aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssrtest/multiview.v
diff options
context:
space:
mode:
authorEnrico Tassi2018-04-12 09:54:36 +0200
committerEnrico Tassi2018-04-12 09:54:36 +0200
commitd54b8dff818f0b1218df14cfb2b813da93154fa9 (patch)
treeb89257dd429d6d57c7efbe6403b9a231392b2a8b /mathcomp/ssrtest/multiview.v
parentc17414bbef21bb3d0b96ee004c29ef7d56e55e2e (diff)
remove ssrtest: it now belongs to Coq
Diffstat (limited to 'mathcomp/ssrtest/multiview.v')
-rw-r--r--mathcomp/ssrtest/multiview.v60
1 files changed, 0 insertions, 60 deletions
diff --git a/mathcomp/ssrtest/multiview.v b/mathcomp/ssrtest/multiview.v
deleted file mode 100644
index 57a26ff..0000000
--- a/mathcomp/ssrtest/multiview.v
+++ /dev/null
@@ -1,60 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrnat.
-
-Goal forall m n p, n <= p -> m <= n -> m <= p.
-by move=> m n p le_n_p /leq_trans; apply.
-Undo 1.
-by move=> m n p le_n_p /leq_trans /(_ le_n_p) le_m_p; exact: le_m_p.
-Undo 1.
-by move=> m n p le_n_p /leq_trans ->.
-Qed.
-
-Goal forall P Q X : Prop, Q -> (True -> X -> Q = P) -> X -> P.
-by move=> P Q X q V /V <-.
-Qed.
-
-Lemma test0: forall a b, a && a && b -> b.
-by move=> a b; repeat move=> /andP []; move=> *.
-Qed.
-
-Lemma test1 : forall a b, a && b -> b.
-by move=> a b /andP /andP /andP [] //.
-Qed.
-
-Lemma test2 : forall a b, a && b -> b.
-by move=> a b /andP /andP /(@andP a) [] //.
-Qed.
-
-Lemma test3 : forall a b, a && (b && b) -> b.
-by move=> a b /andP [_ /andP [_ //]].
-Qed.
-
-Lemma test4: forall a b, a && b = b && a.
-by move=> a b; apply/andP/andP=> ?; apply/andP/andP/andP; rewrite andbC; apply/andP.
-Qed.
-
-Lemma test5: forall C I A O, (True -> O) -> (O -> A) -> (True -> A -> I) -> (I -> C) -> C.
-by move=> c i a o O A I C; apply/C/I/A/O.
-Qed.
-
-Lemma test6: forall A B, (A -> B) -> A -> B.
-move=> A B A_to_B a; move/A_to_B in a; exact: a.
-Qed.
-
-Lemma test7: forall A B, (A -> B) -> A -> B.
-move=> A B A_to_B a; apply A_to_B in a; exact: a.
-Qed.
-
-From mathcomp
-Require Import ssrfun eqtype ssrnat div seq choice fintype finfun finset.
-
-Lemma test8 (T : finType) (A B : {set T}) x (Ax : x \in A) (_ : B = A) : x \in B.
-apply/subsetP: x Ax.
-by rewrite H subxx.
-Qed.
-
-
-