aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorReynald Affeldt2020-06-04 19:25:53 +0900
committerReynald Affeldt2020-06-04 19:25:53 +0900
commit0a999b90fb9517849b70a8bb28895b0e905af2b4 (patch)
tree4633c0eb7c02e8c58e93093c9196247addf9d915
parente5165bd0bb3ba31c7ecc95f99e1c43353feca987 (diff)
fix naming
-rw-r--r--CHANGELOG_UNRELEASED.md7
-rw-r--r--CONTRIBUTING.md10
-rw-r--r--mathcomp/algebra/ssrnum.v90
3 files changed, 52 insertions, 55 deletions
diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md
index 6e86ad6..6f98d3c 100644
--- a/CHANGELOG_UNRELEASED.md
+++ b/CHANGELOG_UNRELEASED.md
@@ -11,10 +11,9 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
### Added
- in `ssrnum.v`, new lemmas:
- + `gt_norm_eqF`
- + `{real_,}gtr_norm`, `{real_,}gtrNnorm`, `{real_,}ger_norm`, `{real_,}gerNnorm`
- + `{real_,}ltr_dist_addl`, `{real_,}ler_dist_addl`, `{real_,}ltr_distr_addl`, `{real_,}ler_distr_addl`,
- `{real_,}ltr_dist_subl`, `{real_,}ler_dist_subl`, `{real_,}ltr_distr_subr`, `{real_,}ler_distr_subr`
+ + `{real_,}ltr_normlW`, `{real_,}ltrNnormlW`, `{real_,}ler_normlW`, `{real_,}lerNnormlW`
+ + `{real_,}ltr_distl_addr`, `{real_,}ler_distl_addr`, `{real_,}ltr_distl_addrC`, `{real_,}ler_distl_addrC`,
+ `{real_,}ltr_distl_subl`, `{real_,}ler_distl_subl`, `{real_,}ltr_distl_sublC`, `{real_,}ler_distl_sublC`
### Changed
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 6313d01..ea5d631 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -124,7 +124,9 @@ Abbreviations are in the header of the file which introduces them. We list here
- `g` -- a group argument.
- `I` -- left/right injectivity, as in `addbI : right_injective addb.`
-- alternatively predicate or set intersection, as in `predI.`
- - `l` -- the left-hand of an operation, as in `andb_orl : left_distributive andb orb.`
+ - `l` -- the left-hand of an operation, as in
+ + `andb_orl : left_distributive andb orb.`
+ + `ltr_norml x y : (`|x| < y) = (- y < x < y).`
- `L` -- the left-hand of a relation, as in `ltn_subrL : n - m < n = (0 < m) && (0 < n).`
- `LR` -- moving an operator from the left-hand to the right-hand of an relation, as in `leq_subLR : (m - n <= p) = (m <= n + p).`
- `N` or `n` -- boolean negation, as in `andbN : a && (~~ a) = false.`
@@ -132,8 +134,10 @@ Abbreviations are in the header of the file which introduces them. We list here
- `N` -- alternatively ring negation, as in `mulNr : (- x) * y = - (x * y).`
- `P` -- a characteristic property, often a reflection lemma, as in
`andP : reflect (a /\ b) (a && b)`.
- - `r` -- a right-hand operation, as `orb_andr : right_distributive orb andb.`
- -- alternatively, it is a ring argument.
+ - `r` -- a right-hand operation, as in
+ + `orb_andr : right_distributive orb andb.`
+ + `ler_normr x y : (x <= `|y|) = (x <= y) || (x <= - y).`
+ + alternatively, it is a ring argument.
- `R` -- the right-hand of a relation, as in `ltn_subrR : n < n - m = false`.
- `RL` -- moving an operator from the right-hand to the left-hand of an relation, as in `ltn_subRL : (n < p - m) = (m + n < p).`
- `T` or `t` -- boolean truth, as in `andbT: right_id true andb.`
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index 361394a..8184577 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -2896,16 +2896,16 @@ Qed.
Definition real_lter_normr := (real_ler_normr, real_ltr_normr).
-Lemma real_gtr_norm x y : x \is real -> `|x| < y -> x < y.
+Lemma real_ltr_normlW x y : x \is real -> `|x| < y -> x < y.
Proof. by move=> ?; case/real_ltr_normlP. Qed.
-Lemma real_gtrNnorm x y : x \is real -> `|x| < y -> - y < x.
+Lemma real_ltrNnormlW x y : x \is real -> `|x| < y -> - y < x.
Proof. by move=> ?; case/real_ltr_normlP => //; rewrite ltr_oppl. Qed.
-Lemma real_ger_norm x y : x \is real -> `|x| <= y -> x <= y.
+Lemma real_ler_normlW x y : x \is real -> `|x| <= y -> x <= y.
Proof. by move=> ?; case/real_ler_normlP. Qed.
-Lemma real_gerNnorm x y : x \is real -> `|x| <= y -> - y <= x.
+Lemma real_lerNnormlW x y : x \is real -> `|x| <= y -> - y <= x.
Proof. by move=> ?; case/real_ler_normlP => //; rewrite ler_oppl. Qed.
Lemma real_ler_distl x y e :
@@ -2918,29 +2918,29 @@ Proof. by move=> Rxy; rewrite real_lter_norml // !lter_sub_addl. Qed.
Definition real_lter_distl := (real_ler_distl, real_ltr_distl).
-Lemma real_ltr_dist_addl x y e : x - y \is real -> `|x - y| < e -> x < y + e.
+Lemma real_ltr_distl_addr x y e : x - y \is real -> `|x - y| < e -> x < y + e.
Proof. by move=> ?; rewrite real_ltr_distl // => /andP[]. Qed.
-Lemma real_ler_dist_addl x y e : x - y \is real -> `|x - y| <= e -> x <= y + e.
+Lemma real_ler_distl_addr x y e : x - y \is real -> `|x - y| <= e -> x <= y + e.
Proof. by move=> ?; rewrite real_ler_distl // => /andP[]. Qed.
-Lemma real_ltr_distr_addl x y e : x - y \is real -> `|x - y| < e -> y < x + e.
-Proof. by rewrite realBC (distrC x) => ? /real_ltr_dist_addl; apply. Qed.
+Lemma real_ltr_distl_addrC x y e : x - y \is real -> `|x - y| < e -> y < x + e.
+Proof. by rewrite realBC (distrC x) => ? /real_ltr_distl_addr; apply. Qed.
-Lemma real_ler_distr_addl x y e : x - y \is real -> `|x - y| <= e -> y <= x + e.
-Proof. by rewrite realBC distrC => ? /real_ler_dist_addl; apply. Qed.
+Lemma real_ler_distl_addrC x y e : x - y \is real -> `|x - y| <= e -> y <= x + e.
+Proof. by rewrite realBC distrC => ? /real_ler_distl_addr; apply. Qed.
-Lemma real_ltr_dist_subl x y e : x - y \is real -> `|x - y| < e -> x - e < y.
-Proof. by move/real_ltr_dist_addl; rewrite ltr_sub_addr; apply. Qed.
+Lemma real_ltr_distl_subl x y e : x - y \is real -> `|x - y| < e -> x - e < y.
+Proof. by move/real_ltr_distl_addr; rewrite ltr_sub_addr; apply. Qed.
-Lemma real_ler_dist_subl x y e : x - y \is real -> `|x - y| <= e -> x - e <= y.
-Proof. by move/real_ler_dist_addl; rewrite ler_sub_addr; apply. Qed.
+Lemma real_ler_distl_subl x y e : x - y \is real -> `|x - y| <= e -> x - e <= y.
+Proof. by move/real_ler_distl_addr; rewrite ler_sub_addr; apply. Qed.
-Lemma real_ltr_distr_subr x y e : x - y \is real -> `|x - y| < e -> y - e < x.
-Proof. by rewrite realBC distrC => ? /real_ltr_dist_subl; apply. Qed.
+Lemma real_ltr_distl_sublC x y e : x - y \is real -> `|x - y| < e -> y - e < x.
+Proof. by rewrite realBC distrC => ? /real_ltr_distl_subl; apply. Qed.
-Lemma real_ler_distr_subr x y e : x - y \is real -> `|x - y| <= e -> y - e <= x.
-Proof. by rewrite realBC distrC => ? /real_ler_dist_subl; apply. Qed.
+Lemma real_ler_distl_sublC x y e : x - y \is real -> `|x - y| <= e -> y - e <= x.
+Proof. by rewrite realBC distrC => ? /real_ler_distl_subl; apply. Qed.
(* GG: pointless duplication }-( *)
Lemma eqr_norm_id x : (`|x| == x) = (0 <= x). Proof. by rewrite ger0_def. Qed.
@@ -3774,59 +3774,53 @@ Lemma ltr_normlP x y : reflect ((-x < y) * (x < y)) (`|x| < y).
Proof. exact: real_ltr_normlP. Qed.
Arguments ltr_normlP {x y}.
-Lemma gtr_norm x y : `|x| < y -> x < y. Proof. exact: real_gtr_norm. Qed.
+Lemma ltr_normlW x y : `|x| < y -> x < y. Proof. exact: real_ltr_normlW. Qed.
-Lemma gtrNnorm x y : `|x| < y -> - y < x. Proof. exact: real_gtrNnorm. Qed.
+Lemma ltrNnormlW x y : `|x| < y -> - y < x. Proof. exact: real_ltrNnormlW. Qed.
-Lemma ger_norm x y : `|x| <= y -> x <= y. Proof. exact: real_ger_norm. Qed.
+Lemma ler_normlW x y : `|x| <= y -> x <= y. Proof. exact: real_ler_normlW. Qed.
-Lemma gerNnorm x y : `|x| <= y -> - y <= x. Proof. exact: real_gerNnorm. Qed.
+Lemma lerNnormlW x y : `|x| <= y -> - y <= x. Proof. exact: real_lerNnormlW. Qed.
Lemma ler_normr x y : (x <= `|y|) = (x <= y) || (x <= - y).
-Proof. by rewrite leNgt ltr_norml negb_and -!leNgt orbC ler_oppr. Qed.
+Proof. exact: real_ler_normr. Qed.
Lemma ltr_normr x y : (x < `|y|) = (x < y) || (x < - y).
-Proof. by rewrite ltNge ler_norml negb_and -!ltNge orbC ltr_oppr. Qed.
+Proof. exact: real_ltr_normr. Qed.
Definition lter_normr := (ler_normr, ltr_normr).
Lemma ler_distl x y e : (`|x - y| <= e) = (y - e <= x <= y + e).
-Proof. by rewrite lter_norml !lter_sub_addl. Qed.
+Proof. exact: real_ler_distl. Qed.
Lemma ltr_distl x y e : (`|x - y| < e) = (y - e < x < y + e).
-Proof. by rewrite lter_norml !lter_sub_addl. Qed.
+Proof. exact: real_ltr_distl. Qed.
Definition lter_distl := (ler_distl, ltr_distl).
-Lemma ltr_dist_addl x y e : `|x - y| < e -> x < y + e.
-Proof. exact: real_ltr_dist_addl. Qed.
+Lemma ltr_distl_addr x y e : `|x - y| < e -> x < y + e.
+Proof. exact: real_ltr_distl_addr. Qed.
-Lemma ler_dist_addl x y e : `|x - y| <= e -> x <= y + e.
-Proof. exact: real_ler_dist_addl. Qed.
+Lemma ler_distl_addr x y e : `|x - y| <= e -> x <= y + e.
+Proof. exact: real_ler_distl_addr. Qed.
-Lemma ltr_distr_addl x y e : `|x - y| < e -> y < x + e.
-Proof. exact: real_ltr_distr_addl. Qed.
+Lemma ltr_distl_addrC x y e : `|x - y| < e -> y < x + e.
+Proof. exact: real_ltr_distl_addrC. Qed.
-Lemma ler_distr_addl x y e : `|x - y| <= e -> y <= x + e.
-Proof. exact: real_ler_distr_addl. Qed.
+Lemma ler_distl_addrC x y e : `|x - y| <= e -> y <= x + e.
+Proof. exact: real_ler_distl_addrC. Qed.
-Lemma ltr_dist_subl x y e : `|x - y| < e -> x - e < y.
-Proof. exact: real_ltr_dist_subl. Qed.
+Lemma ltr_distl_subl x y e : `|x - y| < e -> x - e < y.
+Proof. exact: real_ltr_distl_subl. Qed.
-Lemma ler_dist_subl x y e : `|x - y| <= e -> x - e <= y.
-Proof. exact: real_ler_dist_subl. Qed.
+Lemma ler_distl_subl x y e : `|x - y| <= e -> x - e <= y.
+Proof. exact: real_ler_distl_subl. Qed.
-Lemma ltr_distr_subr x y e : `|x - y| < e -> y - e < x.
-Proof. exact: real_ltr_distr_subr. Qed.
+Lemma ltr_distl_sublC x y e : `|x - y| < e -> y - e < x.
+Proof. exact: real_ltr_distl_sublC. Qed.
-Lemma ler_distr_subr x y e : `|x - y| <= e -> y - e <= x.
-Proof. exact: real_ler_distr_subr. Qed.
-
-Lemma gt_norm_eqF (x y : R) : `|x| < y -> (x == - y = false) * (x == y = false).
-Proof.
-move=> x1; split; last by rewrite lt_eqF // (le_lt_trans (ler_norm _) x1).
-by move: x1; rewrite ltr_norml => /andP[? ?]; rewrite gt_eqF.
-Qed.
+Lemma ler_distl_subrC x y e : `|x - y| <= e -> y - e <= x.
+Proof. exact: real_ler_distl_sublC. Qed.
Lemma exprn_even_ge0 n x : ~~ odd n -> 0 <= x ^+ n.
Proof. by move=> even_n; rewrite real_exprn_even_ge0 ?num_real. Qed.