aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/solvable')
-rw-r--r--mathcomp/solvable/abelian.v32
-rw-r--r--mathcomp/solvable/burnside_app.v2
-rw-r--r--mathcomp/solvable/center.v4
-rw-r--r--mathcomp/solvable/commutator.v4
-rw-r--r--mathcomp/solvable/cyclic.v8
-rw-r--r--mathcomp/solvable/frobenius.v18
-rw-r--r--mathcomp/solvable/gseries.v22
-rw-r--r--mathcomp/solvable/jordanholder.v4
-rw-r--r--mathcomp/solvable/maximal.v20
-rw-r--r--mathcomp/solvable/nilpotent.v16
-rw-r--r--mathcomp/solvable/pgroup.v36
-rw-r--r--mathcomp/solvable/primitive_action.v12
-rw-r--r--mathcomp/solvable/sylow.v2
13 files changed, 88 insertions, 92 deletions
diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v
index 5f1a013..746898f 100644
--- a/mathcomp/solvable/abelian.v
+++ b/mathcomp/solvable/abelian.v
@@ -111,16 +111,16 @@ Definition gen_rank A := #|[arg min_(B < A | <<B>> == A) #|B|]|.
End AbelianDefs.
-Arguments exponent _ _%g.
-Arguments abelem _ _%N _%g.
-Arguments is_abelem _ _%g.
-Arguments pElem _ _%N _%g.
-Arguments pnElem _ _%N _%N _%g.
-Arguments nElem _ _%N _%g.
-Arguments pmaxElem _ _%N _%g.
-Arguments p_rank _ _%N _%g.
-Arguments rank _ _%g.
-Arguments gen_rank _ _%g.
+Arguments exponent {gT} A%g.
+Arguments abelem {gT} p%N A%g.
+Arguments is_abelem {gT} A%g.
+Arguments pElem {gT} p%N A%g.
+Arguments pnElem {gT} p%N n%N A%g.
+Arguments nElem {gT} n%N A%g.
+Arguments pmaxElem {gT} p%N A%g.
+Arguments p_rank {gT} p%N A%g.
+Arguments rank {gT} A%g.
+Arguments gen_rank {gT} A%g.
Notation "''Ldiv_' n ()" := (Ldiv _ n)
(at level 8, n at level 2, format "''Ldiv_' n ()") : group_scope.
@@ -192,10 +192,10 @@ Qed.
End Functors.
-Arguments Ohm _%N _ _%g.
-Arguments Ohm_group _%N _ _%g.
-Arguments Mho _%N _ _%g.
-Arguments Mho_group _%N _ _%g.
+Arguments Ohm n%N {gT} A%g.
+Arguments Ohm_group n%N {gT} A%g.
+Arguments Mho n%N {gT} A%g.
+Arguments Mho_group n%N {gT} A%g.
Arguments OhmPredP {n gT x}.
Notation "''Ohm_' n ( G )" := (Ohm n G)
@@ -2023,8 +2023,8 @@ Qed.
End AbelianStructure.
-Arguments abelian_type {_} _%g.
-Arguments homocyclic {_} _%g.
+Arguments abelian_type {gT} A%g.
+Arguments homocyclic {gT} A%g.
Section IsogAbelian.
diff --git a/mathcomp/solvable/burnside_app.v b/mathcomp/solvable/burnside_app.v
index 1c804cc..10cbbaa 100644
--- a/mathcomp/solvable/burnside_app.v
+++ b/mathcomp/solvable/burnside_app.v
@@ -26,7 +26,7 @@ rewrite big_uniq // -(card_uniqP Us) (eq_card sG) -Frobenius_Cauchy.
by apply/actsP=> ? _ ?; rewrite !inE.
Qed.
-Arguments burnside_formula [gT].
+Arguments burnside_formula {gT}.
Section colouring.
diff --git a/mathcomp/solvable/center.v b/mathcomp/solvable/center.v
index 98434ba..88774db 100644
--- a/mathcomp/solvable/center.v
+++ b/mathcomp/solvable/center.v
@@ -56,11 +56,11 @@ Canonical center_group (G : {group gT}) : {group gT} :=
End Defs.
-Arguments center _ _%g.
+Arguments center {gT} A%g.
Notation "''Z' ( A )" := (center A) : group_scope.
Notation "''Z' ( H )" := (center_group H) : Group_scope.
-Lemma morphim_center : GFunctor.pcontinuous center.
+Lemma morphim_center : GFunctor.pcontinuous (@center).
Proof. by move=> gT rT G D f; apply: morphim_subcent. Qed.
Canonical center_igFun := [igFun by fun _ _ => subsetIl _ _ & morphim_center].
diff --git a/mathcomp/solvable/commutator.v b/mathcomp/solvable/commutator.v
index dcd53ce..7895116 100644
--- a/mathcomp/solvable/commutator.v
+++ b/mathcomp/solvable/commutator.v
@@ -33,7 +33,7 @@ Definition derived_at_rec n (gT : finGroupType) (A : {set gT}) :=
(* "cooking" destroys it. *)
Definition derived_at := nosimpl derived_at_rec.
-Arguments derived_at _%N _ _%g.
+Arguments derived_at n%N {gT} A%g.
Notation "G ^` ( n )" := (derived_at n G) : group_scope.
Section DerivedBasics.
@@ -354,7 +354,7 @@ End Commutator_properties.
Arguments derG1P {gT G}.
-Lemma der_cont n : GFunctor.continuous (derived_at n).
+Lemma der_cont n : GFunctor.continuous (@derived_at n).
Proof. by move=> aT rT G f; rewrite morphim_der. Qed.
Canonical der_igFun n := [igFun by der_sub^~ n & der_cont n].
diff --git a/mathcomp/solvable/cyclic.v b/mathcomp/solvable/cyclic.v
index 046f4a2..e370a7e 100644
--- a/mathcomp/solvable/cyclic.v
+++ b/mathcomp/solvable/cyclic.v
@@ -289,9 +289,9 @@ Proof. by rewrite /order => /(<[a]> =P _)->. Qed.
End Cyclic.
-Arguments cyclic {_} _%g.
-Arguments generator {_}_%g _%g.
-Arguments expg_invn {_} _%g _%N.
+Arguments cyclic {gT} A%g.
+Arguments generator {gT} A%g a%g.
+Arguments expg_invn {gT} A%g k%N.
Arguments cyclicP {gT A}.
Prenex Implicits cyclic Zpm.
@@ -556,7 +556,7 @@ Qed.
End Metacyclic.
-Arguments metacyclic {_} _%g.
+Arguments metacyclic {gT} A%g.
Arguments metacyclicP {gT A}.
(* Automorphisms of cyclic groups. *)
diff --git a/mathcomp/solvable/frobenius.v b/mathcomp/solvable/frobenius.v
index f7edfc9..01ba8f3 100644
--- a/mathcomp/solvable/frobenius.v
+++ b/mathcomp/solvable/frobenius.v
@@ -98,15 +98,15 @@ Variant has_Frobenius_action G H : Prop :=
End Definitions.
-Arguments semiregular _ _%g _%g.
-Arguments semiprime _ _%g _%g.
-Arguments normedTI _ _%g _%g _%g.
-Arguments Frobenius_group_with_complement _ _%g _%g.
-Arguments Frobenius_group _ _%g.
-Arguments Frobenius_group_with_kernel _ _%g _%g.
-Arguments Frobenius_group_with_kernel_and_complement _ _%g _%g _%g.
-Arguments Frobenius_action _ _%g _%g _ _%g _%act.
-Arguments has_Frobenius_action _ _%g _%g.
+Arguments semiregular {gT} K%g H%g.
+Arguments semiprime {gT} K%g H%g.
+Arguments normedTI {gT} A%g G%g L%g.
+Arguments Frobenius_group_with_complement {gT} G%g H%g.
+Arguments Frobenius_group {gT} G%g.
+Arguments Frobenius_group_with_kernel {gT} G%g K%g.
+Arguments Frobenius_group_with_kernel_and_complement {gT} G%g K%g H%g.
+Arguments Frobenius_action {gT} G%g H%g {sT} S%g to%act.
+Arguments has_Frobenius_action {gT} G%g H%g.
Notation "[ 'Frobenius' G 'with' 'complement' H ]" :=
(Frobenius_group_with_complement G H)
diff --git a/mathcomp/solvable/gseries.v b/mathcomp/solvable/gseries.v
index a1830b9..3e99bfb 100644
--- a/mathcomp/solvable/gseries.v
+++ b/mathcomp/solvable/gseries.v
@@ -71,16 +71,16 @@ Definition simple A := minnormal A A.
Definition chief_factor A V U := maxnormal V U A && (U <| A).
End GroupDefs.
-Arguments subnormal {_} _%g _%g.
-Arguments invariant_factor _ _%g _%g _%g.
-Arguments stable_factor _ _%g _%g _%g.
-Arguments central_factor _ _%g _%g _%g.
-Arguments maximal {_} _%g _%g.
-Arguments maximal_eq _ _%g _%g.
-Arguments maxnormal _ _%g _%g _%g.
-Arguments minnormal _ _%g _%g.
-Arguments simple {_} _%g.
-Arguments chief_factor _ _%g _%g _%g.
+Arguments subnormal {gT} A%g B%g.
+Arguments invariant_factor {gT} A%g B%g C%g.
+Arguments stable_factor {gT} A%g V%g U%g.
+Arguments central_factor {gT} A%g V%g U%g.
+Arguments maximal {gT} A%g B%g.
+Arguments maximal_eq {gT} A%g B%g.
+Arguments maxnormal {gT} A%g B%g U%g.
+Arguments minnormal {gT} A%g B%g.
+Arguments simple {gT} A%g.
+Arguments chief_factor {gT} A%g V%g U%g.
Notation "H <|<| G" := (subnormal H G)
(at level 70, no associativity) : group_scope.
@@ -94,7 +94,7 @@ Notation "A .-central" := (central_factor A)
Notation "G .-chief" := (chief_factor G)
(at level 2, format "G .-chief") : group_rel_scope.
-Arguments group_rel_of _ _%group_rel_scope _%G _%G : extra scopes.
+Arguments group_rel_of {gT} r%group_rel_scope _%G _%G : extra scopes.
Notation "r .-series" := (path (rel_of_simpl_rel (group_rel_of r)))
(at level 2, format "r .-series") : group_scope.
diff --git a/mathcomp/solvable/jordanholder.v b/mathcomp/solvable/jordanholder.v
index 91cc709..bda66bd 100644
--- a/mathcomp/solvable/jordanholder.v
+++ b/mathcomp/solvable/jordanholder.v
@@ -475,8 +475,8 @@ Qed.
End StableCompositionSeries.
-Arguments maxainv _ _ _%G _%G _%gact _%g _%g.
-Arguments asimple _ _ _%G _%G _%gact _%g.
+Arguments maxainv {aT rT D%G A%G} to%gact B%g C%g.
+Arguments asimple {aT rT D%G A%G} to%gact K%g.
Section StrongJordanHolder.
diff --git a/mathcomp/solvable/maximal.v b/mathcomp/solvable/maximal.v
index 5f7a9ed..781abbe 100644
--- a/mathcomp/solvable/maximal.v
+++ b/mathcomp/solvable/maximal.v
@@ -102,16 +102,14 @@ Definition SCN_at n B := [set A in SCN B | n <= 'r(A)].
End Defs.
-Arguments charsimple _ _%g.
-Arguments Frattini _ _%g.
-Arguments Fitting _ _%g.
-Arguments critical _ _%g _%g.
-Arguments special _ _%g.
-Arguments extraspecial _ _%g.
-Arguments SCN _ _%g.
-Arguments SCN_at _ _%N _%g.
-
-Prenex Implicits maximal simple charsimple critical special extraspecial.
+Arguments charsimple {gT} A%g.
+Arguments Frattini {gT} A%g.
+Arguments Fitting {gT} A%g.
+Arguments critical {gT} A%g B%g.
+Arguments special {gT} A%g.
+Arguments extraspecial {gT} A%g.
+Arguments SCN {gT} B%g.
+Arguments SCN_at {gT} n%N B%g.
Notation "''Phi' ( A )" := (Frattini A)
(at level 8, format "''Phi' ( A )") : group_scope.
@@ -459,7 +457,7 @@ Section FittingFun.
Implicit Types gT rT : finGroupType.
-Lemma morphim_Fitting : GFunctor.pcontinuous Fitting.
+Lemma morphim_Fitting : GFunctor.pcontinuous (@Fitting).
Proof.
move=> gT rT G D f; apply: Fitting_max.
by rewrite morphim_normal ?Fitting_normal.
diff --git a/mathcomp/solvable/nilpotent.v b/mathcomp/solvable/nilpotent.v
index d631919..aee3113 100644
--- a/mathcomp/solvable/nilpotent.v
+++ b/mathcomp/solvable/nilpotent.v
@@ -52,8 +52,8 @@ Definition lower_central_at n := lower_central_at_rec n.-1.
(* "cooking" destroys it. *)
Definition upper_central_at := nosimpl upper_central_at_rec.
-Arguments lower_central_at _%N _ _%g.
-Arguments upper_central_at _%N _ _%g.
+Arguments lower_central_at n%N {gT} A%g.
+Arguments upper_central_at n%N {gT} A%g.
Notation "''L_' n ( G )" := (lower_central_at n G)
(at level 8, n at level 2, format "''L_' n ( G )") : group_scope.
@@ -75,9 +75,9 @@ Definition solvable :=
End PropertiesDefs.
-Arguments nilpotent {_} _%g.
-Arguments nil_class {_} _%g.
-Arguments solvable {_} _%g.
+Arguments nilpotent {gT} A%g.
+Arguments nil_class {gT} A%g.
+Arguments solvable {gT} A%g.
Section NilpotentProps.
@@ -320,7 +320,7 @@ End LowerCentral.
Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope.
-Lemma lcn_cont n : GFunctor.continuous (lower_central_at n).
+Lemma lcn_cont n : GFunctor.continuous (@lower_central_at n).
Proof.
case: n => //; elim=> // n IHn g0T h0T H phi.
by rewrite !lcnSn morphimR ?lcn_sub // commSg ?IHn.
@@ -338,7 +338,7 @@ Implicit Type gT : finGroupType.
Lemma ucn_pmap : exists hZ : GFunctor.pmap, @upper_central_at n = hZ.
Proof.
elim: n => [|n' [hZ defZ]]; first by exists trivGfun_pgFun.
-by exists [pgFun of center %% hZ]; rewrite /= -defZ.
+by exists [pgFun of @center %% hZ]; rewrite /= -defZ.
Qed.
(* Now extract all the intermediate facts of the last proof. *)
@@ -351,7 +351,7 @@ Canonical upper_central_at_group gT G := Group (@ucn_group_set gT G).
Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G.
Proof. by have [hZ ->] := ucn_pmap; apply: gFsub. Qed.
-Lemma morphim_ucn : GFunctor.pcontinuous (upper_central_at n).
+Lemma morphim_ucn : GFunctor.pcontinuous (@upper_central_at n).
Proof. by have [hZ ->] := ucn_pmap; apply: pmorphimF. Qed.
Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn].
diff --git a/mathcomp/solvable/pgroup.v b/mathcomp/solvable/pgroup.v
index 6c02e7b..d62154f 100644
--- a/mathcomp/solvable/pgroup.v
+++ b/mathcomp/solvable/pgroup.v
@@ -83,15 +83,15 @@ Definition Sylow A B := p_group B && Hall A B.
End PgroupDefs.
-Arguments pgroup {_} _%N _%g.
-Arguments psubgroup _ _%N _%g _%g.
-Arguments p_group _ _%g.
-Arguments p_elt _ _%N.
-Arguments constt _ _%g _%N.
-Arguments Hall {_} _%g _%g.
-Arguments pHall _ _%N _%g _%g.
-Arguments Syl _ _%N _%g.
-Arguments Sylow {_} _%g _%g.
+Arguments pgroup {gT} pi%N A%g.
+Arguments psubgroup {gT} pi%N A%g B%g.
+Arguments p_group {gT} A%g.
+Arguments p_elt {gT} pi%N x.
+Arguments constt {gT} x%g pi%N.
+Arguments Hall {gT} A%g B%g.
+Arguments pHall {gT} pi%N A%g B%g.
+Arguments Syl {gT} p%N A%g.
+Arguments Sylow {gT} A%g B%g.
Notation "pi .-group" := (pgroup pi)
(at level 2, format "pi .-group") : group_scope.
@@ -861,8 +861,8 @@ Canonical pcore_group : {group gT} := Eval hnf in [group of pcore].
End PcoreDef.
-Arguments pcore _ _%N _%g.
-Arguments pcore_group _ _%N _%G.
+Arguments pcore pi%N {gT} A%g.
+Arguments pcore_group pi%N {gT} A%G.
Notation "''O_' pi ( G )" := (pcore pi G)
(at level 8, pi at level 2, format "''O_' pi ( G )") : group_scope.
Notation "''O_' pi ( G )" := (pcore_group pi G) : Group_scope.
@@ -884,7 +884,7 @@ Canonical pseries_group : {group gT} := group pseries_group_set.
End PseriesDefs.
-Arguments pseries _ _%SEQ _%g.
+Arguments pseries pis%SEQ {gT} _%g.
Local Notation ConsPred p := (@Cons nat_pred p%N) (only parsing).
Notation "''O_{' p1 , .. , pn } ( A )" :=
(pseries (ConsPred p1 .. (ConsPred pn [::]) ..) A)
@@ -977,7 +977,7 @@ Section MorphPcore.
Implicit Types (pi : nat_pred) (gT rT : finGroupType).
-Lemma morphim_pcore pi : GFunctor.pcontinuous (pcore pi).
+Lemma morphim_pcore pi : GFunctor.pcontinuous (@pcore pi).
Proof.
move=> gT rT D G f; apply/bigcapsP=> M /normal_sub_max_pgroup; apply.
by rewrite morphim_pgroup ?pcore_pgroup.
@@ -1054,7 +1054,7 @@ Lemma pseries_rcons pi pis gT (A : {set gT}) :
Proof. by rewrite /pseries rev_rcons. Qed.
Lemma pseries_subfun pis :
- GFunctor.closed (pseries pis) /\ GFunctor.pcontinuous (pseries pis).
+ GFunctor.closed (@pseries pis) /\ GFunctor.pcontinuous (@pseries pis).
Proof.
elim/last_ind: pis => [|pis pi [sFpi fFpi]].
by split=> [gT G | gT rT D G f]; rewrite (sub1G, morphim1).
@@ -1064,13 +1064,13 @@ split=> [gT G | gT rT D G f]; rewrite !pseries_rcons ?(pcore_mod_sub F) //.
exact: (morphim_pcore_mod F).
Qed.
-Lemma pseries_sub pis : GFunctor.closed (pseries pis).
+Lemma pseries_sub pis : GFunctor.closed (@pseries pis).
Proof. by case: (pseries_subfun pis). Qed.
-Lemma morphim_pseries pis : GFunctor.pcontinuous (pseries pis).
+Lemma morphim_pseries pis : GFunctor.pcontinuous (@pseries pis).
Proof. by case: (pseries_subfun pis). Qed.
-Lemma pseriesS pis : GFunctor.hereditary (pseries pis).
+Lemma pseriesS pis : GFunctor.hereditary (@pseries pis).
Proof. exact: (morphim_pseries pis). Qed.
Canonical pseries_igFun pis := [igFun by pseries_sub pis & morphim_pseries pis].
@@ -1149,7 +1149,7 @@ apply: (quotient_inj nH2H).
by apply/andP; rewrite /= -cats1 pseries_sub_catl pseries_norm2.
rewrite /= quotient_pseries /= -IHpi -rcons_cat.
rewrite -[G / _ / _](morphim_invm inj_f) //= {2}im_f //.
-rewrite -(@injmF [igFun of pcore pi]) /= ?injm_invm ?im_f // -quotient_pseries.
+rewrite -(@injmF [igFun of @pcore pi]) /= ?injm_invm ?im_f // -quotient_pseries.
by rewrite -im_f ?morphim_invm ?morphimS ?normal_sub.
Qed.
diff --git a/mathcomp/solvable/primitive_action.v b/mathcomp/solvable/primitive_action.v
index 58a5f20..fa27e75 100644
--- a/mathcomp/solvable/primitive_action.v
+++ b/mathcomp/solvable/primitive_action.v
@@ -43,14 +43,12 @@ Definition primitive :=
End PrimitiveDef.
-Arguments imprimitivity_system _ _ _%g _%g _%act _%g.
-Arguments primitive _ _ _%g _%g _%act.
+Arguments imprimitivity_system {aT sT} A%g S%g to%act Q%g.
+Arguments primitive {aT sT} A%g S%g to%act.
Notation "[ 'primitive' A , 'on' S | to ]" := (primitive A S to)
(at level 0, format "[ 'primitive' A , 'on' S | to ]") : form_scope.
-Prenex Implicits imprimitivity_system.
-
Section Primitive.
Variables (aT : finGroupType) (sT : finType).
@@ -183,9 +181,9 @@ Qed.
End NTransitive.
-Arguments dtuple_on _ _%N _%g.
-Arguments ntransitive _ _ _%N _%g _%g _%act.
-Arguments n_act [gT sT] _ [n].
+Arguments dtuple_on {sT} n%N S%g.
+Arguments ntransitive {gT sT} n%N A%g S%g to%act.
+Arguments n_act {gT sT} to {n} t a.
Notation "n .-dtuple ( S )" := (dtuple_on n S)
(at level 8, format "n .-dtuple ( S )") : set_scope.
diff --git a/mathcomp/solvable/sylow.v b/mathcomp/solvable/sylow.v
index f940ec9..a428c0d 100644
--- a/mathcomp/solvable/sylow.v
+++ b/mathcomp/solvable/sylow.v
@@ -535,7 +535,7 @@ Qed.
End Zgroups.
-Arguments Zgroup {_} _%g.
+Arguments Zgroup {gT} A%g.
Section NilPGroups.