aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/nilpotent.v
diff options
context:
space:
mode:
authorGeorges Gonthier2019-11-22 10:02:04 +0100
committerAssia Mahboubi2019-11-22 10:02:04 +0100
commit317267c618ecff861ec6539a2d6063cef298d720 (patch)
tree8b9f3af02879faf1bba3ee9e7befcb52f44107ed /mathcomp/solvable/nilpotent.v
parentb1ca6a9be6861f6c369db642bc194cf78795a66f (diff)
New generalised induction idiom (#434)
Replaced the legacy generalised induction idiom with a more robust one that does not rely on the `{-2}` numerical occurrence selector, using either new helper lemmas `ubnP` and `ltnSE` or a specific `nat` induction principle `ltn_ind`. Added (non-strict in)equality induction helper lemmas Added `ubnP[lg]?eq` helper lemmas that abstract an integer expression along with some (in)equality, in preparation for some generalised induction. Note that while `ubnPleq` is very similar to `ubnP` (indeed `ubnP M` is basically `ubnPleq M.+1`), `ubnPgeq` is used to remember that the inductive value remains below the initial one. Used the change log to give notice to users to update the generalised induction idioms in their proofs to one of the new forms before Mathcomp 1.11.
Diffstat (limited to 'mathcomp/solvable/nilpotent.v')
-rw-r--r--mathcomp/solvable/nilpotent.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/solvable/nilpotent.v b/mathcomp/solvable/nilpotent.v
index f0448d7..06f3152 100644
--- a/mathcomp/solvable/nilpotent.v
+++ b/mathcomp/solvable/nilpotent.v
@@ -238,8 +238,8 @@ apply/idP/mapP=> {s}/= [nilG | [n _ Ln1]]; last first.
rewrite -subG1 {}Ln1; elim: n => // n IHn.
by rewrite (subset_trans sHR) ?commSg.
pose m := #|G|.-1; exists m; first by rewrite mem_iota /= prednK.
-rewrite ['L__(G)]card_le1_trivg //= -(subnn m).
-elim: {-2}m => [|n]; [by rewrite subn0 prednK | rewrite lcnSn subnS].
+set n := m; rewrite ['L__(G)]card_le1_trivg //= -(subnn m) -[m in _ - m]/n.
+elim: n => [|n]; [by rewrite subn0 prednK | rewrite lcnSn subnS].
case: (eqsVneq 'L_n.+1(G) 1) => [-> | ntLn]; first by rewrite comm1G cards1.
case: (m - n) => [|m' /= IHn]; first by rewrite leqNgt cardG_gt1 ntLn.
rewrite -ltnS (leq_trans (proper_card _) IHn) //.
@@ -464,8 +464,8 @@ Qed.
Lemma ucn_lcnP n G : ('L_n.+1(G) == 1) = ('Z_n(G) == G).
Proof.
-rewrite !eqEsubset sub1G ucn_sub /= andbT -(ucn0 G).
-elim: {1 3}n 0 (addn0 n) => [j <- //|i IHi j].
+rewrite !eqEsubset sub1G ucn_sub /= andbT -(ucn0 G); set i := (n in LHS).
+have: i + 0 = n by [rewrite addn0]; elim: i 0 => [j <- //|i IHi j].
rewrite addSnnS => /IHi <- {IHi}; rewrite ucnSn lcnSn.
rewrite -sub_morphim_pre ?gFsub_trans ?gFnorm_trans // subsetI.
by rewrite morphimS ?gFsub // quotient_cents2 ?gFsub_trans ?gFnorm_trans.
@@ -611,8 +611,8 @@ Qed.
Lemma nilpotent_subnormal G H : nilpotent G -> H \subset G -> H <|<| G.
Proof.
-move=> nilG; elim: {H}_.+1 {-2}H (ltnSn (#|G| - #|H|)) => // m IHm H.
-rewrite ltnS => leGHm sHG.
+move=> nilG; have [m] := ubnP (#|G| - #|H|).
+elim: m H => // m IHm H /ltnSE-leGHm sHG.
have [->|] := eqVproper sHG; first exact: subnormal_refl.
move/(nilpotent_proper_norm nilG); set K := 'N_G(H) => prHK.
have snHK: H <|<| K by rewrite normal_subnormal ?normalSG.