aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/nilpotent.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/solvable/nilpotent.v')
-rw-r--r--mathcomp/solvable/nilpotent.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/solvable/nilpotent.v b/mathcomp/solvable/nilpotent.v
index d631919..aee3113 100644
--- a/mathcomp/solvable/nilpotent.v
+++ b/mathcomp/solvable/nilpotent.v
@@ -52,8 +52,8 @@ Definition lower_central_at n := lower_central_at_rec n.-1.
(* "cooking" destroys it. *)
Definition upper_central_at := nosimpl upper_central_at_rec.
-Arguments lower_central_at _%N _ _%g.
-Arguments upper_central_at _%N _ _%g.
+Arguments lower_central_at n%N {gT} A%g.
+Arguments upper_central_at n%N {gT} A%g.
Notation "''L_' n ( G )" := (lower_central_at n G)
(at level 8, n at level 2, format "''L_' n ( G )") : group_scope.
@@ -75,9 +75,9 @@ Definition solvable :=
End PropertiesDefs.
-Arguments nilpotent {_} _%g.
-Arguments nil_class {_} _%g.
-Arguments solvable {_} _%g.
+Arguments nilpotent {gT} A%g.
+Arguments nil_class {gT} A%g.
+Arguments solvable {gT} A%g.
Section NilpotentProps.
@@ -320,7 +320,7 @@ End LowerCentral.
Notation "''L_' n ( G )" := (lower_central_at_group n G) : Group_scope.
-Lemma lcn_cont n : GFunctor.continuous (lower_central_at n).
+Lemma lcn_cont n : GFunctor.continuous (@lower_central_at n).
Proof.
case: n => //; elim=> // n IHn g0T h0T H phi.
by rewrite !lcnSn morphimR ?lcn_sub // commSg ?IHn.
@@ -338,7 +338,7 @@ Implicit Type gT : finGroupType.
Lemma ucn_pmap : exists hZ : GFunctor.pmap, @upper_central_at n = hZ.
Proof.
elim: n => [|n' [hZ defZ]]; first by exists trivGfun_pgFun.
-by exists [pgFun of center %% hZ]; rewrite /= -defZ.
+by exists [pgFun of @center %% hZ]; rewrite /= -defZ.
Qed.
(* Now extract all the intermediate facts of the last proof. *)
@@ -351,7 +351,7 @@ Canonical upper_central_at_group gT G := Group (@ucn_group_set gT G).
Lemma ucn_sub gT (G : {group gT}) : 'Z_n(G) \subset G.
Proof. by have [hZ ->] := ucn_pmap; apply: gFsub. Qed.
-Lemma morphim_ucn : GFunctor.pcontinuous (upper_central_at n).
+Lemma morphim_ucn : GFunctor.pcontinuous (@upper_central_at n).
Proof. by have [hZ ->] := ucn_pmap; apply: pmorphimF. Qed.
Canonical ucn_igFun := [igFun by ucn_sub & morphim_ucn].