diff options
| author | Reynald Affeldt | 2020-06-04 19:25:53 +0900 |
|---|---|---|
| committer | Reynald Affeldt | 2020-06-04 19:25:53 +0900 |
| commit | 0a999b90fb9517849b70a8bb28895b0e905af2b4 (patch) | |
| tree | 4633c0eb7c02e8c58e93093c9196247addf9d915 /mathcomp | |
| parent | e5165bd0bb3ba31c7ecc95f99e1c43353feca987 (diff) | |
fix naming
Diffstat (limited to 'mathcomp')
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 90 |
1 files changed, 42 insertions, 48 deletions
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index 361394a..8184577 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -2896,16 +2896,16 @@ Qed. Definition real_lter_normr := (real_ler_normr, real_ltr_normr). -Lemma real_gtr_norm x y : x \is real -> `|x| < y -> x < y. +Lemma real_ltr_normlW x y : x \is real -> `|x| < y -> x < y. Proof. by move=> ?; case/real_ltr_normlP. Qed. -Lemma real_gtrNnorm x y : x \is real -> `|x| < y -> - y < x. +Lemma real_ltrNnormlW x y : x \is real -> `|x| < y -> - y < x. Proof. by move=> ?; case/real_ltr_normlP => //; rewrite ltr_oppl. Qed. -Lemma real_ger_norm x y : x \is real -> `|x| <= y -> x <= y. +Lemma real_ler_normlW x y : x \is real -> `|x| <= y -> x <= y. Proof. by move=> ?; case/real_ler_normlP. Qed. -Lemma real_gerNnorm x y : x \is real -> `|x| <= y -> - y <= x. +Lemma real_lerNnormlW x y : x \is real -> `|x| <= y -> - y <= x. Proof. by move=> ?; case/real_ler_normlP => //; rewrite ler_oppl. Qed. Lemma real_ler_distl x y e : @@ -2918,29 +2918,29 @@ Proof. by move=> Rxy; rewrite real_lter_norml // !lter_sub_addl. Qed. Definition real_lter_distl := (real_ler_distl, real_ltr_distl). -Lemma real_ltr_dist_addl x y e : x - y \is real -> `|x - y| < e -> x < y + e. +Lemma real_ltr_distl_addr x y e : x - y \is real -> `|x - y| < e -> x < y + e. Proof. by move=> ?; rewrite real_ltr_distl // => /andP[]. Qed. -Lemma real_ler_dist_addl x y e : x - y \is real -> `|x - y| <= e -> x <= y + e. +Lemma real_ler_distl_addr x y e : x - y \is real -> `|x - y| <= e -> x <= y + e. Proof. by move=> ?; rewrite real_ler_distl // => /andP[]. Qed. -Lemma real_ltr_distr_addl x y e : x - y \is real -> `|x - y| < e -> y < x + e. -Proof. by rewrite realBC (distrC x) => ? /real_ltr_dist_addl; apply. Qed. +Lemma real_ltr_distl_addrC x y e : x - y \is real -> `|x - y| < e -> y < x + e. +Proof. by rewrite realBC (distrC x) => ? /real_ltr_distl_addr; apply. Qed. -Lemma real_ler_distr_addl x y e : x - y \is real -> `|x - y| <= e -> y <= x + e. -Proof. by rewrite realBC distrC => ? /real_ler_dist_addl; apply. Qed. +Lemma real_ler_distl_addrC x y e : x - y \is real -> `|x - y| <= e -> y <= x + e. +Proof. by rewrite realBC distrC => ? /real_ler_distl_addr; apply. Qed. -Lemma real_ltr_dist_subl x y e : x - y \is real -> `|x - y| < e -> x - e < y. -Proof. by move/real_ltr_dist_addl; rewrite ltr_sub_addr; apply. Qed. +Lemma real_ltr_distl_subl x y e : x - y \is real -> `|x - y| < e -> x - e < y. +Proof. by move/real_ltr_distl_addr; rewrite ltr_sub_addr; apply. Qed. -Lemma real_ler_dist_subl x y e : x - y \is real -> `|x - y| <= e -> x - e <= y. -Proof. by move/real_ler_dist_addl; rewrite ler_sub_addr; apply. Qed. +Lemma real_ler_distl_subl x y e : x - y \is real -> `|x - y| <= e -> x - e <= y. +Proof. by move/real_ler_distl_addr; rewrite ler_sub_addr; apply. Qed. -Lemma real_ltr_distr_subr x y e : x - y \is real -> `|x - y| < e -> y - e < x. -Proof. by rewrite realBC distrC => ? /real_ltr_dist_subl; apply. Qed. +Lemma real_ltr_distl_sublC x y e : x - y \is real -> `|x - y| < e -> y - e < x. +Proof. by rewrite realBC distrC => ? /real_ltr_distl_subl; apply. Qed. -Lemma real_ler_distr_subr x y e : x - y \is real -> `|x - y| <= e -> y - e <= x. -Proof. by rewrite realBC distrC => ? /real_ler_dist_subl; apply. Qed. +Lemma real_ler_distl_sublC x y e : x - y \is real -> `|x - y| <= e -> y - e <= x. +Proof. by rewrite realBC distrC => ? /real_ler_distl_subl; apply. Qed. (* GG: pointless duplication }-( *) Lemma eqr_norm_id x : (`|x| == x) = (0 <= x). Proof. by rewrite ger0_def. Qed. @@ -3774,59 +3774,53 @@ Lemma ltr_normlP x y : reflect ((-x < y) * (x < y)) (`|x| < y). Proof. exact: real_ltr_normlP. Qed. Arguments ltr_normlP {x y}. -Lemma gtr_norm x y : `|x| < y -> x < y. Proof. exact: real_gtr_norm. Qed. +Lemma ltr_normlW x y : `|x| < y -> x < y. Proof. exact: real_ltr_normlW. Qed. -Lemma gtrNnorm x y : `|x| < y -> - y < x. Proof. exact: real_gtrNnorm. Qed. +Lemma ltrNnormlW x y : `|x| < y -> - y < x. Proof. exact: real_ltrNnormlW. Qed. -Lemma ger_norm x y : `|x| <= y -> x <= y. Proof. exact: real_ger_norm. Qed. +Lemma ler_normlW x y : `|x| <= y -> x <= y. Proof. exact: real_ler_normlW. Qed. -Lemma gerNnorm x y : `|x| <= y -> - y <= x. Proof. exact: real_gerNnorm. Qed. +Lemma lerNnormlW x y : `|x| <= y -> - y <= x. Proof. exact: real_lerNnormlW. Qed. Lemma ler_normr x y : (x <= `|y|) = (x <= y) || (x <= - y). -Proof. by rewrite leNgt ltr_norml negb_and -!leNgt orbC ler_oppr. Qed. +Proof. exact: real_ler_normr. Qed. Lemma ltr_normr x y : (x < `|y|) = (x < y) || (x < - y). -Proof. by rewrite ltNge ler_norml negb_and -!ltNge orbC ltr_oppr. Qed. +Proof. exact: real_ltr_normr. Qed. Definition lter_normr := (ler_normr, ltr_normr). Lemma ler_distl x y e : (`|x - y| <= e) = (y - e <= x <= y + e). -Proof. by rewrite lter_norml !lter_sub_addl. Qed. +Proof. exact: real_ler_distl. Qed. Lemma ltr_distl x y e : (`|x - y| < e) = (y - e < x < y + e). -Proof. by rewrite lter_norml !lter_sub_addl. Qed. +Proof. exact: real_ltr_distl. Qed. Definition lter_distl := (ler_distl, ltr_distl). -Lemma ltr_dist_addl x y e : `|x - y| < e -> x < y + e. -Proof. exact: real_ltr_dist_addl. Qed. +Lemma ltr_distl_addr x y e : `|x - y| < e -> x < y + e. +Proof. exact: real_ltr_distl_addr. Qed. -Lemma ler_dist_addl x y e : `|x - y| <= e -> x <= y + e. -Proof. exact: real_ler_dist_addl. Qed. +Lemma ler_distl_addr x y e : `|x - y| <= e -> x <= y + e. +Proof. exact: real_ler_distl_addr. Qed. -Lemma ltr_distr_addl x y e : `|x - y| < e -> y < x + e. -Proof. exact: real_ltr_distr_addl. Qed. +Lemma ltr_distl_addrC x y e : `|x - y| < e -> y < x + e. +Proof. exact: real_ltr_distl_addrC. Qed. -Lemma ler_distr_addl x y e : `|x - y| <= e -> y <= x + e. -Proof. exact: real_ler_distr_addl. Qed. +Lemma ler_distl_addrC x y e : `|x - y| <= e -> y <= x + e. +Proof. exact: real_ler_distl_addrC. Qed. -Lemma ltr_dist_subl x y e : `|x - y| < e -> x - e < y. -Proof. exact: real_ltr_dist_subl. Qed. +Lemma ltr_distl_subl x y e : `|x - y| < e -> x - e < y. +Proof. exact: real_ltr_distl_subl. Qed. -Lemma ler_dist_subl x y e : `|x - y| <= e -> x - e <= y. -Proof. exact: real_ler_dist_subl. Qed. +Lemma ler_distl_subl x y e : `|x - y| <= e -> x - e <= y. +Proof. exact: real_ler_distl_subl. Qed. -Lemma ltr_distr_subr x y e : `|x - y| < e -> y - e < x. -Proof. exact: real_ltr_distr_subr. Qed. +Lemma ltr_distl_sublC x y e : `|x - y| < e -> y - e < x. +Proof. exact: real_ltr_distl_sublC. Qed. -Lemma ler_distr_subr x y e : `|x - y| <= e -> y - e <= x. -Proof. exact: real_ler_distr_subr. Qed. - -Lemma gt_norm_eqF (x y : R) : `|x| < y -> (x == - y = false) * (x == y = false). -Proof. -move=> x1; split; last by rewrite lt_eqF // (le_lt_trans (ler_norm _) x1). -by move: x1; rewrite ltr_norml => /andP[? ?]; rewrite gt_eqF. -Qed. +Lemma ler_distl_subrC x y e : `|x - y| <= e -> y - e <= x. +Proof. exact: real_ler_distl_sublC. Qed. Lemma exprn_even_ge0 n x : ~~ odd n -> 0 <= x ^+ n. Proof. by move=> even_n; rewrite real_exprn_even_ge0 ?num_real. Qed. |
