diff options
Diffstat (limited to 'mathcomp/solvable/nilpotent.v')
| -rw-r--r-- | mathcomp/solvable/nilpotent.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/solvable/nilpotent.v b/mathcomp/solvable/nilpotent.v index d631919..aee3113 100644 --- a/mathcomp/solvable/nilpotent.v +++ b/mathcomp/solvable/nilpotent.v @@ -52,8 +52,8 @@ Definition lower_central_at n := lower_central_at_rec n.-1. (* "cooking" destroys it. *) Definition upper_central_at := nosimpl upper_central_at_rec. -Arguments lower_central_at _%N _ _%g. -Arguments upper_central_at _%N _ _%g. +Arguments lower_central_at n%N {gT} A%g. +Arguments upper_central_at n%N {gT} A%g. Notation "''L_' n ( G )" := (lower_central_at n G) (at level 8, n at level 2, format "''L_' n ( G )") : group_scope. @@ -75,9 +75,9 @@ Definition solvable := End PropertiesDefs. -Arguments nilpotent {_} _%g. -Arguments nil_class {_} _%g. -Arguments solvable {_} _%g. +Arguments nilpotent {gT} A%g. +Arguments nil_class {gT} A%g. +Arguments solvable {gT} A%g. Section NilpotentProps. @@ -320,7 +320,7 @@ End LowerCentral. Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope. -Lemma lcn_cont n : GFunctor.continuous (lower_central_at n). +Lemma lcn_cont n : GFunctor.continuous (@lower_central_at n). Proof. case: n => //; elim=> // n IHn g0T h0T H phi. by rewrite !lcnSn morphimR ?lcn_sub // commSg ?IHn. @@ -338,7 +338,7 @@ Implicit Type gT : finGroupType. Lemma ucn_pmap : exists hZ : GFunctor.pmap, @upper_central_at n = hZ. Proof. elim: n => [|n' [hZ defZ]]; first by exists trivGfun_pgFun. -by exists [pgFun of center %% hZ]; rewrite /= -defZ. +by exists [pgFun of @center %% hZ]; rewrite /= -defZ. Qed. (* Now extract all the intermediate facts of the last proof. *) @@ -351,7 +351,7 @@ Canonical upper_central_at_group gT G := Group (@ucn_group_set gT G). Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G. Proof. by have [hZ ->] := ucn_pmap; apply: gFsub. Qed. -Lemma morphim_ucn : GFunctor.pcontinuous (upper_central_at n). +Lemma morphim_ucn : GFunctor.pcontinuous (@upper_central_at n). Proof. by have [hZ ->] := ucn_pmap; apply: pmorphimF. Qed. Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn]. |
