. +Canonical tlexi_tbDistrLatticeType n (T : finOrderType disp) := + [tbDistrLatticeType of n.-tuple T for [tbDistrLatticeType of n.-tuplelexi T]]. +Canonical tlexi_orderType n (T : orderType disp) := + [orderType of n.-tuple T for [orderType of n.-tuplelexi T]]. +Canonical tlexi_finPOrderType n (T : finPOrderType disp) := + [finPOrderType of n.-tuple T]. +Canonical tlexi_finDistrLatticeType n (T : finOrderType disp) := + [finDistrLatticeType of n.-tuple T]. +Canonical tlexi_finOrderType n (T : finOrderType disp) := + [finOrderType of n.-tuple T]. + +End DefaultTupleLexiOrder. +End DefaultTupleLexiOrder. + +Module Syntax. +Export POSyntax. +Export DistrLatticeSyntax. +Export BDistrLatticeSyntax. +Export TBDistrLatticeSyntax. +Export CBDistrLatticeSyntax. +Export CTBDistrLatticeSyntax. +Export TotalSyntax. +Export ConverseSyntax. +Export DvdSyntax. +End Syntax. + +Module LTheory. +Export POCoercions. +Export ConversePOrder. +Export POrderTheory. + +Export ConverseDistrLattice. +Export DistrLatticeTheoryMeet. +Export DistrLatticeTheoryJoin. +Export BDistrLatticeTheory. +Export ConverseTBDistrLattice. +Export TBDistrLatticeTheory. +End LTheory. + +Module CTheory. +Export LTheory CBDistrLatticeTheory CTBDistrLatticeTheory. +End CTheory. + +Module TTheory. +Export LTheory TotalTheory. +End TTheory. + +Module Theory. +Export CTheory TotalTheory. +End Theory. + +End Order. + +Export Order.Syntax. + +Export Order.POrder.Exports. +Export Order.FinPOrder.Exports. +Export Order.DistrLattice.Exports. +Export Order.BDistrLattice.Exports. +Export Order.TBDistrLattice.Exports. +Export Order.FinDistrLattice.Exports. +Export Order.CBDistrLattice.Exports. +Export Order.CTBDistrLattice.Exports. +Export Order.FinCDistrLattice.Exports. +Export Order.Total.Exports. +Export Order.FinTotal.Exports. + +Export Order.TotalPOrderMixin.Exports. +Export Order.LtPOrderMixin.Exports. +Export Order.MeetJoinMixin.Exports. +Export Order.LeOrderMixin.Exports. +Export Order.LtOrderMixin.Exports. +Export Order.CanMixin.Exports. +Export Order.SubOrder.Exports. + +Export Order.NatOrder.Exports. +Export Order.NatDvd.Exports. +Export Order.BoolOrder.Exports. +Export Order.ProdOrder.Exports. +Export Order.SigmaOrder.Exports. +Export Order.ProdLexiOrder.Exports. +Export Order.SeqProdOrder.Exports. +Export Order.SeqLexiOrder.Exports. +Export Order.TupleProdOrder.Exports. +Export Order.TupleLexiOrder.Exports. + +Module DefaultProdOrder := Order.DefaultProdOrder. +Module DefaultSeqProdOrder := Order.DefaultSeqProdOrder. +Module DefaultTupleProdOrder := Order.DefaultTupleProdOrder. +Module DefaultProdLexiOrder := Order.DefaultProdLexiOrder. +Module DefaultSeqLexiOrder := Order.DefaultSeqLexiOrder. +Module DefaultTupleLexiOrder := Order.DefaultTupleLexiOrder. diff --git a/mathcomp/ssreflect/prime.v b/mathcomp/ssreflect/prime.v index 4e55abe..d8f5939 100644 --- a/mathcomp/ssreflect/prime.v +++ b/mathcomp/ssreflect/prime.v @@ -715,6 +715,9 @@ set k := logn p _; have: p ^ k %| m * n by rewrite pfactor_dvdn. by rewrite Gauss_dvdr ?coprime_expl // -pfactor_dvdn. Qed. +Lemma logn_coprime p m : coprime p m -> logn p m = 0. +Proof. by move=> coprime_pm; rewrite -[m]muln1 logn_Gauss// logn1. Qed. + Lemma lognM p m n : 0 < m -> 0 < n -> logn p (m * n) = logn p m + logn p n. Proof. case p_pr: (prime p); last by rewrite /logn p_pr. @@ -899,6 +902,13 @@ apply: eq_bigr => p _; rewrite ltnS lognE. by case: and3P => [[_ n_gt0 p_dv_n]|]; rewrite ?if_same // andbC dvdn_leq. Qed. +Lemma eq_partn_from_log m n (pi : nat_pred) : 0 < m -> 0 < n -> + {in pi, logn^~ m =1 logn^~ n} -> m`_pi = n`_pi. +Proof. +move=> m0 n0 eq_log; rewrite !(@widen_partn (maxn m n)) ?leq_maxl ?leq_maxr//. +by apply: eq_bigr => p /eq_log ->. +Qed. + Lemma partn0 pi : 0`_pi = 1. Proof. by apply: big1_seq => [] [|n]; rewrite andbC. Qed. @@ -983,6 +993,11 @@ move=> n_gt0; rewrite -{2}(partn_pi n_gt0) {2}/partn big_mkcond /=. by apply: eq_bigr => p _; rewrite -logn_gt0; case: (logn p _). Qed. +Lemma eqn_from_log m n : 0 < m -> 0 < n -> logn^~ m =1 logn^~ n -> m = n. +Proof. +by move=> ? ? /(@in1W _ predT)/eq_partn_from_log; rewrite !partnT// => ->. +Qed. + Lemma partnC pi n : n > 0 -> n`_pi * n`_pi^' = n. Proof. move=> n_gt0; rewrite -{3}(partnT n_gt0) /partn. @@ -1048,6 +1063,20 @@ apply/dvdn_biggcdP=> i Pi; rewrite -(partnC pi (F_gt0 i Pi)) dvdn_mul //. by rewrite partn_dvd ?F_gt0 // (@biggcdn_inf _ i). Qed. +Lemma logn_gcd p m n : 0 < m -> 0 < n -> + logn p (gcdn m n) = minn (logn p m) (logn p n). +Proof. +move=> m_gt0 n_gt0; case p_pr: (prime p); last by rewrite /logn p_pr. +by apply: (@expnI p); rewrite ?prime_gt1// expn_min -!p_part partn_gcd. +Qed. + +Lemma logn_lcm p m n : 0 < m -> 0 < n -> + logn p (lcmn m n) = maxn (logn p m) (logn p n). +Proof. +move=> m_gt0 n_gt0; rewrite /lcmn logn_div ?dvdn_mull ?dvdn_gcdr//. +by rewrite lognM// logn_gcd// -addn_min_max addnC addnK. +Qed. + Lemma sub_in_pnat pi rho n : {in \pi(n), {subset pi <= rho}} -> pi.-nat n -> rho.-nat n. Proof. diff --git a/mathcomp/ssreflect/ssrnat.v b/mathcomp/ssreflect/ssrnat.v index b518c96..bccb968 100644 --- a/mathcomp/ssreflect/ssrnat.v +++ b/mathcomp/ssreflect/ssrnat.v @@ -1450,6 +1450,15 @@ Proof. by case=> le_ab; rewrite eqn_leq le_ab. Qed. Lemma ltn_leqif a b C : a <= b ?= iff C -> (a < b) = ~~ C. Proof. by move=> le_ab; rewrite ltnNge (geq_leqif le_ab). Qed. +Lemma ltnNleqif x y C : x <= y ?= iff ~~ C -> (x < y) = C. +Proof. by move=> /ltn_leqif; rewrite negbK. Qed. + +Lemma eq_leqif x y C : x <= y ?= iff C -> (x == y) = C. +Proof. by move=> /leqifP; case: C ltngtP => [] []. Qed. + +Lemma eqTleqif x y C : x <= y ?= iff C -> C -> x = y. +Proof. by move=> /eq_leqif<-/eqP. Qed. + Lemma leqif_add m1 n1 C1 m2 n2 C2 : m1 <= n1 ?= iff C1 -> m2 <= n2 ?= iff C2 -> m1 + m2 <= n1 + n2 ?= iff C1 && C2. @@ -1538,21 +1547,21 @@ Let leq_total := leq_total. Lemma ltnW_homo : {homo f : m n / m < n} -> {homo f : m n / m <= n}. Proof. exact: homoW. Qed. -Lemma homo_inj_lt : injective f -> {homo f : m n / m <= n} -> +Lemma inj_homo_ltn : injective f -> {homo f : m n / m <= n} -> {homo f : m n / m < n}. Proof. exact: inj_homo. Qed. Lemma ltnW_nhomo : {homo f : m n /~ m < n} -> {homo f : m n /~ m <= n}. Proof. exact: homoW. Qed. -Lemma nhomo_inj_lt : injective f -> {homo f : m n /~ m <= n} -> +Lemma inj_nhomo_ltn : injective f -> {homo f : m n /~ m <= n} -> {homo f : m n /~ m < n}. Proof. exact: inj_homo. Qed. -Lemma incrn_inj : {mono f : m n / m <= n} -> injective f. +Lemma incn_inj : {mono f : m n / m <= n} -> injective f. Proof. exact: mono_inj. Qed. -Lemma decrn_inj : {mono f : m n /~ m <= n} -> injective f. +Lemma decn_inj : {mono f : m n /~ m <= n} -> injective f. Proof. exact: mono_inj. Qed. Lemma leqW_mono : {mono f : m n / m <= n} -> {mono f : m n / m < n}. @@ -1577,21 +1586,21 @@ Lemma ltnW_nhomo_in : {in D & D', {homo f : m n /~ m < n}} -> {in D & D', {homo f : m n /~ m <= n}}. Proof. exact: homoW_in. Qed. -Lemma homo_inj_lt_in : {in D & D', injective f} -> +Lemma inj_homo_ltn_in : {in D & D', injective f} -> {in D & D', {homo f : m n / m <= n}} -> {in D & D', {homo f : m n / m < n}}. Proof. exact: inj_homo_in. Qed. -Lemma nhomo_inj_lt_in : {in D & D', injective f} -> +Lemma inj_nhomo_ltn_in : {in D & D', injective f} -> {in D & D', {homo f : m n /~ m <= n}} -> {in D & D', {homo f : m n /~ m < n}}. Proof. exact: inj_homo_in. Qed. -Lemma incrn_inj_in : {in D &, {mono f : m n / m <= n}} -> +Lemma incn_inj_in : {in D &, {mono f : m n / m <= n}} -> {in D &, injective f}. Proof. exact: mono_inj_in. Qed. -Lemma decrn_inj_in : {in D &, {mono f : m n /~ m <= n}} -> +Lemma decn_inj_in : {in D &, {mono f : m n /~ m <= n}} -> {in D &, injective f}. Proof. exact: mono_inj_in. Qed. diff --git a/mathcomp/ssreflect/tuple.v b/mathcomp/ssreflect/tuple.v index dd73664..10d54f0 100644 --- a/mathcomp/ssreflect/tuple.v +++ b/mathcomp/ssreflect/tuple.v @@ -213,6 +213,9 @@ Definition thead (u : n.+1.-tuple T) := tnth u ord0. Lemma tnth0 x t : tnth [tuple of x :: t] ord0 = x. Proof. by []. Qed. +Lemma tnthS x t i : tnth [tuple of x :: t] (lift ord0 i) = tnth t i. +Proof. by rewrite (tnth_nth (tnth_default t i)). Qed. + Lemma theadE x t : thead [tuple of x :: t] = x. Proof. by []. Qed. @@ -231,6 +234,11 @@ Qed. Lemma tnth_map f t i : tnth [tuple of map f t] i = f (tnth t i) :> rT. Proof. by apply: nth_map; rewrite size_tuple. Qed. +Lemma tnth_nseq x i : tnth [tuple of nseq n x] i = x. +Proof. +by rewrite !(tnth_nth (tnth_default (nseq_tuple x) i)) nth_nseq ltn_ord. +Qed. + End SeqTuple. Lemma tnth_behead n T (t : n.+1.-tuple T) i : @@ -277,6 +285,10 @@ Canonical tuple_eqType := Eval hnf in EqType (n.-tuple T) tuple_eqMixin. Canonical tuple_predType := PredType (pred_of_seq : n.-tuple T -> pred T). +Lemma eqEtuple (t1 t2 : n.-tuple T) : + (t1 == t2) = [forall i, tnth t1 i == tnth t2 i]. +Proof. by apply/eqP/'forall_eqP => [->|/eq_from_tnth]. Qed. + Lemma memtE (t : n.-tuple T) : mem t = mem (tval t). Proof. by []. Qed. |
