diff options
| author | Enrico Tassi | 2018-04-12 09:54:36 +0200 |
|---|---|---|
| committer | Enrico Tassi | 2018-04-12 09:54:36 +0200 |
| commit | d54b8dff818f0b1218df14cfb2b813da93154fa9 (patch) | |
| tree | b89257dd429d6d57c7efbe6403b9a231392b2a8b /mathcomp/ssrtest/multiview.v | |
| parent | c17414bbef21bb3d0b96ee004c29ef7d56e55e2e (diff) | |
remove ssrtest: it now belongs to Coq
Diffstat (limited to 'mathcomp/ssrtest/multiview.v')
| -rw-r--r-- | mathcomp/ssrtest/multiview.v | 60 |
1 files changed, 0 insertions, 60 deletions
diff --git a/mathcomp/ssrtest/multiview.v b/mathcomp/ssrtest/multiview.v deleted file mode 100644 index 57a26ff..0000000 --- a/mathcomp/ssrtest/multiview.v +++ /dev/null @@ -1,60 +0,0 @@ -(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) -(* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrnat. - -Goal forall m n p, n <= p -> m <= n -> m <= p. -by move=> m n p le_n_p /leq_trans; apply. -Undo 1. -by move=> m n p le_n_p /leq_trans /(_ le_n_p) le_m_p; exact: le_m_p. -Undo 1. -by move=> m n p le_n_p /leq_trans ->. -Qed. - -Goal forall P Q X : Prop, Q -> (True -> X -> Q = P) -> X -> P. -by move=> P Q X q V /V <-. -Qed. - -Lemma test0: forall a b, a && a && b -> b. -by move=> a b; repeat move=> /andP []; move=> *. -Qed. - -Lemma test1 : forall a b, a && b -> b. -by move=> a b /andP /andP /andP [] //. -Qed. - -Lemma test2 : forall a b, a && b -> b. -by move=> a b /andP /andP /(@andP a) [] //. -Qed. - -Lemma test3 : forall a b, a && (b && b) -> b. -by move=> a b /andP [_ /andP [_ //]]. -Qed. - -Lemma test4: forall a b, a && b = b && a. -by move=> a b; apply/andP/andP=> ?; apply/andP/andP/andP; rewrite andbC; apply/andP. -Qed. - -Lemma test5: forall C I A O, (True -> O) -> (O -> A) -> (True -> A -> I) -> (I -> C) -> C. -by move=> c i a o O A I C; apply/C/I/A/O. -Qed. - -Lemma test6: forall A B, (A -> B) -> A -> B. -move=> A B A_to_B a; move/A_to_B in a; exact: a. -Qed. - -Lemma test7: forall A B, (A -> B) -> A -> B. -move=> A B A_to_B a; apply A_to_B in a; exact: a. -Qed. - -From mathcomp -Require Import ssrfun eqtype ssrnat div seq choice fintype finfun finset. - -Lemma test8 (T : finType) (A B : {set T}) x (Ax : x \in A) (_ : B = A) : x \in B. -apply/subsetP: x Ax. -by rewrite H subxx. -Qed. - - - |
