aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/real_closed/realalg.v
diff options
context:
space:
mode:
authorEnrico2018-03-03 10:30:33 +0100
committerGitHub2018-03-03 10:30:33 +0100
commit6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (patch)
tree59cc350ed0be586e871e56e41b48939b08032929 /mathcomp/real_closed/realalg.v
parent22692863c2b51cb6b3220e9601d7c237b1830f18 (diff)
parentfe058c3300cf2385f1079fa906cbd13cd2349286 (diff)
Merge pull request #179 from jashug/deprecate-implicit-arguments
Remove Implicit Arguments command in favor of Arguments
Diffstat (limited to 'mathcomp/real_closed/realalg.v')
-rw-r--r--mathcomp/real_closed/realalg.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/real_closed/realalg.v b/mathcomp/real_closed/realalg.v
index 0cbba9f..7d9d987 100644
--- a/mathcomp/real_closed/realalg.v
+++ b/mathcomp/real_closed/realalg.v
@@ -194,11 +194,11 @@ Definition eq_algcreal : rel algcreal := eq_algcreal_dec.
Lemma eq_algcrealP (x y : algcreal) : reflect (x == y)%CR (eq_algcreal x y).
Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed.
-Implicit Arguments eq_algcrealP [x y].
+Arguments eq_algcrealP [x y].
Lemma neq_algcrealP (x y : algcreal) : reflect (x != y)%CR (~~ eq_algcreal x y).
Proof. by rewrite /eq_algcreal; case: eq_algcreal_dec=> /=; constructor. Qed.
-Implicit Arguments neq_algcrealP [x y].
+Arguments neq_algcrealP [x y].
Prenex Implicits eq_algcrealP neq_algcrealP.
Fact eq_algcreal_is_equiv : equiv_class_of eq_algcreal.
@@ -284,11 +284,11 @@ Definition le_algcreal : rel algcreal := fun x y => ~~ ltVge_algcreal_dec y x.
Lemma lt_algcrealP (x y : algcreal) : reflect (x < y)%CR (lt_algcreal x y).
Proof. by rewrite /lt_algcreal; case: ltVge_algcreal_dec; constructor. Qed.
-Implicit Arguments lt_algcrealP [x y].
+Arguments lt_algcrealP [x y].
Lemma le_algcrealP (x y : algcreal) : reflect (x <= y)%CR (le_algcreal x y).
Proof. by rewrite /le_algcreal; case: ltVge_algcreal_dec; constructor. Qed.
-Implicit Arguments le_algcrealP [x y].
+Arguments le_algcrealP [x y].
Prenex Implicits lt_algcrealP le_algcrealP.
Definition exp_algcreal x n := iterop n mul_algcreal x one_algcreal.
@@ -609,7 +609,7 @@ Qed.
Lemma nequiv_alg (x y : algcreal) : reflect (x != y)%CR (x != y %[mod {alg F}]).
Proof. by rewrite eqquotE; apply: neq_algcrealP. Qed.
-Implicit Arguments nequiv_alg [x y].
+Arguments nequiv_alg [x y].
Prenex Implicits nequiv_alg.
Lemma pi_algK (x : algcreal) : (repr (\pi_{alg F} x) == x)%CR.
@@ -711,7 +711,7 @@ elim/quotW=> x; elim/quotW=> y; elim/quotW=> z; rewrite !piE -equiv_alg /=.
by apply: eq_crealP; exists m0=> * /=; rewrite mulrDl subrr normr0.
Qed.
-Implicit Arguments neq_creal_cst [F x y].
+Arguments neq_creal_cst [F x y].
Prenex Implicits neq_creal_cst.
Lemma nonzero1_alg : one_alg != zero_alg.
@@ -964,11 +964,11 @@ Proof. by rewrite [`|_|]piE. Qed.
Lemma lt_algP (x y : algcreal) : reflect (x < y)%CR (\pi_{alg F} x < \pi y).
Proof. by rewrite lt_pi; apply: lt_algcrealP. Qed.
-Implicit Arguments lt_algP [x y].
+Arguments lt_algP [x y].
Lemma le_algP (x y : algcreal) : reflect (x <= y)%CR (\pi_{alg F} x <= \pi y).
Proof. by rewrite le_pi; apply: le_algcrealP. Qed.
-Implicit Arguments le_algP [x y].
+Arguments le_algP [x y].
Prenex Implicits lt_algP le_algP.
Lemma ler_to_alg : {mono to_alg : x y / x <= y}.