aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/ssrint.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra/ssrint.v')
-rw-r--r--mathcomp/algebra/ssrint.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index 1b1eb77..3c4c002 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -1553,7 +1553,7 @@ Lemma abszN1 : `|-1%R| = 1. Proof. by []. Qed.
Lemma absz_id m : `|(`|m|)| = `|m|. Proof. by []. Qed.
Lemma abszM m1 m2 : `|(m1 * m2)%R| = `|m1| * `|m2|.
-Proof. by case: m1 m2 => [[|m1]|m1] [[|m2]|m2]; rewrite //= mulnS mulnC. Qed.
+Proof. by case: m1 m2 => [[|m1]|m1] [[|m2]|m2] //=; rewrite ?mulnS mulnC. Qed.
Lemma abszX (n : nat) m : `|m ^+ n| = `|m| ^ n.
Proof. by elim: n => // n ihn; rewrite exprS expnS abszM ihn. Qed.