aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/ssrint.v
diff options
context:
space:
mode:
authorGeorges Gonthier2019-05-08 09:38:02 +0200
committerGitHub2019-05-08 09:38:02 +0200
commit51b9988f608625c60184dbe90133d64cdaa2a1f9 (patch)
tree5315fbaebdbeca10f6a9ffba448ea424d16252b3 /mathcomp/algebra/ssrint.v
parent02830d7cf24f9198d5e7cb81843d6ca5cb69f68a (diff)
parent6c4382c69e72b81fb7e81b0b753e5d3c83b1064a (diff)
Merge pull request #344 from soraros/ssrnat-remove-arith-lemmas
remove dependence on Arith lemmas
Diffstat (limited to 'mathcomp/algebra/ssrint.v')
-rw-r--r--mathcomp/algebra/ssrint.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v
index 1b1eb77..3c4c002 100644
--- a/mathcomp/algebra/ssrint.v
+++ b/mathcomp/algebra/ssrint.v
@@ -1553,7 +1553,7 @@ Lemma abszN1 : `|-1%R| = 1. Proof. by []. Qed.
Lemma absz_id m : `|(`|m|)| = `|m|. Proof. by []. Qed.
Lemma abszM m1 m2 : `|(m1 * m2)%R| = `|m1| * `|m2|.
-Proof. by case: m1 m2 => [[|m1]|m1] [[|m2]|m2]; rewrite //= mulnS mulnC. Qed.
+Proof. by case: m1 m2 => [[|m1]|m1] [[|m2]|m2] //=; rewrite ?mulnS mulnC. Qed.
Lemma abszX (n : nat) m : `|m ^+ n| = `|m| ^ n.
Proof. by elim: n => // n ihn; rewrite exprS expnS abszM ihn. Qed.