diff options
Diffstat (limited to 'mathcomp/real_closed/realalg.v')
| -rw-r--r-- | mathcomp/real_closed/realalg.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/real_closed/realalg.v b/mathcomp/real_closed/realalg.v index 0cbba9f..7d9d987 100644 --- a/mathcomp/real_closed/realalg.v +++ b/mathcomp/real_closed/realalg.v @@ -194,11 +194,11 @@ Definition eq_algcreal : rel algcreal := eq_algcreal_dec. Lemma eq_algcrealP (x y : algcreal) : reflect (x == y)%CR (eq_algcreal x y). Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed. -Implicit Arguments eq_algcrealP [x y]. +Arguments eq_algcrealP [x y]. Lemma neq_algcrealP (x y : algcreal) : reflect (x != y)%CR (~~ eq_algcreal x y). Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed. -Implicit Arguments neq_algcrealP [x y]. +Arguments neq_algcrealP [x y]. Prenex Implicits eq_algcrealP neq_algcrealP. Fact eq_algcreal_is_equiv : equiv_class_of eq_algcreal. @@ -284,11 +284,11 @@ Definition le_algcreal : rel algcreal := fun x y => ~~ ltVge_algcreal_dec y x. Lemma lt_algcrealP (x y : algcreal) : reflect (x < y)%CR (lt_algcreal x y). Proof. by rewrite /lt_algcreal; case: ltVge_algcreal_dec; constructor. Qed. -Implicit Arguments lt_algcrealP [x y]. +Arguments lt_algcrealP [x y]. Lemma le_algcrealP (x y : algcreal) : reflect (x <= y)%CR (le_algcreal x y). Proof. by rewrite /le_algcreal; case: ltVge_algcreal_dec; constructor. Qed. -Implicit Arguments le_algcrealP [x y]. +Arguments le_algcrealP [x y]. Prenex Implicits lt_algcrealP le_algcrealP. Definition exp_algcreal x n := iterop n mul_algcreal x one_algcreal. @@ -609,7 +609,7 @@ Qed. Lemma nequiv_alg (x y : algcreal) : reflect (x != y)%CR (x != y %[mod {alg F}]). Proof. by rewrite eqquotE; apply: neq_algcrealP. Qed. -Implicit Arguments nequiv_alg [x y]. +Arguments nequiv_alg [x y]. Prenex Implicits nequiv_alg. Lemma pi_algK (x : algcreal) : (repr (\pi_{alg F} x) == x)%CR. @@ -711,7 +711,7 @@ elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=. by apply: eq_crealP; exists m0=> * /=; rewrite mulrDl subrr normr0. Qed. -Implicit Arguments neq_creal_cst [F x y]. +Arguments neq_creal_cst [F x y]. Prenex Implicits neq_creal_cst. Lemma nonzero1_alg : one_alg != zero_alg. @@ -964,11 +964,11 @@ Proof. by rewrite [`|_|]piE. Qed. Lemma lt_algP (x y : algcreal) : reflect (x < y)%CR (\pi_{alg F} x < \pi y). Proof. by rewrite lt_pi; apply: lt_algcrealP. Qed. -Implicit Arguments lt_algP [x y]. +Arguments lt_algP [x y]. Lemma le_algP (x y : algcreal) : reflect (x <= y)%CR (\pi_{alg F} x <= \pi y). Proof. by rewrite le_pi; apply: le_algcrealP. Qed. -Implicit Arguments le_algP [x y]. +Arguments le_algP [x y]. Prenex Implicits lt_algP le_algP. Lemma ler_to_alg : {mono to_alg : x y / x <= y}. |
