aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssrtest/rewpatterns.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/ssrtest/rewpatterns.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/ssrtest/rewpatterns.v')
-rw-r--r--mathcomp/ssrtest/rewpatterns.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/mathcomp/ssrtest/rewpatterns.v b/mathcomp/ssrtest/rewpatterns.v
index 95c3c00..22ca265 100644
--- a/mathcomp/ssrtest/rewpatterns.v
+++ b/mathcomp/ssrtest/rewpatterns.v
@@ -10,7 +10,7 @@ by move=> x y f; rewrite [_.+1](addnC x.+1).
Qed.
Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y).
-by move=> x y f; rewrite {2}[in f _]addnC.
+by move=> x y f; rewrite {2}[in f _]addnC.
Qed.
Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)).
@@ -27,7 +27,7 @@ by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *
Qed.
Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x).
-by move=> x y f; rewrite [in X in (f _ X)](addnC y).
+by move=> x y f; rewrite [in X in (f _ X)](addnC y).
Qed.
Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x =
@@ -37,7 +37,7 @@ Qed.
Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x =
x + f (x + y) x + f (y + y) x.
-by move=> x y f E; rewrite {2}[in X in (f X _)]E.
+by move=> x y f E; rewrite {2}[in X in (f X _)]E.
Qed.
Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x =
@@ -52,22 +52,22 @@ Qed.
Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x =
x + f (x + y) x + f (y + x) x.
-by move=> x y f E; rewrite {1}[X in (f X _)]addnC.
+by move=> x y f E; rewrite {1}[X in (f X _)]addnC.
Qed.
Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
x + f (x + y) x + f (y + y) (x + y).
-by move=> x y f E; rewrite {1}[in X in (f X X)]E.
+by move=> x y f E; rewrite {1}[in X in (f X X)]E.
Qed.
Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
x + f (x + y) x + f (y + y) (y + y).
-by move=> x y f E; rewrite [in X in (f X X)]E.
+by move=> x y f E; rewrite [in X in (f X X)]E.
Qed.
Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) =
x + f (x + y) x + f (y + y) (y + y).
-by move=> x y f E; rewrite -[X in (f X X)]E.
+by move=> x y f E; rewrite -[X in (f X X)]E.
Qed.
Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x).