aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEnrico Tassi2018-04-12 09:54:36 +0200
committerEnrico Tassi2018-04-12 09:54:36 +0200
commitd54b8dff818f0b1218df14cfb2b813da93154fa9 (patch)
treeb89257dd429d6d57c7efbe6403b9a231392b2a8b
parentc17414bbef21bb3d0b96ee004c29ef7d56e55e2e (diff)
remove ssrtest: it now belongs to Coq
-rw-r--r--htmldoc/Makefile2
-rwxr-xr-xhtmldoc/buildlibgraph2
-rw-r--r--mathcomp/Make46
-rw-r--r--mathcomp/ssrtest/Make46
-rw-r--r--mathcomp/ssrtest/Makefile25
-rw-r--r--mathcomp/ssrtest/absevarprop.v90
-rw-r--r--mathcomp/ssrtest/abstract_var2.v16
-rw-r--r--mathcomp/ssrtest/binders.v46
-rw-r--r--mathcomp/ssrtest/binders_of.v14
-rw-r--r--mathcomp/ssrtest/caseview.v7
-rw-r--r--mathcomp/ssrtest/congr.v26
-rw-r--r--mathcomp/ssrtest/deferclear.v29
-rw-r--r--mathcomp/ssrtest/dependent_type_err.v11
-rw-r--r--mathcomp/ssrtest/derive_inversion.v19
-rw-r--r--mathcomp/ssrtest/elim.v297
-rw-r--r--mathcomp/ssrtest/elim2.v63
-rw-r--r--mathcomp/ssrtest/elim_pattern.v19
-rw-r--r--mathcomp/ssrtest/explain_match.v13
-rw-r--r--mathcomp/ssrtest/first_n.v12
-rw-r--r--mathcomp/ssrtest/gen_have.v165
-rw-r--r--mathcomp/ssrtest/gen_pattern.v24
-rw-r--r--mathcomp/ssrtest/have_TC.v40
-rw-r--r--mathcomp/ssrtest/have_transp.v41
-rw-r--r--mathcomp/ssrtest/have_view_idiom.v9
-rw-r--r--mathcomp/ssrtest/havesuff.v75
-rw-r--r--mathcomp/ssrtest/if_isnt.v13
-rw-r--r--mathcomp/ssrtest/indetLHS.v8
-rw-r--r--mathcomp/ssrtest/intro_beta.v15
-rw-r--r--mathcomp/ssrtest/intro_noop.v28
-rw-r--r--mathcomp/ssrtest/ipatalternation.v8
-rw-r--r--mathcomp/ssrtest/ltac_have.v32
-rw-r--r--mathcomp/ssrtest/ltac_in.v18
-rw-r--r--mathcomp/ssrtest/move_after.v9
-rw-r--r--mathcomp/ssrtest/multiview.v60
-rw-r--r--mathcomp/ssrtest/occarrow.v15
-rw-r--r--mathcomp/ssrtest/patnoX.v9
-rw-r--r--mathcomp/ssrtest/primproj.v157
-rw-r--r--mathcomp/ssrtest/rewpatterns.v181
-rw-r--r--mathcomp/ssrtest/set_lamda.v18
-rw-r--r--mathcomp/ssrtest/set_pattern.v57
-rw-r--r--mathcomp/ssrtest/ssrsyntax1.v26
-rw-r--r--mathcomp/ssrtest/ssrsyntax2.v11
-rw-r--r--mathcomp/ssrtest/tc.v32
-rw-r--r--mathcomp/ssrtest/testmx.v37
-rw-r--r--mathcomp/ssrtest/typeof.v12
-rw-r--r--mathcomp/ssrtest/unfold_Opaque.v8
-rw-r--r--mathcomp/ssrtest/unkeyed.v22
-rw-r--r--mathcomp/ssrtest/view_case.v22
-rw-r--r--mathcomp/ssrtest/wlog_suff.v19
-rw-r--r--mathcomp/ssrtest/wlogletin.v40
-rw-r--r--mathcomp/ssrtest/wlong_intro.v10
51 files changed, 2 insertions, 2002 deletions
diff --git a/htmldoc/Makefile b/htmldoc/Makefile
index 5386dca..d565125 100644
--- a/htmldoc/Makefile
+++ b/htmldoc/Makefile
@@ -4,7 +4,7 @@ ifeq "$(COQBIN)" ""
COQBIN=$(dir $(shell which coqtop))/
endif
-SRC=$(shell cd ../mathcomp; ls */*.v | grep -v ssrtest/ | grep -v attic/)
+SRC=$(shell cd ../mathcomp; ls */*.v | grep -v attic/)
HEAD=$(shell git symbolic-ref HEAD)
ifeq "$(HEAD)" "refs/heads/master"
LAST=$(shell git tag -l --sort=v:refname "mathcomp-*" | tail -n 1)
diff --git a/htmldoc/buildlibgraph b/htmldoc/buildlibgraph
index 8544f1f..b7b91d0 100755
--- a/htmldoc/buildlibgraph
+++ b/htmldoc/buildlibgraph
@@ -157,6 +157,6 @@ for i=2,#arg do
end
_G[arg[1]]()
--- $COQBIN/coqdep -R . mathcomp */*.v | grep -v vio: | grep -v ssrtest > depend
+-- $COQBIN/coqdep -R . mathcomp */*.v | grep -v vio: > depend
-- cat depend | ./graph.lua dot | tee depend.dot | dot -T png -o depend.png
-- cat depend | ./graph.lua cytoscape `git show release/1.6:mathcomp/Make | grep 'v *$' | cut -d / -f 2 | cut -d . -f 1` > depend.js
diff --git a/mathcomp/Make b/mathcomp/Make
index 1db29ba..ee016ce 100644
--- a/mathcomp/Make
+++ b/mathcomp/Make
@@ -132,52 +132,6 @@ ssreflect/ssrnat.v
ssreflect/ssrnotations.v
ssreflect/ssrmatching.v
ssreflect/tuple.v
-ssrtest/absevarprop.v
-ssrtest/abstract_var2.v
-ssrtest/binders_of.v
-ssrtest/binders.v
-ssrtest/caseview.v
-ssrtest/congr.v
-ssrtest/deferclear.v
-ssrtest/derive_inversion.v
-ssrtest/dependent_type_err.v
-ssrtest/elim2.v
-ssrtest/elim_pattern.v
-ssrtest/elim.v
-ssrtest/explain_match.v
-ssrtest/first_n.v
-ssrtest/gen_have.v
-ssrtest/gen_pattern.v
-ssrtest/havesuff.v
-ssrtest/have_TC.v
-ssrtest/have_transp.v
-ssrtest/have_view_idiom.v
-ssrtest/if_isnt.v
-ssrtest/indetLHS.v
-ssrtest/intro_beta.v
-ssrtest/intro_noop.v
-ssrtest/ipatalternation.v
-ssrtest/ltac_have.v
-ssrtest/ltac_in.v
-ssrtest/move_after.v
-ssrtest/multiview.v
-ssrtest/occarrow.v
-ssrtest/patnoX.v
-ssrtest/primproj.v
-ssrtest/rewpatterns.v
-ssrtest/set_lamda.v
-ssrtest/set_pattern.v
-ssrtest/ssrsyntax1.v
-ssrtest/ssrsyntax2.v
-ssrtest/tc.v
-ssrtest/testmx.v
-ssrtest/typeof.v
-ssrtest/unfold_Opaque.v
-ssrtest/unkeyed.v
-ssrtest/view_case.v
-ssrtest/wlogletin.v
-ssrtest/wlog_suff.v
-ssrtest/wlong_intro.v
-I .
-R . mathcomp
diff --git a/mathcomp/ssrtest/Make b/mathcomp/ssrtest/Make
deleted file mode 100644
index 836e12a..0000000
--- a/mathcomp/ssrtest/Make
+++ /dev/null
@@ -1,46 +0,0 @@
-absevarprop.v
-binders_of.v
-binders.v
-caseview.v
-congr.v
-deferclear.v
-dependent_type_err.v
-elim2.v
-elim_pattern.v
-elim.v
-first_n.v
-gen_have.v
-gen_pattern.v
-havesuff.v
-have_TC.v
-have_transp.v
-have_view_idiom.v
-if_isnt.v
-indetLHS.v
-intro_beta.v
-intro_noop.v
-ipatalternation.v
-ltac_have.v
-ltac_in.v
-move_after.v
-multiview.v
-occarrow.v
-patnoX.v
-primproj.v
-rewpatterns.v
-set_lamda.v
-set_pattern.v
-ssrsyntax1.v
-ssrsyntax2.v
-tc.v
-testmx.v
-typeof.v
-unkeyed.v
-unfold_Opaque.v
-view_case.v
-wlogletin.v
-wlog_suff.v
-wlong_intro.v
-
--R ../theories Ssreflect
--I ../src/
diff --git a/mathcomp/ssrtest/Makefile b/mathcomp/ssrtest/Makefile
deleted file mode 100644
index 14acb5c..0000000
--- a/mathcomp/ssrtest/Makefile
+++ /dev/null
@@ -1,25 +0,0 @@
-H=@
-
-ifeq "$(COQBIN)" ""
-COQBIN=$(dir $(shell which coqtop))/
-endif
-
-COQDEP=$(COQBIN)/coqdep
-
-OLD_MAKEFLAGS:=$(MAKEFLAGS)
-MAKEFLAGS+=-B
-
-.DEFAULT_GOAL := all
-
-%:
- $(H)[ -e Makefile.coq ] || $(COQBIN)/coq_makefile -f Make -o Makefile.coq
- $(H)MAKEFLAGS="$(OLD_MAKEFLAGS)" $(MAKE) --no-print-directory \
- -f Makefile.coq $* \
- COQDEP='$(COQDEP) -c'
-
-.PHONY: clean
-clean:
- $(H)MAKEFLAGS="$(OLD_MAKEFLAGS)" $(MAKE) --no-print-directory \
- -f Makefile.coq clean
- $(H)rm -f Makefile.coq
-
diff --git a/mathcomp/ssrtest/absevarprop.v b/mathcomp/ssrtest/absevarprop.v
deleted file mode 100644
index e43f0f7..0000000
--- a/mathcomp/ssrtest/absevarprop.v
+++ /dev/null
@@ -1,90 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrfun eqtype ssrnat seq.
-From mathcomp
-Require Import fintype.
-
-Lemma test15: forall (y : nat) (x : 'I_2), y < 1 -> val x = y -> Some x = insub y.
-move=> y x le_1 defx; rewrite insubT ?(leq_trans le_1) // => ?.
-by congr (Some _); apply: val_inj=> /=; exact: defx.
-Qed.
-
-Axiom P : nat -> Prop.
-Axiom Q : forall n, P n -> Prop.
-Definition R := fun (x : nat) (p : P x) m (q : P (x+1)) => m > 0.
-
-Inductive myEx : Type := ExI : forall n (pn : P n) pn', Q n pn -> R n pn n pn' -> myEx.
-
-Variable P1 : P 1.
-Variable P11 : P (1 + 1).
-Variable Q1 : forall P1, Q 1 P1.
-
-Lemma testmE1 : myEx.
-Proof.
-apply: ExI 1 _ _ _ _.
- match goal with |- P 1 => exact: P1 | _ => fail end.
- match goal with |- P (1+1) => exact: P11 | _ => fail end.
- match goal with |- forall p : P 1, Q 1 p => move=> *; exact: Q1 | _ => fail end.
-match goal with |- forall (p : P 1) (q : P (1+1)), is_true (R 1 p 1 q) => done | _ => fail end.
-Qed.
-
-Lemma testE2 : exists y : { x | P x }, sval y = 1.
-Proof.
-apply: ex_intro (exist _ 1 _) _.
- match goal with |- P 1 => exact: P1 | _ => fail end.
-match goal with |- forall p : P 1, @sval _ _ (@exist _ _ 1 p) = 1 => done | _ => fail end.
-Qed.
-
-Lemma testE3 : exists y : { x | P x }, sval y = 1.
-Proof.
-have := (ex_intro _ (exist _ 1 _) _); apply.
- match goal with |- P 1 => exact: P1 | _ => fail end.
-match goal with |- forall p : P 1, @sval _ _ (@exist _ _ 1 p) = 1 => done | _ => fail end.
-Qed.
-
-Lemma testE4 : P 2 -> exists y : { x | P x }, sval y = 2.
-Proof.
-move=> P2; apply: ex_intro (exist _ 2 _) _.
-match goal with |- @sval _ _ (@exist _ _ 2 P2) = 2 => done | _ => fail end.
-Qed.
-
-Hint Resolve P1.
-
-Lemma testmE12 : myEx.
-Proof.
-apply: ExI 1 _ _ _ _.
- match goal with |- P (1+1) => exact: P11 | _ => fail end.
- match goal with |- Q 1 P1 => exact: Q1 | _ => fail end.
-match goal with |- forall (q : P (1+1)), is_true (R 1 P1 1 q) => done | _ => fail end.
-Qed.
-
-Create HintDb SSR.
-
-Hint Resolve P11 : SSR.
-
-Ltac ssrautoprop := trivial with SSR.
-
-Lemma testmE13 : myEx.
-Proof.
-apply: ExI 1 _ _ _ _.
- match goal with |- Q 1 P1 => exact: Q1 | _ => fail end.
-match goal with |- is_true (R 1 P1 1 P11) => done | _ => fail end.
-Qed.
-
-Definition R1 := fun (x : nat) (p : P x) m (q : P (x+1)) (r : Q x p) => m > 0.
-
-Inductive myEx1 : Type :=
- ExI1 : forall n (pn : P n) pn' (q : Q n pn), R1 n pn n pn' q -> myEx1.
-
-Hint Resolve (Q1 P1) : SSR.
-
-(* tests that goals in prop are solved in the right order, propagating instantiations,
- thus the goal Q 1 ?p1 is faced by trivial after ?p1, and is thus evar free *)
-Lemma testmE14 : myEx1.
-Proof.
-apply: ExI1 1 _ _ _ _.
-match goal with |- is_true (R1 1 P1 1 P11 (Q1 P1)) => done | _ => fail end.
-Qed.
-
diff --git a/mathcomp/ssrtest/abstract_var2.v b/mathcomp/ssrtest/abstract_var2.v
deleted file mode 100644
index 5372c5c..0000000
--- a/mathcomp/ssrtest/abstract_var2.v
+++ /dev/null
@@ -1,16 +0,0 @@
-Require Import ssreflect.
-
-Set Implicit Arguments.
-
-Axiom P : nat -> nat -> Prop.
-
-Axiom tr :
- forall x y z, P x y -> P y z -> P x z.
-
-Lemma test a b c : P a c -> P a b.
-Proof.
-intro H.
-Fail have [: s1 s2] H1 : P a b := @tr _ _ _ s1 s2.
-have [: w s1 s2] H1 : P a b := @tr _ w _ s1 s2.
-Abort.
-
diff --git a/mathcomp/ssrtest/binders.v b/mathcomp/ssrtest/binders.v
deleted file mode 100644
index 32e351f..0000000
--- a/mathcomp/ssrtest/binders.v
+++ /dev/null
@@ -1,46 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool eqtype ssrnat.
-
-Lemma test (x : bool) : True.
-have H1 x := x.
-have (x) := x => H2.
-have H3 T (x : T) := x.
-have ? : bool := H1 _ x.
-have ? : bool := H2 _ x.
-have ? : bool := H3 _ x.
-have ? (z : bool) : forall y : bool, z = z := fun y => refl_equal _.
-have ? w : w = w := @refl_equal nat w.
-have ? y : true by [].
-have ? (z : bool) : z = z.
- exact: (@refl_equal _ z).
-have ? (z w : bool) : z = z by exact: (@refl_equal _ z).
-have H w (a := 3) (_ := 4) : w && true = w.
- by rewrite andbT.
-exact I.
-Qed.
-
-Lemma test1 : True.
-suff (x : bool): x = x /\ True.
- by move/(_ true); case=> _.
-split; first by exact: (@refl_equal _ x).
-suff H y : y && true = y /\ True.
- by case: (H true).
-suff H1 /= : true && true /\ True.
- by rewrite andbT; split; [exact: (@refl_equal _ y) | exact: I].
-match goal with |- is_true true /\ True => idtac end.
-by split.
-Qed.
-
-Lemma foo n : n >= 0.
-have f i (j := i + n) : j < n.
- match goal with j := i + n |- _ => idtac end.
-Undo 2.
-suff f i (j := i + n) : j < n.
- done.
-match goal with j := i + n |- _ => idtac end.
-Undo 3.
-done.
-Qed.
diff --git a/mathcomp/ssrtest/binders_of.v b/mathcomp/ssrtest/binders_of.v
deleted file mode 100644
index 2a88502..0000000
--- a/mathcomp/ssrtest/binders_of.v
+++ /dev/null
@@ -1,14 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import seq.
-
-Lemma test1 : True.
-have f of seq nat & nat : nat.
- exact 3.
-have g of nat := 3.
-have h of nat : nat := 3.
-have _ : f [::] 3 = g 3 + h 4.
-Admitted.
diff --git a/mathcomp/ssrtest/caseview.v b/mathcomp/ssrtest/caseview.v
deleted file mode 100644
index 478f573..0000000
--- a/mathcomp/ssrtest/caseview.v
+++ /dev/null
@@ -1,7 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Lemma test (A B : Prop) : A /\ B -> True.
-Proof. by case=> _ /id _. Qed. \ No newline at end of file
diff --git a/mathcomp/ssrtest/congr.v b/mathcomp/ssrtest/congr.v
deleted file mode 100644
index 2a7b824..0000000
--- a/mathcomp/ssrtest/congr.v
+++ /dev/null
@@ -1,26 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool eqtype ssrnat.
-
-Lemma test1 : forall a b : nat, a == b -> a == 0 -> b == 0.
-Proof. move=> a b Eab Eac; congr (_ == 0) : Eac; exact: eqP Eab. Qed.
-
-Definition arrow A B := A -> B.
-
-Lemma test2 : forall a b : nat, a == b -> arrow (a == 0) (b == 0).
-Proof. move=> a b Eab; congr (_ == 0); exact: eqP Eab. Qed.
-
-Definition equals T (A B : T) := A = B.
-
-Lemma test3 : forall a b : nat, a = b -> equals nat (a + b) (b + b).
-Proof. move=> a b E; congr (_ + _); exact E. Qed.
-
-Variable S : eqType.
-Variable f : nat -> S.
-Coercion f : nat >-> Equality.sort.
-
-Lemma test4 : forall a b : nat, b = a -> @eq S (b + b) (a + a).
-Proof. move=> a b Eba; congr (_ + _); exact: Eba. Qed.
-
diff --git a/mathcomp/ssrtest/deferclear.v b/mathcomp/ssrtest/deferclear.v
deleted file mode 100644
index 849a7c9..0000000
--- a/mathcomp/ssrtest/deferclear.v
+++ /dev/null
@@ -1,29 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-From mathcomp
-Require Import ssrbool eqtype fintype ssrnat.
-
-Variable T : Type.
-
-Lemma test0 : forall a b c d : T, True.
-Proof. by move=> a b {a} a c; exact I. Qed.
-
-Variable P : T -> Prop.
-
-Lemma test1 : forall a b c : T, P a -> forall d : T, True.
-Proof. move=> a b {a} a _ d; exact I. Qed.
-
-Definition Q := forall x y : nat, x = y.
-Axiom L : 0 = 0 -> Q.
-Axiom L' : 0 = 0 -> forall x y : nat, x = y.
-Lemma test3 : Q.
-by apply/L.
-Undo.
-rewrite /Q.
-by apply/L.
-Undo 2.
-by apply/L'.
-Qed.
-
diff --git a/mathcomp/ssrtest/dependent_type_err.v b/mathcomp/ssrtest/dependent_type_err.v
deleted file mode 100644
index ef2dc9d..0000000
--- a/mathcomp/ssrtest/dependent_type_err.v
+++ /dev/null
@@ -1,11 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype ssrnat.
-
-Lemma ltn_leq_trans : forall n m p : nat, m < n -> n <= p -> m < p.
-move=> n m p Hmn Hnp; rewrite -ltnS.
-Fail rewrite (_ : forall n0 m0 p0 : nat, m0 <= n0 -> n0 < p0 -> m0 < p0).
-Fail rewrite leq_ltn_trans.
-Admitted. \ No newline at end of file
diff --git a/mathcomp/ssrtest/derive_inversion.v b/mathcomp/ssrtest/derive_inversion.v
deleted file mode 100644
index 0a344b8..0000000
--- a/mathcomp/ssrtest/derive_inversion.v
+++ /dev/null
@@ -1,19 +0,0 @@
-Require Import ssreflect ssrbool.
-
-Set Implicit Arguments.
-
- Inductive wf T : bool -> option T -> Type :=
- | wf_f : wf false None
- | wf_t : forall x, wf true (Some x).
-
- Derive Inversion wf_inv with (forall T b (o : option T), wf b o) Sort Prop.
-
- Lemma Problem T b (o : option T) :
- wf b o ->
- match b with
- | true => exists x, o = Some x
- | false => o = None
- end.
- Proof.
- by case: b; elim/wf_inv=> //; case: o=> // a *; exists a.
- Qed.
diff --git a/mathcomp/ssrtest/elim.v b/mathcomp/ssrtest/elim.v
deleted file mode 100644
index 0a7b777..0000000
--- a/mathcomp/ssrtest/elim.v
+++ /dev/null
@@ -1,297 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrfun eqtype ssrnat seq.
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-(* Ltac debugging feature: recursive elim + eq generation *)
-Lemma testL1 : forall A (s : seq A), s = s.
-Proof.
-move=> A s; elim branch: s => [|x xs _].
-match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end.
-match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end.
-Qed.
-
-(* The same but with explicit eliminator and a conflict in the intro pattern *)
-Lemma testL2 : forall A (s : seq A), s = s.
-Proof.
-move=> A s; elim/last_ind branch: s => [|x s _].
-match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end.
-match goal with _ : _ = rcons _ _ |- rcons _ _ = rcons _ _ => move: branch => // | _ => fail end.
-Qed.
-
-(* The same but without names for variables involved in the generated eq *)
-Lemma testL3 : forall A (s : seq A), s = s.
-Proof.
-move=> A s; elim branch: s; move: (s) => _.
-match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end.
-move=> _; match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end.
-Qed.
-
-Inductive foo : Type := K1 : foo | K2 : foo -> foo -> foo | K3 : (nat -> foo) -> foo.
-
-(* The same but with more intros to be done *)
-Lemma testL4 : forall (o : foo), o = o.
-Proof.
-move=> o; elim branch: o.
-match goal with _ : _ = K1 |- K1 = K1 => move: branch => // | _ => fail end.
-move=> _; match goal with _ : _ = K2 _ _ |- K2 _ _ = K2 _ _ => move: branch => // | _ => fail end.
-move=> _; match goal with _ : _ = K3 _ |- K3 _ = K3 _ => move: branch => // | _ => fail end.
-Qed.
-
-(* Occurrence counting *)
-Lemma testO1: forall (b : bool), b = b.
-Proof.
-move=> b; case: (b) / idP.
-match goal with |- is_true b -> true = true => done | _ => fail end.
-match goal with |- ~ is_true b -> false = false => done | _ => fail end.
-Qed.
-
-(* The same but only the second occ *)
-Lemma testO2: forall (b : bool), b = b.
-Proof.
-move=> b; case: {2}(b) / idP.
-match goal with |- is_true b -> b = true => done | _ => fail end.
-match goal with |- ~ is_true b -> b = false => move/(introF idP) => // | _ => fail end.
-Qed.
-
-(* The same but with eq generation *)
-Lemma testO3: forall (b : bool), b = b.
-Proof.
-move=> b; case E: {2}(b) / idP.
-match goal with _ : is_true b, _ : b = true |- b = true => move: E => _; done | _ => fail end.
-match goal with H : ~ is_true b, _ : b = false |- b = false => move: E => _; move/(introF idP): H => // | _ => fail end.
-Qed.
-
-(* Views *)
-Lemma testV1 : forall A (s : seq A), s = s.
-Proof.
-move=> A s; case/lastP E: {1}s => [| x xs].
-match goal with _ : s = [::] |- [::] = s => symmetry; exact E | _ => fail end.
-match goal with _ : s = rcons x xs |- rcons _ _ = s => symmetry; exact E | _ => fail end.
-Qed.
-
-Lemma testV2 : forall A (s : seq A), s = s.
-Proof.
-move=> A s; case/lastP E: s => [| x xs].
-match goal with _ : s = [::] |- [::] = [::] => done | _ => fail end.
-match goal with _ : s = rcons x xs |- rcons _ _ = rcons _ _ => done | _ => fail end.
-Qed.
-
-Lemma testV3 : forall A (s : seq A), s = s.
-Proof.
-move=> A s; case/lastP: s => [| x xs].
-match goal with |- [::] = [::] => done | _ => fail end.
-match goal with |- rcons _ _ = rcons _ _ => done | _ => fail end.
-Qed.
-
-(* Patterns *)
-Lemma testP1: forall (x y : nat), (y == x) && (y == x) -> y == x.
-move=> x y; elim: {2}(_ == _) / eqP.
-match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end.
-match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end.
-Qed.
-
-(* The same but with an implicit pattern *)
-Lemma testP2 : forall (x y : nat), (y == x) && (y == x) -> y == x.
-move=> x y; elim: {2}_ / eqP.
-match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end.
-match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end.
-Qed.
-
-(* The same but with an eq generation switch *)
-Lemma testP3 : forall (x y : nat), (y == x) && (y == x) -> y == x.
-move=> x y; elim E: {2}_ / eqP.
-match goal with _ : y = x |- (is_true ((y == x) && true) -> is_true (y == x)) => rewrite E; reflexivity | _ => fail end.
-match goal with _ : y <> x |- (is_true ((y == x) && false) -> is_true (y == x)) => rewrite E => /= H; exact H | _ => fail end.
-Qed.
-
-Inductive spec : nat -> nat -> nat -> Prop :=
-| specK : forall a b c, a = 0 -> b = 2 -> c = 4 -> spec a b c.
-Lemma specP : spec 0 2 4. Proof. by constructor. Qed.
-
-Lemma testP4 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
-Proof.
-case: specP => a b c defa defb defc.
-match goal with |- (a.+1 + a.+1) * c = b + (a.+1 + a.+1) + (b + b) => subst; done | _ => fail end.
-Qed.
-
-Lemma testP5 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
-Proof.
-case: (1 + 1) _ / specP => a b c defa defb defc.
-match goal with |- b * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end.
-Qed.
-
-Lemma testP6 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
-Proof.
-case: {2}(1 + 1) _ / specP => a b c defa defb defc.
-match goal with |- (a.+1 + a.+1) * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end.
-Qed.
-
-Lemma testP7 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
-Proof.
-case: _ (1 + 1) (2 + _) / specP => a b c defa defb defc.
-match goal with |- b * a.+4 = c + c => subst; done | _ => fail end.
-Qed.
-
-Lemma testP8 : (1+1) * 4 = 2 + (1+1) + (2 + 2).
-Proof.
-case E: (1 + 1) (2 + _) / specP=> [a b c defa defb defc].
-match goal with |- b * a.+4 = c + c => subst; done | _ => fail end.
-Qed.
-
-Variables (T : Type) (tr : T -> T).
-
-Inductive exec (cf0 cf1 : T) : seq T -> Prop :=
-| exec_step : tr cf0 = cf1 -> exec cf0 cf1 [::]
-| exec_star : forall cf2 t, tr cf0 = cf2 ->
- exec cf2 cf1 t -> exec cf0 cf1 (cf2 :: t).
-
-Inductive execr (cf0 cf1 : T) : seq T -> Prop :=
-| execr_step : tr cf0 = cf1 -> execr cf0 cf1 [::]
-| execr_star : forall cf2 t, execr cf0 cf2 t ->
- tr cf2 = cf1 -> execr cf0 cf1 (t ++ [:: cf2]).
-
-Lemma execP : forall cf0 cf1 t, exec cf0 cf1 t <-> execr cf0 cf1 t.
-Proof.
-move=> cf0 cf1 t; split => [] Ecf.
- elim: Ecf.
- match goal with |- forall cf2 cf3 : T, tr cf2 = cf3 ->
- execr cf2 cf3 [::] => myadmit | _ => fail end.
- match goal with |- forall (cf2 cf3 cf4 : T) (t0 : seq T),
- tr cf2 = cf4 -> exec cf4 cf3 t0 -> execr cf4 cf3 t0 ->
- execr cf2 cf3 (cf4 :: t0) => myadmit | _ => fail end.
-elim: Ecf.
- match goal with |- forall cf2 : T,
- tr cf0 = cf2 -> exec cf0 cf2 [::] => myadmit | _ => fail end.
-match goal with |- forall (cf2 cf3 : T) (t0 : seq T),
- execr cf0 cf3 t0 -> exec cf0 cf3 t0 -> tr cf3 = cf2 ->
- exec cf0 cf2 (t0 ++ [:: cf3]) => myadmit | _ => fail end.
-Qed.
-
-From mathcomp
-Require Import seq div prime bigop.
-
-Lemma mem_primes : forall p n,
- (p \in primes n) = [&& prime p, n > 0 & p %| n].
-Proof.
-move=> p n; rewrite andbCA; case: posnP => [-> // | /= n_gt0].
-apply/mapP/andP=> [[[q e]]|[pr_p]] /=.
- case/mem_prime_decomp=> pr_q e_gt0; case/dvdnP=> u -> -> {p}.
- by rewrite -(prednK e_gt0) expnS mulnCA dvdn_mulr.
-rewrite {1}(prod_prime_decomp n_gt0) big_seq /=.
-elim/big_ind: _ => [| u v IHu IHv | [q e] /= mem_qe dv_p_qe].
-- by rewrite Euclid_dvd1.
-- by rewrite Euclid_dvdM //; case/orP.
-exists (q, e) => //=; case/mem_prime_decomp: mem_qe => pr_q _ _.
-by rewrite Euclid_dvdX // dvdn_prime2 // in dv_p_qe; case: eqP dv_p_qe.
-Qed.
-
-Lemma sub_in_partn : forall pi1 pi2 n,
- {in \pi(n), {subset pi1 <= pi2}} -> n`_pi1 %| n`_pi2.
-Proof.
-move=> pi1 pi2 n pi12; rewrite ![n`__]big_mkcond /=.
-elim/big_ind2: _ => // [*|p _]; first exact: dvdn_mul.
-rewrite lognE -mem_primes; case: ifP => pi1p; last exact: dvd1n.
-by case: ifP => pr_p; [rewrite pi12 | rewrite if_same].
-Qed.
-
-Fixpoint plus (m n : nat) {struct n} : nat :=
- match n with
- | 0 => m
- | S p => S (plus m p)
- end.
-
-Definition plus_equation :
-forall m n : nat,
- plus m n =
- match n with
- | 0 => m
- | p.+1 => (plus m p).+1
- end
-:=
-fun m n : nat =>
-match
- n as n0
- return
- (forall m0 : nat,
- plus m0 n0 =
- match n0 with
- | 0 => m0
- | p.+1 => (plus m0 p).+1
- end)
-with
-| 0 => @erefl nat
-| n0.+1 => fun m0 : nat => erefl (plus m0 n0).+1
-end m.
-
-Definition plus_rect :
-forall (m : nat) (P : nat -> nat -> Type),
- (forall n : nat, n = 0 -> P 0 m) ->
- (forall n p : nat,
- n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) ->
- forall n : nat, P n (plus m n)
-:=
-fun (m : nat) (P : nat -> nat -> Type)
- (f0 : forall n : nat, n = 0 -> P 0 m)
- (f : forall n p : nat,
- n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) =>
-fix plus0 (n : nat) : P n (plus m n) :=
- eq_rect_r [eta P n]
- (let f1 := f0 n in
- let f2 := f n in
- match
- n as n0
- return
- (n = n0 ->
- (forall p : nat,
- n0 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) ->
- (n0 = 0 -> P 0 m) ->
- P n0 match n0 with
- | 0 => m
- | p.+1 => (plus m p).+1
- end)
- with
- | 0 =>
- fun (_ : n = 0)
- (_ : forall p : nat,
- 0 = p.+1 ->
- P p (plus m p) -> P p.+1 (plus m p).+1)
- (f4 : 0 = 0 -> P 0 m) => unkeyed (f4 (erefl 0))
- | n0.+1 =>
- fun (_ : n = n0.+1)
- (f3 : forall p : nat,
- n0.+1 = p.+1 ->
- P p (plus m p) -> P p.+1 (plus m p).+1)
- (_ : n0.+1 = 0 -> P 0 m) =>
- let f5 :=
- let p := n0 in
- let H := erefl n0.+1 : n0.+1 = p.+1 in f3 p H in
- unkeyed (let Hrec := plus0 n0 in f5 Hrec)
- end (erefl n) f2 f1) (plus_equation m n).
-
-Definition plus_ind := plus_rect.
-
-Lemma exF x y z: plus (plus x y) z = plus x (plus y z).
-elim/plus_ind: z / (plus _ z).
-match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
-Undo 2.
-elim/plus_ind: (plus _ z).
-match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
-Undo 2.
-elim/plus_ind: {z}(plus _ z).
-match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
-Undo 2.
-elim/plus_ind: {z}_.
-match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
-Undo 2.
-elim/plus_ind: z / _.
-match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end.
- done.
-by move=> _ p _ ->.
-Qed.
-
-(* BUG elim-False *)
-Lemma testeF : False -> 1 = 0.
-Proof. by elim. Qed.
diff --git a/mathcomp/ssrtest/elim2.v b/mathcomp/ssrtest/elim2.v
deleted file mode 100644
index 4ba0b47..0000000
--- a/mathcomp/ssrtest/elim2.v
+++ /dev/null
@@ -1,63 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import eqtype ssrbool ssrnat seq div fintype finfun path bigop.
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-Lemma big_load R (K K' : R -> Type) idx op I r (P : pred I) F :
- let s := \big[op/idx]_(i <- r | P i) F i in
- K s * K' s -> K' s.
-Proof. by move=> /= [_]. Qed.
-Arguments big_load [R] K [K' idx op I r P F].
-
-Section Elim1.
-
-Variables (R : Type) (K : R -> Type) (f : R -> R).
-Variables (idx : R) (op op' : R -> R -> R).
-
-Hypothesis Kid : K idx.
-
-Ltac ASSERT1 := match goal with |- (K idx) => myadmit end.
-Ltac ASSERT2 K := match goal with |- (forall x1 : R, R ->
- forall y1 : R, R -> K x1 -> K y1 -> K (op x1 y1)) => myadmit end.
-
-
-Lemma big_rec I r (P : pred I) F
- (Kop : forall i x, P i -> K x -> K (op (F i) x)) :
- K (\big[op/idx]_(i <- r | P i) F i).
-Proof.
-elim/big_ind2: {-}_.
- ASSERT1. ASSERT2 K. match goal with |- (forall i : I, is_true (P i) -> K (F i)) => myadmit end. Undo 4.
-elim/big_ind2: _ / {-}_.
- ASSERT1. ASSERT2 K. match goal with |- (forall i : I, is_true (P i) -> K (F i)) => myadmit end. Undo 4.
-
-elim/big_rec2: (\big[op/idx]_(i <- r | P i) op idx (F i))
- / (\big[op/idx]_(i <- r | P i) F i).
- ASSERT1. match goal with |- (forall i : I, R -> forall y2 : R, is_true (P i) -> K y2 -> K (op (F i) y2)) => myadmit end. Undo 3.
-
-elim/(big_load (phantom R)): _.
- Undo.
-
-Fail elim/big_rec2: {2}_.
-
-elim/big_rec2: (\big[op/idx]_(i <- r | P i) F i)
- / {1}(\big[op/idx]_(i <- r | P i) F i).
- Undo.
-
-elim/(big_load (phantom R)): _.
-Undo.
-
-Fail elim/big_rec2: _ / {2}(\big[op/idx]_(i <- r | P i) F i).
-Admitted.
-
-Definition morecomplexthannecessary A (P : A -> A -> Prop) x y := P x y.
-
-Lemma grab A (P : A -> A -> Prop) n m : (n = m) -> (P n n) -> morecomplexthannecessary A P n m.
-by move->.
-Qed.
-
-Goal forall n m, m + (n + m) = m + (n * 1 + m).
-Proof. move=> n m; elim/grab : (_ * _) / {1}n => //; exact: muln1. Qed.
-
-End Elim1.
diff --git a/mathcomp/ssrtest/elim_pattern.v b/mathcomp/ssrtest/elim_pattern.v
deleted file mode 100644
index 24bd0fb..0000000
--- a/mathcomp/ssrtest/elim_pattern.v
+++ /dev/null
@@ -1,19 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool eqtype ssrnat.
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-Lemma test x : (x == x) = (x + x.+1 == 2 * x + 1).
-case: (X in _ = X) / eqP => _.
-match goal with |- (x == x) = true => myadmit end.
-match goal with |- (x == x) = false => myadmit end.
-Qed.
-
-Lemma test1 x : (x == x) = (x + x.+1 == 2 * x + 1).
-elim: (x in RHS).
-match goal with |- (x == x) = _ => myadmit end.
-match goal with |- forall n, (x == x) = _ -> (x == x) = _ => myadmit end.
-Qed.
-
diff --git a/mathcomp/ssrtest/explain_match.v b/mathcomp/ssrtest/explain_match.v
deleted file mode 100644
index 2c7bc2f..0000000
--- a/mathcomp/ssrtest/explain_match.v
+++ /dev/null
@@ -1,13 +0,0 @@
-Require Import ssrmatching.
-Require Import ssreflect ssrbool ssrnat.
-
-Definition addnAC := (addnA, addnC).
-
-Lemma test x y z : x + y + z = x + y.
-
-ssrinstancesoftpat (_ + _).
-ssrinstancesofruleL2R addnC.
-ssrinstancesofruleR2L addnA.
-ssrinstancesofruleR2L addnAC.
-Fail ssrinstancesoftpat (_ + _ in RHS). (* Not implemented *)
-Admitted.
diff --git a/mathcomp/ssrtest/first_n.v b/mathcomp/ssrtest/first_n.v
deleted file mode 100644
index 126f8a5..0000000
--- a/mathcomp/ssrtest/first_n.v
+++ /dev/null
@@ -1,12 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool.
-
-Lemma test : False -> (bool -> False -> True -> True) -> True.
-move=> F; let w := constr:(2) in apply; last w first.
-- by apply: F.
-- by apply: I.
-by apply: true.
-Qed. \ No newline at end of file
diff --git a/mathcomp/ssrtest/gen_have.v b/mathcomp/ssrtest/gen_have.v
deleted file mode 100644
index d08cabe..0000000
--- a/mathcomp/ssrtest/gen_have.v
+++ /dev/null
@@ -1,165 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype ssrnat.
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-Axiom P : nat -> Prop.
-Lemma clear_test (b1 b2 : bool) : b2 = b2.
-Proof.
-(* wlog gH : (b3 := b2) / b2 = b3. myadmit. *)
-gen have {b1} H, gH : (b3 := b2) (w := erefl 3) / b2 = b3.
- myadmit.
-Fail exact (H b1).
-exact (H b2 (erefl _)).
-Qed.
-
-
-Lemma test1 n (ngt0 : 0 < n) : P n.
-gen have lt2le, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0).
- match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
-Check (lt2le : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
-Check (H1 : 0 <= n).
-Check (H2 : n != 0).
-myadmit.
-Qed.
-
-Lemma test2 n (ngt0 : 0 < n) : P n.
-gen have _, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0).
- match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
-lazymatch goal with
- | lt2le : forall n : nat, is_true(0 < n) -> is_true((0 <= n) && (n != 0))
- |- _ => fail "not cleared"
- | _ => idtac end.
-Check (H1 : 0 <= n).
-Check (H2 : n != 0).
-myadmit.
-Qed.
-
-Lemma test3 n (ngt0 : 0 < n) : P n.
-gen have H : n ngt0 / (0 <= n) && (n != 0).
- match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
-Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
-myadmit.
-Qed.
-
-Lemma test4 n (ngt0 : 0 < n) : P n.
-gen have : n ngt0 / (0 <= n) && (n != 0).
- match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
-move=> H.
-Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
-myadmit.
-Qed.
-
-Lemma test4bis n (ngt0 : 0 < n) : P n.
-wlog suff : n ngt0 / (0 <= n) && (n != 0); last first.
- match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end.
-move=> H.
-Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
-myadmit.
-Qed.
-
-Lemma test5 n (ngt0 : 0 < n) : P n.
-Fail gen have : / (0 <= n) && (n != 0).
-Abort.
-
-Lemma test6 n (ngt0 : 0 < n) : P n.
-gen have : n ngt0 / (0 <= n) && (n != 0) by myadmit.
-Abort.
-
-Lemma test7 n (ngt0 : 0 < n) : P n.
-Fail gen have : n / (0 <= n) && (n != 0).
-Abort.
-
-Lemma test3wlog2 n (ngt0 : 0 < n) : P n.
-gen have H : (m := n) ngt0 / (0 <= m) && (m != 0).
- match goal with
- ngt0 : is_true(0 < m) |- is_true((0 <= m) && (m != 0)) => myadmit end.
-Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)).
-myadmit.
-Qed.
-
-Lemma test3wlog3 n (ngt0 : 0 < n) : P n.
-gen have H : {n} (m := n) (n := 0) ngt0 / (0 <= m) && (m != n).
- match goal with
- ngt0 : is_true(n < m) |- is_true((0 <= m) && (m != n)) => myadmit end.
-Check (H : forall m n : nat, n < m -> (0 <= m) && (m != n)).
-myadmit.
-Qed.
-
-Lemma testw1 n (ngt0 : 0 < n) : n <= 0.
-wlog H : (z := 0) (m := n) ngt0 / m != 0.
- match goal with
- |- (forall z m,
- is_true(z < m) -> is_true(m != 0) -> is_true(m <= z)) ->
- is_true(n <= 0) => myadmit end.
-Check(n : nat).
-Check(m : nat).
-Check(z : nat).
-Check(ngt0 : z < m).
-Check(H : m != 0).
-myadmit.
-Qed.
-
-Lemma testw2 n (ngt0 : 0 < n) : n <= 0.
-wlog H : (m := n) (z := (X in n <= X)) ngt0 / m != z.
- match goal with
- |- (forall m z : nat,
- is_true(0 < m) -> is_true(m != z) -> is_true(m <= z)) ->
- is_true(n <= 0) => idtac end.
-Restart.
-wlog H : (m := n) (one := (X in X <= _)) ngt0 / m != one.
- match goal with
- |- (forall m one : nat,
- is_true(one <= m) -> is_true(m != one) -> is_true(m <= 0)) ->
- is_true(n <= 0) => idtac end.
-Restart.
-wlog H : {n} (m := n) (z := (X in _ <= X)) ngt0 / m != z.
- match goal with
- |- (forall m z : nat,
- is_true(0 < z) -> is_true(m != z) -> is_true(m <= 0)) ->
- is_true(n <= 0) => idtac end.
- myadmit.
-Fail Check n.
-myadmit.
-Qed.
-
-Section Test.
-Variable x : nat.
-Definition addx y := y + x.
-
-Lemma testw3 (m n : nat) (ngt0 : 0 < n) : n <= addx x.
-wlog H : (n0 := n) (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y.
- myadmit.
-myadmit.
-Qed.
-
-
-Definition twox := x + x.
-Definition bis := twox.
-
-Lemma testw3x n (ngt0 : 0 < n) : n + x <= twox.
-wlog H : (y := x) (@twoy := (X in _ <= X)) / twoy = 2 * y.
- match goal with
- |- (forall y : nat,
- let twoy := y + y in
- twoy = 2 * y -> is_true(n + y <= twoy)) ->
- is_true(n + x <= twox) => myadmit end.
-Restart.
-wlog H : (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y.
- match goal with
- |- (forall y : nat,
- let twoy := twox in
- twoy = 2 * y -> is_true(n + y <= twoy)) ->
- is_true(n + x <= twox) => myadmit end.
-myadmit.
-Qed.
-
-End Test.
-
-Lemma test_in n k (def_k : k = 0) (ngtk : k < n) : P n.
-rewrite -(add0n n) in {def_k k ngtk} (m := k) (def_m := def_k) (ngtm := ngtk).
-rewrite def_m add0n in {ngtm} (e := erefl 0 ) (ngt0 := ngtm) => {def_m}.
-myadmit.
-Qed.
diff --git a/mathcomp/ssrtest/gen_pattern.v b/mathcomp/ssrtest/gen_pattern.v
deleted file mode 100644
index eb4aee8..0000000
--- a/mathcomp/ssrtest/gen_pattern.v
+++ /dev/null
@@ -1,24 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrnat.
-
-Notation "( a 'in' c )" := (a + c) (only parsing) : myscope.
-Delimit Scope myscope with myscope.
-
-Notation "( a 'in' c )" := (a + c) (only parsing).
-
-Lemma foo x y : x + x.+1 = x.+1 + y.
-move: {x} (x.+1) {1}x y (x.+1 in RHS).
- match goal with |- forall a b c d, b + a = d + c => idtac end.
-Admitted.
-
-Lemma bar x y : x + x.+1 = x.+1 + y.
-move E: ((x.+1 in y)) => w.
- match goal with |- x + x.+1 = w => rewrite -{w}E end.
-move E: (x.+1 in y)%myscope => w.
- match goal with |- x + x.+1 = w => rewrite -{w}E end.
-move E: ((x + y).+1 as RHS) => w.
- match goal with |- x + x.+1 = w => rewrite -{}E -addSn end.
-Admitted. \ No newline at end of file
diff --git a/mathcomp/ssrtest/have_TC.v b/mathcomp/ssrtest/have_TC.v
deleted file mode 100644
index c95b224..0000000
--- a/mathcomp/ssrtest/have_TC.v
+++ /dev/null
@@ -1,40 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-Class foo (T : Type) := { n : nat }.
-Instance five : foo nat := {| n := 5 |}.
-
-Definition bar T {f : foo T} m : Prop :=
- @n _ f = m.
-
-Eval compute in (bar nat 7).
-
-Lemma a : True.
-set toto := bar _ 8.
-have titi : bar _ 5.
- reflexivity.
-have titi2 : bar _ 5 := .
- Fail reflexivity.
- by myadmit.
-have totoc (H : bar _ 5) : 3 = 3 := eq_refl.
-move/totoc: nat => _.
-exact I.
-Qed.
-
-Set SsrHave NoTCResolution.
-
-Lemma a' : True.
-set toto := bar _ 8.
-have titi : bar _ 5.
- Fail reflexivity.
- by myadmit.
-have titi2 : bar _ 5 := .
- Fail reflexivity.
- by myadmit.
-have totoc (H : bar _ 5) : 3 = 3 := eq_refl.
-move/totoc: nat => _.
-exact I.
-Qed.
diff --git a/mathcomp/ssrtest/have_transp.v b/mathcomp/ssrtest/have_transp.v
deleted file mode 100644
index 713f176..0000000
--- a/mathcomp/ssrtest/have_transp.v
+++ /dev/null
@@ -1,41 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype ssrnat seq choice fintype.
-
-
-Lemma test1 n : n >= 0.
-Proof.
-have [:s1] @h m : 'I_(n+m).+1.
- apply: Sub 0 _.
- abstract: s1 m.
- by auto.
-cut (forall m, 0 < (n+m).+1); last assumption.
-rewrite [_ 1 _]/= in s1 h *.
-by [].
-Qed.
-
-Lemma test2 n : n >= 0.
-Proof.
-have [:s1] @h m : 'I_(n+m).+1 := Sub 0 (s1 m).
- move=> m; reflexivity.
-cut (forall m, 0 < (n+m).+1); last assumption.
-by [].
-Qed.
-
-Lemma test3 n : n >= 0.
-Proof.
-Fail have [:s1] @h m : 'I_(n+m).+1 by apply: (Sub 0 (s1 m)); auto.
-have [:s1] @h m : 'I_(n+m).+1 by apply: (Sub 0); abstract: s1 m; auto.
-cut (forall m, 0 < (n+m).+1); last assumption.
-by [].
-Qed.
-
-Lemma test4 n : n >= 0.
-Proof.
-have @h m : 'I_(n+m).+1 by apply: (Sub 0); abstract auto.
-by [].
-Qed.
-
-
diff --git a/mathcomp/ssrtest/have_view_idiom.v b/mathcomp/ssrtest/have_view_idiom.v
deleted file mode 100644
index 07cfa11..0000000
--- a/mathcomp/ssrtest/have_view_idiom.v
+++ /dev/null
@@ -1,9 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool.
-
-Lemma test (a b : bool) (pab : a && b) : b.
-have {pab} /= /andP [pa -> //] /= : true && (a && b) := pab.
-Qed.
diff --git a/mathcomp/ssrtest/havesuff.v b/mathcomp/ssrtest/havesuff.v
deleted file mode 100644
index 4b0193a..0000000
--- a/mathcomp/ssrtest/havesuff.v
+++ /dev/null
@@ -1,75 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Variables P G : Prop.
-
-Lemma test1 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-have suff {pg} H : P.
- match goal with |- P -> G => move=> _; exact: pg p | _ => fail end.
-match goal with H : P -> G |- G => exact: H p | _ => fail end.
-Qed.
-
-Lemma test2 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-have suffices {pg} H : P.
- match goal with |- P -> G => move=> _; exact: pg p | _ => fail end.
-match goal with H : P -> G |- G => exact: H p | _ => fail end.
-Qed.
-
-Lemma test3 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-suff have {pg} H : P.
- match goal with H : P |- G => exact: pg H | _ => fail end.
-match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end.
-Qed.
-
-Lemma test4 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-suffices have {pg} H: P.
- match goal with H : P |- G => exact: pg H | _ => fail end.
-match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end.
-Qed.
-
-(*
-Lemma test5 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-suff have {pg} H : P := pg H.
-match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end.
-Qed.
-*)
-
-(*
-Lemma test6 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-suff have {pg} H := pg H.
-match goal with |- (P -> G) -> G => move=> H; exact: H p | _ => fail end.
-Qed.
-*)
-
-Lemma test7 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-have suff {pg} H : P := pg.
-match goal with H : P -> G |- G => exact: H p | _ => fail end.
-Qed.
-
-Lemma test8 : (P -> G) -> P -> G.
-Proof.
-move=> pg p.
-have suff {pg} H := pg.
-match goal with H : P -> G |- G => exact: H p | _ => fail end.
-Qed.
-
-Goal forall x y : bool, x = y -> x = y.
-move=> x y E.
-by have {x E} -> : x = y by [].
-Qed. \ No newline at end of file
diff --git a/mathcomp/ssrtest/if_isnt.v b/mathcomp/ssrtest/if_isnt.v
deleted file mode 100644
index 08e242e..0000000
--- a/mathcomp/ssrtest/if_isnt.v
+++ /dev/null
@@ -1,13 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Definition unopt (x : option bool) :=
- if x isn't Some x then false else x.
-
-Lemma test1 : unopt None = false /\
- unopt (Some false) = false /\
- unopt (Some true) = true.
-Proof. by auto. Qed.
-
diff --git a/mathcomp/ssrtest/indetLHS.v b/mathcomp/ssrtest/indetLHS.v
deleted file mode 100644
index edaf128..0000000
--- a/mathcomp/ssrtest/indetLHS.v
+++ /dev/null
@@ -1,8 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrnat.
-Goal 5 = 3.
-Fail (rewrite -(addnK _ 5)).
-Abort. \ No newline at end of file
diff --git a/mathcomp/ssrtest/intro_beta.v b/mathcomp/ssrtest/intro_beta.v
deleted file mode 100644
index 4402be9..0000000
--- a/mathcomp/ssrtest/intro_beta.v
+++ /dev/null
@@ -1,15 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Axiom T : Type.
-
-Definition C (P : T -> Prop) := forall x, P x.
-
-Axiom P : T -> T -> Prop.
-
-Lemma foo : C (fun x => forall y, let z := x in P y x).
-move=> a b.
-match goal with |- (let y := _ in _) => idtac end.
-Admitted.
diff --git a/mathcomp/ssrtest/intro_noop.v b/mathcomp/ssrtest/intro_noop.v
deleted file mode 100644
index 9b75bcf..0000000
--- a/mathcomp/ssrtest/intro_noop.v
+++ /dev/null
@@ -1,28 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool.
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-Lemma v : True -> bool -> bool. Proof. by []. Qed.
-
-Reserved Notation " a -/ b " (at level 0).
-Reserved Notation " a -// b " (at level 0).
-Reserved Notation " a -/= b " (at level 0).
-Reserved Notation " a -//= b " (at level 0).
-
-Lemma test : forall a b c, a || b || c.
-Proof.
-move=> ---a--- - -/=- -//- -/=- -//=- b [|-].
-move: {-}a => /v/v-H; have _ := H I I.
-Fail move: {-}a {H} => /v-/v-H.
-have - -> : a = (id a) by [].
-have --> : a = (id a) by [].
-have - - _ : a = (id a) by [].
-have -{1}-> : a = (id a) by [].
- by myadmit.
-move: a.
-case: b => -[] //.
-by myadmit.
-Qed.
diff --git a/mathcomp/ssrtest/ipatalternation.v b/mathcomp/ssrtest/ipatalternation.v
deleted file mode 100644
index 65f3760..0000000
--- a/mathcomp/ssrtest/ipatalternation.v
+++ /dev/null
@@ -1,8 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Lemma test1 : Prop -> Prop -> Prop -> Prop -> Prop -> True = False -> Prop -> True \/ True.
-by move=> A /= /= /= B C {A} {B} ? _ {C} {1}-> *; right.
-Qed. \ No newline at end of file
diff --git a/mathcomp/ssrtest/ltac_have.v b/mathcomp/ssrtest/ltac_have.v
deleted file mode 100644
index 1b30951..0000000
--- a/mathcomp/ssrtest/ltac_have.v
+++ /dev/null
@@ -1,32 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrnat.
-
-Ltac SUFF1 h t := suff h x (p := x < 0) : t.
-Ltac SUFF2 h t := suff h x (p := x < 0) : t by apply h.
-Ltac HAVE1 h t u := have h x (p := x < 0) : t := u.
-Ltac HAVE2 h t := have h x (p := x < 0) : t by [].
-Ltac HAVE3 h t := have h x (p := x < 0) : t.
-Ltac HAVES h t := have suff h : t.
-Ltac SUFFH h t := suff have h : t.
-
-Lemma foo z : z < 0.
-SUFF1 h1 (z+1 < 0).
-Undo.
-SUFF2 h2 (z < 0).
-Undo.
-HAVE1 h3 (z = z) (refl_equal z).
-Undo.
-HAVE2 h4 (z = z).
-Undo.
-HAVE3 h5 (z < 0).
-Undo.
-HAVES h6 (z < 1).
-Undo.
-SUFFH h7 (z < 1).
-Undo.
-Admitted.
-
-
diff --git a/mathcomp/ssrtest/ltac_in.v b/mathcomp/ssrtest/ltac_in.v
deleted file mode 100644
index cec244d..0000000
--- a/mathcomp/ssrtest/ltac_in.v
+++ /dev/null
@@ -1,18 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool eqtype ssrnat ssrfun.
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Import Prenex Implicits.
-
-(* error 1 *)
-
-Ltac subst1 H := move: H; rewrite {1} addnC; move => H.
-Ltac subst2 H := rewrite addnC in H.
-
-Goal ( forall a b: nat, b+a = 0 -> b+a=0).
-Proof. move=> a b hyp. subst1 hyp. subst2 hyp. done. Qed.
-
diff --git a/mathcomp/ssrtest/move_after.v b/mathcomp/ssrtest/move_after.v
deleted file mode 100644
index a6c455c..0000000
--- a/mathcomp/ssrtest/move_after.v
+++ /dev/null
@@ -1,9 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Goal True -> True -> True.
-move=> H1 H2.
-move H1 after H2.
-Admitted.
diff --git a/mathcomp/ssrtest/multiview.v b/mathcomp/ssrtest/multiview.v
deleted file mode 100644
index 57a26ff..0000000
--- a/mathcomp/ssrtest/multiview.v
+++ /dev/null
@@ -1,60 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrnat.
-
-Goal forall m n p, n <= p -> m <= n -> m <= p.
-by move=> m n p le_n_p /leq_trans; apply.
-Undo 1.
-by move=> m n p le_n_p /leq_trans /(_ le_n_p) le_m_p; exact: le_m_p.
-Undo 1.
-by move=> m n p le_n_p /leq_trans ->.
-Qed.
-
-Goal forall P Q X : Prop, Q -> (True -> X -> Q = P) -> X -> P.
-by move=> P Q X q V /V <-.
-Qed.
-
-Lemma test0: forall a b, a && a && b -> b.
-by move=> a b; repeat move=> /andP []; move=> *.
-Qed.
-
-Lemma test1 : forall a b, a && b -> b.
-by move=> a b /andP /andP /andP [] //.
-Qed.
-
-Lemma test2 : forall a b, a && b -> b.
-by move=> a b /andP /andP /(@andP a) [] //.
-Qed.
-
-Lemma test3 : forall a b, a && (b && b) -> b.
-by move=> a b /andP [_ /andP [_ //]].
-Qed.
-
-Lemma test4: forall a b, a && b = b && a.
-by move=> a b; apply/andP/andP=> ?; apply/andP/andP/andP; rewrite andbC; apply/andP.
-Qed.
-
-Lemma test5: forall C I A O, (True -> O) -> (O -> A) -> (True -> A -> I) -> (I -> C) -> C.
-by move=> c i a o O A I C; apply/C/I/A/O.
-Qed.
-
-Lemma test6: forall A B, (A -> B) -> A -> B.
-move=> A B A_to_B a; move/A_to_B in a; exact: a.
-Qed.
-
-Lemma test7: forall A B, (A -> B) -> A -> B.
-move=> A B A_to_B a; apply A_to_B in a; exact: a.
-Qed.
-
-From mathcomp
-Require Import ssrfun eqtype ssrnat div seq choice fintype finfun finset.
-
-Lemma test8 (T : finType) (A B : {set T}) x (Ax : x \in A) (_ : B = A) : x \in B.
-apply/subsetP: x Ax.
-by rewrite H subxx.
-Qed.
-
-
-
diff --git a/mathcomp/ssrtest/occarrow.v b/mathcomp/ssrtest/occarrow.v
deleted file mode 100644
index 927473f..0000000
--- a/mathcomp/ssrtest/occarrow.v
+++ /dev/null
@@ -1,15 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import eqtype ssrnat.
-
-Lemma test1 : forall n m : nat, n = m -> m * m + n * n = n * n + n * n.
-move=> n m E; have [{2}-> _] : n * n = m * n /\ True by move: E => {1}<-.
-by move: E => {3}->.
-Qed.
-
-Lemma test2 : forall n m : nat, True /\ (n = m -> n * n = n * m).
-by move=> n m; constructor=> [|{2}->].
-Qed.
-
diff --git a/mathcomp/ssrtest/patnoX.v b/mathcomp/ssrtest/patnoX.v
deleted file mode 100644
index a879b37..0000000
--- a/mathcomp/ssrtest/patnoX.v
+++ /dev/null
@@ -1,9 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool.
-Goal forall x, x && true = x.
-move=> x.
-Fail (rewrite [X in _ && _]andbT).
-Abort.
diff --git a/mathcomp/ssrtest/primproj.v b/mathcomp/ssrtest/primproj.v
deleted file mode 100644
index 05476fb..0000000
--- a/mathcomp/ssrtest/primproj.v
+++ /dev/null
@@ -1,157 +0,0 @@
-
-
-Require Import Setoid.
-Set Primitive Projections.
-
-
-Module CoqBug.
-Record foo A := Foo { foo_car : A }.
-
-Definition bar : foo _ := Foo nat 10.
-
-Variable alias : forall A, foo A -> A.
-
-Parameter e : @foo_car = alias.
-
-Goal foo_car _ bar = alias _ bar.
-Proof.
-(* Coq equally fails *)
-Fail rewrite -> e.
-Fail rewrite e at 1.
-Fail setoid_rewrite e.
-Fail setoid_rewrite e at 1.
-Set Keyed Unification.
-Fail rewrite -> e.
-Fail rewrite e at 1.
-Fail setoid_rewrite e.
-Fail setoid_rewrite e at 1.
-Admitted.
-
-End CoqBug.
-
-(* ----------------------------------------------- *)
-
-From mathcomp Require Import ssreflect.
-
-Set Primitive Projections.
-
-Module T1.
-
-Record foo A := Foo { foo_car : A }.
-
-Definition bar : foo _ := Foo nat 10.
-
-Goal foo_car _ bar = 10.
-Proof.
-match goal with
-| |- foo_car _ bar = 10 => idtac
-end.
-rewrite /foo_car.
-(*
-Fail match goal with
-| |- foo_car _ bar = 10 => idtac
-end.
-*)
-Admitted.
-
-End T1.
-
-
-Module T2.
-
-Record foo {A} := Foo { foo_car : A }.
-
-Definition bar : foo := Foo nat 10.
-
-Goal foo_car bar = 10.
-match goal with
-| |- foo_car bar = 10 => idtac
-end.
-rewrite /foo_car.
-(*
-Fail match goal with
-| |- foo_car bar = 10 => idtac
-end.
-*)
-Admitted.
-
-End T2.
-
-
-Module T3.
-
-Record foo {A} := Foo { foo_car : A }.
-
-Definition bar : foo := Foo nat 10.
-
-Goal foo_car bar = 10.
-Proof.
-rewrite -[foo_car _]/(id _).
-match goal with |- id _ = 10 => idtac end.
-Admitted.
-
-Goal foo_car bar = 10.
-Proof.
-set x := foo_car _.
-match goal with |- x = 10 => idtac end.
-Admitted.
-
-End T3.
-
-Module T4.
-
-Inductive seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
-Arguments unseal {_ _} _.
-Arguments seal_eq {_ _} _.
-
-Record uPred : Type := IProp { uPred_holds :> Prop }.
-
-Definition uPred_or_def (P Q : uPred) : uPred :=
- {| uPred_holds := P \/ Q |}.
-Definition uPred_or_aux : seal (@uPred_or_def). by eexists. Qed.
-Definition uPred_or := unseal uPred_or_aux.
-Definition uPred_or_eq: @uPred_or = @uPred_or_def := seal_eq uPred_or_aux.
-
-Lemma foobar (P1 P2 Q : uPred) :
- (P1 <-> P2) -> (uPred_or P1 Q) <-> (uPred_or P2 Q).
-Proof.
- rewrite uPred_or_eq. (* This fails. *)
-Admitted.
-
-End T4.
-
-
-Module DesignFlaw.
-
-Record foo A := Foo { foo_car : A }.
-Definition bar : foo _ := Foo nat 10.
-
-Definition app (f : foo nat -> nat) x := f x.
-
-Goal app (foo_car _) bar = 10.
-Proof.
-unfold app. (* mkApp should produce a Proj *)
-Fail set x := (foo_car _ _).
-Admitted.
-
-End DesignFlaw.
-
-
-Module Bug.
-
-Record foo A := Foo { foo_car : A }.
-
-Definition bar : foo _ := Foo nat 10.
-
-Variable alias : forall A, foo A -> A.
-
-Parameter e : @foo_car = alias.
-
-Goal foo_car _ bar = alias _ bar.
-Proof.
-Fail rewrite e. (* Issue: #86 *)
-Admitted.
-
-End Bug.
-
-
diff --git a/mathcomp/ssrtest/rewpatterns.v b/mathcomp/ssrtest/rewpatterns.v
deleted file mode 100644
index 22ca265..0000000
--- a/mathcomp/ssrtest/rewpatterns.v
+++ /dev/null
@@ -1,181 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrfun eqtype ssrnat.
-
-Lemma test1 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
-by move=> x y f; rewrite [_.+1](addnC x.+1).
-Qed.
-
-Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y).
-by move=> x y f; rewrite {2}[in f _]addnC.
-Qed.
-
-Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)).
-by move=> x y f; rewrite [in f _](addnC y).
-Qed.
-
-Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x) = f(x + y) + f(y + x) + f(x + y).
-by move=> x y f; rewrite {1 3}[in f _](addnC y).
-Qed.
-
-(* patterns catching bound vars not supported *)
-Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)).
-by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *)
-Qed.
-
-Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x).
-by move=> x y f; rewrite [in X in (f _ X)](addnC y).
-Qed.
-
-Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x =
- x + f (x + y) x + f (y + x) x.
-by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
-Qed.
-
-Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x =
- x + f (x + y) x + f (y + y) x.
-by move=> x y f E; rewrite {2}[in X in (f X _)]E.
-Qed.
-
-Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x =
- x + f (fun _ => x + y) x + f (fun _ => y + x) x.
-by move=> x y f E; rewrite {2 3}[in X in (f X _)]E.
-Qed.
-
-Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x =
- x + f (fun _ _ _ => x + y) x.
-by move=> x y f E; rewrite {2}[in X in (f X _)]E.
-Qed.
-
-Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x =
- x + f (x + y) x + f (y + x) x.
-by move=> x y f E; rewrite {1}[X in (f X _)]addnC.
-Qed.
-
-Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
- x + f (x + y) x + f (y + y) (x + y).
-by move=> x y f E; rewrite {1}[in X in (f X X)]E.
-Qed.
-
-Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) =
- x + f (x + y) x + f (y + y) (y + y).
-by move=> x y f E; rewrite [in X in (f X X)]E.
-Qed.
-
-Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) =
- x + f (x + y) x + f (y + y) (y + y).
-by move=> x y f E; rewrite -[X in (f X X)]E.
-Qed.
-
-Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x).
-by move=> x y f; rewrite [(x + y) in X in (f X)]addnC.
-Qed.
-
-Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1).
-by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC.
-Qed.
-
-Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0.
-Proof.
-rewrite [in f _]addSn.
-match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end.
-rewrite -[X in _ = X]addn0.
-match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end.
-rewrite -{2}[in X in _ = X](addn0 0).
-match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end.
-rewrite [_.+1 in X in f _ X](addnC x.+1).
-match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
-rewrite [x.+1 + y as X in f X _]addnC.
-match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end.
-Admitted.
-
-From mathcomp
-Require Import fintype ssrnat finset fingroup gproduct.
-
-Goal (forall (gT : finGroupType) (G H: {set gT}) (Z : {group gT}), G = Z).
-move=> gT G H K. suff: G \x H = K. case/dprodP=> {G H} [[G H -> -> defK _ _]].
-Admitted.
-
-Goal (exists x : 'I_3, x > 0).
-apply: (ex_intro _ (@Ordinal _ 2 _)).
-Admitted.
-
-Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0).
-move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)).
- by apply: leq_trans y_lt2 _.
-by move=> y_lt3; apply: leq_trans _ y_gt1.
-Qed.
-
-Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True).
-move=> x y P E.
-have: P x -> P y by suff: x = y by move=> ?; congr (P _).
-Admitted.
-
-Goal forall a : bool, a -> true && a || false && a.
-by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=.
-Qed.
-
-Goal forall a : bool, a -> true && a || false && a.
-by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=.
-Qed.
-
-Variable a : bool.
-Definition f x := x || a.
-Definition g x := f x.
-
-Goal a -> g false.
-by move=> Ha; rewrite [g _]/f orbC Ha.
-Qed.
-
-Goal a -> g false || g false.
-move=> Ha; rewrite {2}[g _]/f orbC Ha.
-match goal with |- (is_true (false || true || g false)) => done end.
-Qed.
-
-Goal a -> (a && a || true && a) && true.
-by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f.
-Qed.
-
-Goal a -> (a || a) && true.
-by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f.
-Qed.
-
-(*
-Lemma testM7: forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[x + y as X in _ = X]E.
-*)
-(*
-Lemma testM7': forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[y + x as X in _ = X]E.
-*)
-(*
-Lemma testM6: forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[y + x in X in _ = X]E.
-*)
-(*
-Lemma testM6': forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[x + y in X in _ = X]E.
-*)
-(*
-Lemma testM5: forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[in X in _ = X]E.
-*)
-(*
-Lemma testM4: forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[X in _ = X]E.
-*)
-(*
-Lemma testM3: forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[in _ = _]E.
-*)
-(*
-Lemma testM2 : forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -[x + y]E.
-*)
-(*
-Lemma testM1 : forall x y, 0 = x + y -> y = 0 -> x = 0 -> 0 = y + x.
-move=> x y E H1 H2; rewrite -E.
-*)
diff --git a/mathcomp/ssrtest/set_lamda.v b/mathcomp/ssrtest/set_lamda.v
deleted file mode 100644
index 6366130..0000000
--- a/mathcomp/ssrtest/set_lamda.v
+++ /dev/null
@@ -1,18 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool eqtype ssrnat ssrfun.
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Import Prenex Implicits.
-
-(* error 2 *)
-
-Goal (exists f: Set -> nat, f nat = 0).
-Proof. set (f:= fun _:Set =>0). by exists f. Qed.
-
-Goal (exists f: Set -> nat, f nat = 0).
-Proof. set f := (fun _:Set =>0). by exists f. Qed.
-
diff --git a/mathcomp/ssrtest/set_pattern.v b/mathcomp/ssrtest/set_pattern.v
deleted file mode 100644
index 5d22ef2..0000000
--- a/mathcomp/ssrtest/set_pattern.v
+++ /dev/null
@@ -1,57 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-Axiom daemon : False. Ltac myadmit := case: daemon.
-
-Ltac T1 x := match goal with |- _ => set t := (x in X in _ = X) end.
-Ltac T2 x := first [set t := (x in RHS)].
-Ltac T3 x := first [set t := (x in Y in _ = Y)|idtac].
-Ltac T4 x := set t := (x in RHS); idtac.
-Ltac T5 x := match goal with |- _ => set t := (x in RHS) | |- _ => idtac end.
-
-From mathcomp
-Require Import ssrbool ssrnat.
-
-Lemma foo x y : x.+1 = y + x.+1.
-set t := (_.+1 in RHS). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-set t := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end.
-set t := (x in _ = x). match goal with |- x.+1 = t => rewrite /t {t} end.
-set t := (x in X in _ = X).
- match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end.
-set t := (x in RHS). match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end.
-set t := (y + (1 + x) as X in _ = X).
- match goal with |- x.+1 = t => rewrite /t addSn add0n {t} end.
-set t := x.+1. match goal with |- t = y + t => rewrite /t {t} end.
-set t := (x).+1. match goal with |- t = y + t => rewrite /t {t} end.
-set t := ((x).+1 in X in _ = X).
- match goal with |- x.+1 = y + t => rewrite /t {t} end.
-set t := (x.+1 in RHS). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-T1 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-T2 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-T3 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-T4 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-T5 (x.+1). match goal with |- x.+1 = y + t => rewrite /t {t} end.
-rewrite [RHS]addnC.
- match goal with |- x.+1 = x.+1 + y => rewrite -[RHS]addnC end.
-rewrite -[in RHS](@subnK 1 x.+1) //.
- match goal with |- x.+1 = y + (x.+1 - 1 + 1) => rewrite subnK // end.
-have H : x.+1 = y by myadmit.
-set t := _.+1 in H |- *.
- match goal with H : t = y |- t = y + t => rewrite /t {t} in H * end.
-set t := (_.+1 in X in _ + X) in H |- *.
- match goal with H : x.+1 = y |- x.+1 = y + t => rewrite /t {t} in H * end.
-set t := 0. match goal with t := 0 |- x.+1 = y + x.+1 => clear t end.
-set t := y + _. match goal with |- x.+1 = t => rewrite /t {t} end.
-set t : nat := 0. clear t.
-set t : nat := (x in RHS).
- match goal with |- x.+1 = y + t.+1 => rewrite /t {t} end.
-set t : nat := RHS. match goal with |- x.+1 = t => rewrite /t {t} end.
-(* set t := 0 + _. *)
-(* set t := (x).+1 in X in _ + X in H |-. *)
-(* set t := (x).+1 in X in _ = X.*)
-Admitted.
-
-
-
-
diff --git a/mathcomp/ssrtest/ssrsyntax1.v b/mathcomp/ssrtest/ssrsyntax1.v
deleted file mode 100644
index 3fc202f..0000000
--- a/mathcomp/ssrtest/ssrsyntax1.v
+++ /dev/null
@@ -1,26 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require mathcomp.ssreflect.ssreflect.
-Require Import Arith.
-
-Goal (forall a b, a + b = b + a).
-intros.
-rewrite plus_comm, plus_comm.
-split.
-Abort.
-
-Module Foo.
-Import ssreflect.
-
-Goal (forall a b, a + b = b + a).
-intros.
-rewrite 2![_ + _]plus_comm.
-split.
-Abort.
-End Foo.
-
-Goal (forall a b, a + b = b + a).
-intros.
-rewrite plus_comm, plus_comm.
-split.
-Abort. \ No newline at end of file
diff --git a/mathcomp/ssrtest/ssrsyntax2.v b/mathcomp/ssrtest/ssrsyntax2.v
deleted file mode 100644
index 5e174a2..0000000
--- a/mathcomp/ssrtest/ssrsyntax2.v
+++ /dev/null
@@ -1,11 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssrtest.ssrsyntax1.
-Require Import Arith.
-
-Goal (forall a b, a + b = b + a).
-intros.
-rewrite plus_comm, plus_comm.
-split.
-Qed.
-
diff --git a/mathcomp/ssrtest/tc.v b/mathcomp/ssrtest/tc.v
deleted file mode 100644
index 20d190f..0000000
--- a/mathcomp/ssrtest/tc.v
+++ /dev/null
@@ -1,32 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-
-Class foo (A : Type) : Type := mkFoo { val : A }.
-Instance foo_pair {A B} {f1 : foo A} {f2 : foo B} : foo (A * B) | 2 :=
- {| val := (@val _ f1, @val _ f2) |}.
-Instance foo_nat : foo nat | 3 := {| val := 0 |}.
-
-Definition id {A} (x : A) := x.
-Axiom E : forall A {f : foo A} (a : A), id a = (@val _ f).
-
-Lemma test (x : nat) : id true = true -> id x = 0.
-Proof.
-Fail move=> _; reflexivity.
-Timeout 2 rewrite E => _; reflexivity.
-Qed.
-
-Definition P {A} (x : A) : Prop := x = x.
-Axiom V : forall A {f : foo A} (x:A), P x -> P (id x).
-
-Lemma test1 (x : nat) : P x -> P (id x).
-Proof.
-move=> px.
-Timeout 2 Fail move/V: px.
-Timeout 2 move/V : (px) => _.
-move/(V nat) : px => H; exact H.
-Qed.
-
-
-
diff --git a/mathcomp/ssrtest/testmx.v b/mathcomp/ssrtest/testmx.v
deleted file mode 100644
index 7d90d29..0000000
--- a/mathcomp/ssrtest/testmx.v
+++ /dev/null
@@ -1,37 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype ssrnat.
-From mathcomp
-Require Import ssralg matrix.
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Import Prenex Implicits.
-
-Local Open Scope nat_scope.
-Local Open Scope ring_scope.
-
-Section TestMx.
-
-Variable R : ringType.
-Variable M : 'M[R]_2.
-
-Goal 1%:M = M.
-Proof.
-Set Printing All.
-rewrite [(1%:M : 'M_(1+1)%N)]scalar_mx_block.
-(* Success with 1.2 *)
-(* With ssreflect 1.3, fails with error : *)
-(* Toplevel input, characters 0-44: *)
-(* Error: pattern (1%:M) does not match LHS of scalar_mx_block *)
-Admitted.
-
-Goal 1%:M = M.
-Proof.
-rewrite [1%:M](scalar_mx_block 1%N 1%N).
-(* Success in both ssr 1.2 and 1.3 *)
-Admitted.
-
-End TestMx. \ No newline at end of file
diff --git a/mathcomp/ssrtest/typeof.v b/mathcomp/ssrtest/typeof.v
deleted file mode 100644
index f2cb1d4..0000000
--- a/mathcomp/ssrtest/typeof.v
+++ /dev/null
@@ -1,12 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-
-Ltac mycut x :=
- let tx := type of x in
- cut tx.
-
-Lemma test : True.
-Proof.
-by mycut I=> [ x | ]; [ exact x | exact I ].
-Qed. \ No newline at end of file
diff --git a/mathcomp/ssrtest/unfold_Opaque.v b/mathcomp/ssrtest/unfold_Opaque.v
deleted file mode 100644
index 1ebcbe4..0000000
--- a/mathcomp/ssrtest/unfold_Opaque.v
+++ /dev/null
@@ -1,8 +0,0 @@
-Require Import ssreflect.
-
-Definition x := 3.
-Opaque x.
-
-Goal x = 3.
-Fail rewrite /x.
-Admitted. \ No newline at end of file
diff --git a/mathcomp/ssrtest/unkeyed.v b/mathcomp/ssrtest/unkeyed.v
deleted file mode 100644
index 5ab6eba..0000000
--- a/mathcomp/ssrtest/unkeyed.v
+++ /dev/null
@@ -1,22 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype.
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Import Prenex Implicits.
-
-Lemma test0 (a b : unit) f : a = f b.
-Proof. by rewrite !unitE. Qed.
-
-Lemma phE T : all_equal_to (Phant T). Proof. by case. Qed.
-
-Lemma test1 (a b : phant nat) f : a = f b.
-Proof. by rewrite !phE. Qed.
-
-Lemma eq_phE (T : eqType) : all_equal_to (Phant T). Proof. by case. Qed.
-
-Lemma test2 (a b : phant bool) f : a = locked (f b).
-Proof. by rewrite !eq_phE. Qed.
diff --git a/mathcomp/ssrtest/view_case.v b/mathcomp/ssrtest/view_case.v
deleted file mode 100644
index e9104a9..0000000
--- a/mathcomp/ssrtest/view_case.v
+++ /dev/null
@@ -1,22 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrnat eqtype seq fintype zmodp.
-
-Axiom P : forall T, seq T -> Prop.
-
-Goal (forall T (s : seq T), P _ s).
-move=> T s.
-elim: s => [| x /lastP [| s] IH].
-Admitted.
-
-Goal forall x : 'I_1, x = 0 :> nat.
-move=> /ord1 -> /=; exact: refl_equal.
-Qed.
-
-Goal forall x : 'I_1, x = 0 :> nat.
-move=> x.
-move=> /ord1 -> in x |- *.
-exact: refl_equal.
-Qed.
diff --git a/mathcomp/ssrtest/wlog_suff.v b/mathcomp/ssrtest/wlog_suff.v
deleted file mode 100644
index bc931e1..0000000
--- a/mathcomp/ssrtest/wlog_suff.v
+++ /dev/null
@@ -1,19 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool.
-
-Lemma test b : b || ~~b.
-wlog _ : b / b = true.
- case: b; [ by apply | by rewrite orbC ].
-wlog suff: b / b || ~~b.
- by case: b.
-by case: b.
-Qed.
-
-Lemma test2 b c (H : c = b) : b || ~~b.
-wlog _ : b {c H} / b = true.
- by case: b H.
-by case: b.
-Qed. \ No newline at end of file
diff --git a/mathcomp/ssrtest/wlogletin.v b/mathcomp/ssrtest/wlogletin.v
deleted file mode 100644
index faeca5c..0000000
--- a/mathcomp/ssrtest/wlogletin.v
+++ /dev/null
@@ -1,40 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import eqtype ssrbool.
-
-Variable T : Type.
-Variables P : T -> Prop.
-
-Definition f := fun x y : T => x.
-
-Lemma test1 : forall x y : T, P (f x y) -> P x.
-Proof.
-move=> x y; set fxy := f x y; move=> Pfxy.
-wlog H : @fxy Pfxy / P x.
- match goal with |- (let fxy0 := f x y in P fxy0 -> P x -> P x) -> P x => by auto | _ => fail end.
-exact: H.
-Qed.
-
-Lemma test2 : forall x y : T, P (f x y) -> P x.
-Proof.
-move=> x y; set fxy := f x y; move=> Pfxy.
-wlog H : fxy Pfxy / P x.
- match goal with |- (forall fxy, P fxy -> P x -> P x) -> P x => by auto | _ => fail end.
-exact: H.
-Qed.
-
-Lemma test3 : forall x y : T, P (f x y) -> P x.
-Proof.
-move=> x y; set fxy := f x y; move=> Pfxy.
-move: {1}@fxy (Pfxy) (Pfxy).
-match goal with |- (let fxy0 := f x y in P fxy0 -> P fxy -> P x) => by auto | _ => fail end.
-Qed.
-
-Lemma test4 : forall n m z: bool, n = z -> let x := n in x = m && n -> x = m && n.
-move=> n m z E x H.
-case: true.
- by rewrite {1 2}E in (x) H |- *.
-by rewrite {1}E in x H |- *.
-Qed.
diff --git a/mathcomp/ssrtest/wlong_intro.v b/mathcomp/ssrtest/wlong_intro.v
deleted file mode 100644
index 836dd4b..0000000
--- a/mathcomp/ssrtest/wlong_intro.v
+++ /dev/null
@@ -1,10 +0,0 @@
-(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrbool ssrnat.
-
-Goal (forall x y : nat, True).
-move=> x y.
-wlog suff: x y / x <= y.
-Admitted.