diff options
Diffstat (limited to 'mathcomp/solvable/nilpotent.v')
| -rw-r--r-- | mathcomp/solvable/nilpotent.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/solvable/nilpotent.v b/mathcomp/solvable/nilpotent.v index f0448d7..06f3152 100644 --- a/mathcomp/solvable/nilpotent.v +++ b/mathcomp/solvable/nilpotent.v @@ -238,8 +238,8 @@ apply/idP/mapP=> {s}/= [nilG | [n _ Ln1]]; last first. rewrite -subG1 {}Ln1; elim: n => // n IHn. by rewrite (subset_trans sHR) ?commSg. pose m := #|G|.-1; exists m; first by rewrite mem_iota /= prednK. -rewrite ['L__(G)]card_le1_trivg //= -(subnn m). -elim: {-2}m => [|n]; [by rewrite subn0 prednK | rewrite lcnSn subnS]. +set n := m; rewrite ['L__(G)]card_le1_trivg //= -(subnn m) -[m in _ - m]/n. +elim: n => [|n]; [by rewrite subn0 prednK | rewrite lcnSn subnS]. case: (eqsVneq 'L_n.+1(G) 1) => [-> | ntLn]; first by rewrite comm1G cards1. case: (m - n) => [|m' /= IHn]; first by rewrite leqNgt cardG_gt1 ntLn. rewrite -ltnS (leq_trans (proper_card _) IHn) //. @@ -464,8 +464,8 @@ Qed. Lemma ucn_lcnP n G : ('L_n.+1(G) == 1) = ('Z_n(G) == G). Proof. -rewrite !eqEsubset sub1G ucn_sub /= andbT -(ucn0 G). -elim: {1 3}n 0 (addn0 n) => [j <- //|i IHi j]. +rewrite !eqEsubset sub1G ucn_sub /= andbT -(ucn0 G); set i := (n in LHS). +have: i + 0 = n by [rewrite addn0]; elim: i 0 => [j <- //|i IHi j]. rewrite addSnnS => /IHi <- {IHi}; rewrite ucnSn lcnSn. rewrite -sub_morphim_pre ?gFsub_trans ?gFnorm_trans // subsetI. by rewrite morphimS ?gFsub // quotient_cents2 ?gFsub_trans ?gFnorm_trans. @@ -611,8 +611,8 @@ Qed. Lemma nilpotent_subnormal G H : nilpotent G -> H \subset G -> H <|<| G. Proof. -move=> nilG; elim: {H}_.+1 {-2}H (ltnSn (#|G| - #|H|)) => // m IHm H. -rewrite ltnS => leGHm sHG. +move=> nilG; have [m] := ubnP (#|G| - #|H|). +elim: m H => // m IHm H /ltnSE-leGHm sHG. have [->|] := eqVproper sHG; first exact: subnormal_refl. move/(nilpotent_proper_norm nilG); set K := 'N_G(H) => prHK. have snHK: H <|<| K by rewrite normal_subnormal ?normalSG. |
