diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/ssrtest | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/ssrtest')
| -rw-r--r-- | mathcomp/ssrtest/absevarprop.v | 10 | ||||
| -rw-r--r-- | mathcomp/ssrtest/derive_inversion.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssrtest/elim.v | 34 | ||||
| -rw-r--r-- | mathcomp/ssrtest/have_transp.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssrtest/havesuff.v | 8 | ||||
| -rw-r--r-- | mathcomp/ssrtest/intro_beta.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssrtest/ltac_in.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssrtest/rewpatterns.v | 14 | ||||
| -rw-r--r-- | mathcomp/ssrtest/set_pattern.v | 12 | ||||
| -rw-r--r-- | mathcomp/ssrtest/ssrsyntax1.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssrtest/tc.v | 2 | ||||
| -rw-r--r-- | mathcomp/ssrtest/testmx.v | 4 | ||||
| -rw-r--r-- | mathcomp/ssrtest/wlogletin.v | 6 |
13 files changed, 51 insertions, 51 deletions
diff --git a/mathcomp/ssrtest/absevarprop.v b/mathcomp/ssrtest/absevarprop.v index b8ae7d6..e43f0f7 100644 --- a/mathcomp/ssrtest/absevarprop.v +++ b/mathcomp/ssrtest/absevarprop.v @@ -23,10 +23,10 @@ Variable Q1 : forall P1, Q 1 P1. Lemma testmE1 : myEx. Proof. -apply: ExI 1 _ _ _ _. +apply: ExI 1 _ _ _ _. match goal with |- P 1 => exact: P1 | _ => fail end. match goal with |- P (1+1) => exact: P11 | _ => fail end. - match goal with |- forall p : P 1, Q 1 p => move=>*; exact: Q1 | _ => fail end. + match goal with |- forall p : P 1, Q 1 p => move=> *; exact: Q1 | _ => fail end. match goal with |- forall (p : P 1) (q : P (1+1)), is_true (R 1 p 1 q) => done | _ => fail end. Qed. @@ -54,7 +54,7 @@ Hint Resolve P1. Lemma testmE12 : myEx. Proof. -apply: ExI 1 _ _ _ _. +apply: ExI 1 _ _ _ _. match goal with |- P (1+1) => exact: P11 | _ => fail end. match goal with |- Q 1 P1 => exact: Q1 | _ => fail end. match goal with |- forall (q : P (1+1)), is_true (R 1 P1 1 q) => done | _ => fail end. @@ -68,7 +68,7 @@ Ltac ssrautoprop := trivial with SSR. Lemma testmE13 : myEx. Proof. -apply: ExI 1 _ _ _ _. +apply: ExI 1 _ _ _ _. match goal with |- Q 1 P1 => exact: Q1 | _ => fail end. match goal with |- is_true (R 1 P1 1 P11) => done | _ => fail end. Qed. @@ -84,7 +84,7 @@ Hint Resolve (Q1 P1) : SSR. thus the goal Q 1 ?p1 is faced by trivial after ?p1, and is thus evar free *) Lemma testmE14 : myEx1. Proof. -apply: ExI1 1 _ _ _ _. +apply: ExI1 1 _ _ _ _. match goal with |- is_true (R1 1 P1 1 P11 (Q1 P1)) => done | _ => fail end. Qed. diff --git a/mathcomp/ssrtest/derive_inversion.v b/mathcomp/ssrtest/derive_inversion.v index 71257d8..0a344b8 100644 --- a/mathcomp/ssrtest/derive_inversion.v +++ b/mathcomp/ssrtest/derive_inversion.v @@ -15,5 +15,5 @@ Set Implicit Arguments. | false => o = None end. Proof. - by case: b; elim/wf_inv=>//;case: o=>// a *; exists a. + by case: b; elim/wf_inv=> //; case: o=> // a *; exists a. Qed. diff --git a/mathcomp/ssrtest/elim.v b/mathcomp/ssrtest/elim.v index 9f0f139..0a7b777 100644 --- a/mathcomp/ssrtest/elim.v +++ b/mathcomp/ssrtest/elim.v @@ -7,7 +7,7 @@ Axiom daemon : False. Ltac myadmit := case: daemon. (* Ltac debugging feature: recursive elim + eq generation *) Lemma testL1 : forall A (s : seq A), s = s. -Proof. +Proof. move=> A s; elim branch: s => [|x xs _]. match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. @@ -15,7 +15,7 @@ Qed. (* The same but with explicit eliminator and a conflict in the intro pattern *) Lemma testL2 : forall A (s : seq A), s = s. -Proof. +Proof. move=> A s; elim/last_ind branch: s => [|x s _]. match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. match goal with _ : _ = rcons _ _ |- rcons _ _ = rcons _ _ => move: branch => // | _ => fail end. @@ -23,17 +23,17 @@ Qed. (* The same but without names for variables involved in the generated eq *) Lemma testL3 : forall A (s : seq A), s = s. -Proof. +Proof. move=> A s; elim branch: s; move: (s) => _. match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. -move=> _;match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. +move=> _; match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. Qed. Inductive foo : Type := K1 : foo | K2 : foo -> foo -> foo | K3 : (nat -> foo) -> foo. (* The same but with more intros to be done *) Lemma testL4 : forall (o : foo), o = o. -Proof. +Proof. move=> o; elim branch: o. match goal with _ : _ = K1 |- K1 = K1 => move: branch => // | _ => fail end. move=> _; match goal with _ : _ = K2 _ _ |- K2 _ _ = K2 _ _ => move: branch => // | _ => fail end. @@ -88,21 +88,21 @@ Qed. (* Patterns *) Lemma testP1: forall (x y : nat), (y == x) && (y == x) -> y == x. -move=> x y; elim: {2}(_ == _) / eqP. -match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=>-> // | _ => fail end. -match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=>_; rewrite andbC // | _ => fail end. +move=> x y; elim: {2}(_ == _) / eqP. +match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end. +match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end. Qed. (* The same but with an implicit pattern *) Lemma testP2 : forall (x y : nat), (y == x) && (y == x) -> y == x. -move=> x y; elim: {2}_ / eqP. -match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=>-> // | _ => fail end. -match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=>_; rewrite andbC // | _ => fail end. +move=> x y; elim: {2}_ / eqP. +match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end. +match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end. Qed. (* The same but with an eq generation switch *) Lemma testP3 : forall (x y : nat), (y == x) && (y == x) -> y == x. -move=> x y; elim E: {2}_ / eqP. +move=> x y; elim E: {2}_ / eqP. match goal with _ : y = x |- (is_true ((y == x) && true) -> is_true (y == x)) => rewrite E; reflexivity | _ => fail end. match goal with _ : y <> x |- (is_true ((y == x) && false) -> is_true (y == x)) => rewrite E => /= H; exact H | _ => fail end. Qed. @@ -113,25 +113,25 @@ Lemma specP : spec 0 2 4. Proof. by constructor. Qed. Lemma testP4 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. -case: specP => a b c defa defb defc. +case: specP => a b c defa defb defc. match goal with |- (a.+1 + a.+1) * c = b + (a.+1 + a.+1) + (b + b) => subst; done | _ => fail end. Qed. Lemma testP5 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. -case: (1 + 1) _ / specP => a b c defa defb defc. +case: (1 + 1) _ / specP => a b c defa defb defc. match goal with |- b * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end. Qed. Lemma testP6 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. -case: {2}(1 + 1) _ / specP => a b c defa defb defc. +case: {2}(1 + 1) _ / specP => a b c defa defb defc. match goal with |- (a.+1 + a.+1) * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end. Qed. Lemma testP7 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. -case: _ (1 + 1) (2 + _) / specP => a b c defa defb defc. +case: _ (1 + 1) (2 + _) / specP => a b c defa defb defc. match goal with |- b * a.+4 = c + c => subst; done | _ => fail end. Qed. @@ -276,7 +276,7 @@ Definition plus_ind := plus_rect. Lemma exF x y z: plus (plus x y) z = plus x (plus y z). elim/plus_ind: z / (plus _ z). match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. -Undo 2. +Undo 2. elim/plus_ind: (plus _ z). match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. Undo 2. diff --git a/mathcomp/ssrtest/have_transp.v b/mathcomp/ssrtest/have_transp.v index fec720c..713f176 100644 --- a/mathcomp/ssrtest/have_transp.v +++ b/mathcomp/ssrtest/have_transp.v @@ -10,7 +10,7 @@ Proof. have [:s1] @h m : 'I_(n+m).+1. apply: Sub 0 _. abstract: s1 m. - by auto. + by auto. cut (forall m, 0 < (n+m).+1); last assumption. rewrite [_ 1 _]/= in s1 h *. by []. diff --git a/mathcomp/ssrtest/havesuff.v b/mathcomp/ssrtest/havesuff.v index f97f445..4b0193a 100644 --- a/mathcomp/ssrtest/havesuff.v +++ b/mathcomp/ssrtest/havesuff.v @@ -9,7 +9,7 @@ Lemma test1 : (P -> G) -> P -> G. Proof. move=> pg p. have suff {pg} H : P. - match goal with |- P -> G => move=> _; exact: pg p | _ => fail end. + match goal with |- P -> G => move=> _; exact: pg p | _ => fail end. match goal with H : P -> G |- G => exact: H p | _ => fail end. Qed. @@ -17,7 +17,7 @@ Lemma test2 : (P -> G) -> P -> G. Proof. move=> pg p. have suffices {pg} H : P. - match goal with |- P -> G => move=> _;exact: pg p | _ => fail end. + match goal with |- P -> G => move=> _; exact: pg p | _ => fail end. match goal with H : P -> G |- G => exact: H p | _ => fail end. Qed. @@ -25,7 +25,7 @@ Lemma test3 : (P -> G) -> P -> G. Proof. move=> pg p. suff have {pg} H : P. - match goal with H : P |- G => exact: pg H | _ => fail end. + match goal with H : P |- G => exact: pg H | _ => fail end. match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end. Qed. @@ -33,7 +33,7 @@ Lemma test4 : (P -> G) -> P -> G. Proof. move=> pg p. suffices have {pg} H: P. - match goal with H : P |- G => exact: pg H | _ => fail end. + match goal with H : P |- G => exact: pg H | _ => fail end. match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end. Qed. diff --git a/mathcomp/ssrtest/intro_beta.v b/mathcomp/ssrtest/intro_beta.v index 6b1b96d..4402be9 100644 --- a/mathcomp/ssrtest/intro_beta.v +++ b/mathcomp/ssrtest/intro_beta.v @@ -10,6 +10,6 @@ Definition C (P : T -> Prop) := forall x, P x. Axiom P : T -> T -> Prop. Lemma foo : C (fun x => forall y, let z := x in P y x). -move=> a b. +move=> a b. match goal with |- (let y := _ in _) => idtac end. Admitted. diff --git a/mathcomp/ssrtest/ltac_in.v b/mathcomp/ssrtest/ltac_in.v index 06d8dc7..cec244d 100644 --- a/mathcomp/ssrtest/ltac_in.v +++ b/mathcomp/ssrtest/ltac_in.v @@ -10,9 +10,9 @@ Import Prenex Implicits. (* error 1 *) -Ltac subst1 H := move: H ; rewrite {1} addnC; move => H. +Ltac subst1 H := move: H; rewrite {1} addnC; move => H. Ltac subst2 H := rewrite addnC in H. Goal ( forall a b: nat, b+a = 0 -> b+a=0). -Proof. move => a b hyp. subst1 hyp. subst2 hyp. done. Qed. +Proof. move=> a b hyp. subst1 hyp. subst2 hyp. done. Qed. diff --git a/mathcomp/ssrtest/rewpatterns.v b/mathcomp/ssrtest/rewpatterns.v index 95c3c00..22ca265 100644 --- a/mathcomp/ssrtest/rewpatterns.v +++ b/mathcomp/ssrtest/rewpatterns.v @@ -10,7 +10,7 @@ by move=> x y f; rewrite [_.+1](addnC x.+1). Qed. Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y). -by move=> x y f; rewrite {2}[in f _]addnC. +by move=> x y f; rewrite {2}[in f _]addnC. Qed. Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)). @@ -27,7 +27,7 @@ by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK * Qed. Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x). -by move=> x y f; rewrite [in X in (f _ X)](addnC y). +by move=> x y f; rewrite [in X in (f _ X)](addnC y). Qed. Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x = @@ -37,7 +37,7 @@ Qed. Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x = x + f (x + y) x + f (y + y) x. -by move=> x y f E; rewrite {2}[in X in (f X _)]E. +by move=> x y f E; rewrite {2}[in X in (f X _)]E. Qed. Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x = @@ -52,22 +52,22 @@ Qed. Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x = x + f (x + y) x + f (y + x) x. -by move=> x y f E; rewrite {1}[X in (f X _)]addnC. +by move=> x y f E; rewrite {1}[X in (f X _)]addnC. Qed. Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = x + f (x + y) x + f (y + y) (x + y). -by move=> x y f E; rewrite {1}[in X in (f X X)]E. +by move=> x y f E; rewrite {1}[in X in (f X X)]E. Qed. Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = x + f (x + y) x + f (y + y) (y + y). -by move=> x y f E; rewrite [in X in (f X X)]E. +by move=> x y f E; rewrite [in X in (f X X)]E. Qed. Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) = x + f (x + y) x + f (y + y) (y + y). -by move=> x y f E; rewrite -[X in (f X X)]E. +by move=> x y f E; rewrite -[X in (f X X)]E. Qed. Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x). diff --git a/mathcomp/ssrtest/set_pattern.v b/mathcomp/ssrtest/set_pattern.v index 25b6967..5d22ef2 100644 --- a/mathcomp/ssrtest/set_pattern.v +++ b/mathcomp/ssrtest/set_pattern.v @@ -7,7 +7,7 @@ Axiom daemon : False. Ltac myadmit := case: daemon. Ltac T1 x := match goal with |- _ => set t := (x in X in _ = X) end. Ltac T2 x := first [set t := (x in RHS)]. Ltac T3 x := first [set t := (x in Y in _ = Y)|idtac]. -Ltac T4 x := set t := (x in RHS);idtac. +Ltac T4 x := set t := (x in RHS); idtac. Ltac T5 x := match goal with |- _ => set t := (x in RHS) | |- _ => idtac end. From mathcomp @@ -17,14 +17,14 @@ Lemma foo x y : x.+1 = y + x.+1. set t := (_.+1 in RHS). match goal with |- x.+1 = y + t => rewrite /t {t} end. set t := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. set t := (x in _ = x). match goal with |- x.+1 = t => rewrite /t {t} end. -set t := (x in X in _ = X). +set t := (x in X in _ = X). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. set t := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. -set t := (y + (1 + x) as X in _ = X). +set t := (y + (1 + x) as X in _ = X). match goal with |- x.+1 = t => rewrite /t addSn add0n {t} end. set t := x.+1. match goal with |- t = y + t => rewrite /t {t} end. set t := (x).+1. match goal with |- t = y + t => rewrite /t {t} end. -set t := ((x).+1 in X in _ = X). +set t := ((x).+1 in X in _ = X). match goal with |- x.+1 = y + t => rewrite /t {t} end. set t := (x.+1 in RHS). match goal with |- x.+1 = y + t => rewrite /t {t} end. T1 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. @@ -32,7 +32,7 @@ T2 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. T3 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. T4 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. T5 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end. -rewrite [RHS]addnC. +rewrite [RHS]addnC. match goal with |- x.+1 = x.+1 + y => rewrite -[RHS]addnC end. rewrite -[in RHS](@subnK 1 x.+1) //. match goal with |- x.+1 = y + (x.+1 - 1 + 1) => rewrite subnK // end. @@ -44,7 +44,7 @@ set t := (_.+1 in X in _ + X) in H |- *. set t := 0. match goal with t := 0 |- x.+1 = y + x.+1 => clear t end. set t := y + _. match goal with |- x.+1 = t => rewrite /t {t} end. set t : nat := 0. clear t. -set t : nat := (x in RHS). +set t : nat := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end. set t : nat := RHS. match goal with |- x.+1 = t => rewrite /t {t} end. (* set t := 0 + _. *) diff --git a/mathcomp/ssrtest/ssrsyntax1.v b/mathcomp/ssrtest/ssrsyntax1.v index 9116ba2..3fc202f 100644 --- a/mathcomp/ssrtest/ssrsyntax1.v +++ b/mathcomp/ssrtest/ssrsyntax1.v @@ -14,7 +14,7 @@ Import ssreflect. Goal (forall a b, a + b = b + a). intros. -rewrite 2![_ + _]plus_comm. +rewrite 2![_ + _]plus_comm. split. Abort. End Foo. diff --git a/mathcomp/ssrtest/tc.v b/mathcomp/ssrtest/tc.v index 7a95b66..20d190f 100644 --- a/mathcomp/ssrtest/tc.v +++ b/mathcomp/ssrtest/tc.v @@ -22,7 +22,7 @@ Axiom V : forall A {f : foo A} (x:A), P x -> P (id x). Lemma test1 (x : nat) : P x -> P (id x). Proof. -move => px. +move=> px. Timeout 2 Fail move/V: px. Timeout 2 move/V : (px) => _. move/(V nat) : px => H; exact H. diff --git a/mathcomp/ssrtest/testmx.v b/mathcomp/ssrtest/testmx.v index 95c62bd..7d90d29 100644 --- a/mathcomp/ssrtest/testmx.v +++ b/mathcomp/ssrtest/testmx.v @@ -10,8 +10,8 @@ Set Implicit Arguments. Unset Strict Implicit. Import Prenex Implicits. -Local Open Scope nat_scope. -Local Open Scope ring_scope. +Local Open Scope nat_scope. +Local Open Scope ring_scope. Section TestMx. diff --git a/mathcomp/ssrtest/wlogletin.v b/mathcomp/ssrtest/wlogletin.v index 1553621..faeca5c 100644 --- a/mathcomp/ssrtest/wlogletin.v +++ b/mathcomp/ssrtest/wlogletin.v @@ -33,8 +33,8 @@ match goal with |- (let fxy0 := f x y in P fxy0 -> P fxy -> P x) => by auto | _ Qed. Lemma test4 : forall n m z: bool, n = z -> let x := n in x = m && n -> x = m && n. -move=> n m z E x H. -case: true. - by rewrite {1 2}E in (x) H |- *. +move=> n m z E x H. +case: true. + by rewrite {1 2}E in (x) H |- *. by rewrite {1}E in x H |- *. Qed. |
