diff options
Diffstat (limited to 'mathcomp/ssreflect/prime.v')
| -rw-r--r-- | mathcomp/ssreflect/prime.v | 29 |
1 files changed, 29 insertions, 0 deletions
diff --git a/mathcomp/ssreflect/prime.v b/mathcomp/ssreflect/prime.v index 4e55abe..d8f5939 100644 --- a/mathcomp/ssreflect/prime.v +++ b/mathcomp/ssreflect/prime.v @@ -715,6 +715,9 @@ set k := logn p _; have: p ^ k %| m * n by rewrite pfactor_dvdn. by rewrite Gauss_dvdr ?coprime_expl // -pfactor_dvdn. Qed. +Lemma logn_coprime p m : coprime p m -> logn p m = 0. +Proof. by move=> coprime_pm; rewrite -[m]muln1 logn_Gauss// logn1. Qed. + Lemma lognM p m n : 0 < m -> 0 < n -> logn p (m * n) = logn p m + logn p n. Proof. case p_pr: (prime p); last by rewrite /logn p_pr. @@ -899,6 +902,13 @@ apply: eq_bigr => p _; rewrite ltnS lognE. by case: and3P => [[_ n_gt0 p_dv_n]|]; rewrite ?if_same // andbC dvdn_leq. Qed. +Lemma eq_partn_from_log m n (pi : nat_pred) : 0 < m -> 0 < n -> + {in pi, logn^~ m =1 logn^~ n} -> m`_pi = n`_pi. +Proof. +move=> m0 n0 eq_log; rewrite !(@widen_partn (maxn m n)) ?leq_maxl ?leq_maxr//. +by apply: eq_bigr => p /eq_log ->. +Qed. + Lemma partn0 pi : 0`_pi = 1. Proof. by apply: big1_seq => [] [|n]; rewrite andbC. Qed. @@ -983,6 +993,11 @@ move=> n_gt0; rewrite -{2}(partn_pi n_gt0) {2}/partn big_mkcond /=. by apply: eq_bigr => p _; rewrite -logn_gt0; case: (logn p _). Qed. +Lemma eqn_from_log m n : 0 < m -> 0 < n -> logn^~ m =1 logn^~ n -> m = n. +Proof. +by move=> ? ? /(@in1W _ predT)/eq_partn_from_log; rewrite !partnT// => ->. +Qed. + Lemma partnC pi n : n > 0 -> n`_pi * n`_pi^' = n. Proof. move=> n_gt0; rewrite -{3}(partnT n_gt0) /partn. @@ -1048,6 +1063,20 @@ apply/dvdn_biggcdP=> i Pi; rewrite -(partnC pi (F_gt0 i Pi)) dvdn_mul //. by rewrite partn_dvd ?F_gt0 // (@biggcdn_inf _ i). Qed. +Lemma logn_gcd p m n : 0 < m -> 0 < n -> + logn p (gcdn m n) = minn (logn p m) (logn p n). +Proof. +move=> m_gt0 n_gt0; case p_pr: (prime p); last by rewrite /logn p_pr. +by apply: (@expnI p); rewrite ?prime_gt1// expn_min -!p_part partn_gcd. +Qed. + +Lemma logn_lcm p m n : 0 < m -> 0 < n -> + logn p (lcmn m n) = maxn (logn p m) (logn p n). +Proof. +move=> m_gt0 n_gt0; rewrite /lcmn logn_div ?dvdn_mull ?dvdn_gcdr//. +by rewrite lognM// logn_gcd// -addn_min_max addnC addnK. +Qed. + Lemma sub_in_pnat pi rho n : {in \pi(n), {subset pi <= rho}} -> pi.-nat n -> rho.-nat n. Proof. |
