diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/real_closed/polyrcf.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/real_closed/polyrcf.v')
| -rw-r--r-- | mathcomp/real_closed/polyrcf.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/real_closed/polyrcf.v b/mathcomp/real_closed/polyrcf.v index 9e73204..8aaeb97 100644 --- a/mathcomp/real_closed/polyrcf.v +++ b/mathcomp/real_closed/polyrcf.v @@ -441,7 +441,7 @@ elim: (size p) a b lab pa0 pb0=> [|n ihn] a b lab pa0 pb0 max_roots. rewrite (@max_roots [::]) //=. by exists (mid a b); rewrite ?mid_in_itv // derivE horner0. case: (@rolle_weak a b p); rewrite // ?pa0 ?pb0 //=. -move=> c hc; case: (altP (_ =P 0))=> //= p'c0 pc0; first by exists c. +move=> c hc; case: (altP (_ =P 0))=> //= p'c0 pc0; first by exists c. suff: { d : R | d \in `]a, c[ & (p^`()).[d] = 0 }. case=> [d hd] p'd0; exists d=> //. by apply: subitvPr hd; rewrite //= (itvP hc). @@ -860,7 +860,7 @@ rewrite in_cons; case ezy: (z == y)=> /=. by rewrite (eqP ezy) py0 andbT (subitvPr _ hy) //= ?(itvP hx). rewrite -(ihs y) //; last exact: path_sorted ss; last first. by rewrite inE /= (itvP hx) (itvP hy). -case pz0: root; rewrite ?(andbT, andbF) //. +case pz0: root; rewrite ?(andbT, andbF) //. rewrite (@itv_splitU2 _ y); last by rewrite (subitvPr _ hy) //= (itvP hx). rewrite ezy /=; case: (z \in `]y, b[); rewrite ?orbF ?orbT //. by apply/negP=> hz; move: (hay z); rewrite hz pz0 in_nil. @@ -913,7 +913,7 @@ move: (roots_on_nil har1). case pr1 : (root p r1); case/monotonic_rootN => hrootsl; last 2 first. - exists s; constructor=> //. by rewrite -[s]cat0s; apply: (cat_roots_on hr1)=> //; rewrite pr1. -- case:hrootsl=> r hr; exists (r::s); constructor=> //=. +- case: hrootsl=> r hr; exists (r::s); constructor=> //=. by rewrite -cat1s; apply: (cat_roots_on hr1)=> //; rewrite pr1. rewrite path_min_sorted // => y; rewrite -hroot; case/andP=> hy _. rewrite (@ltr_trans _ r1) ?(itvP hy) //. @@ -954,7 +954,7 @@ Proof. by case: rootsP=> //=; rewrite eqxx. Qed. Lemma roots_on_roots : forall p a b, p != 0 -> roots_on p `]a, b[ (roots p a b). -Proof. by move=> a b p; case:rootsP. Qed. +Proof. by move=> a b p; case: rootsP. Qed. Hint Resolve roots_on_roots. Lemma sorted_roots a b p : sorted <%R (roots p a b). @@ -1012,7 +1012,7 @@ elim: s1 p a b s2 => [| r1 s1 ih] p a b [| r2 s2] ps1 ps2 rs1 rs2 //. move/(@sym_eq _ true); case/orP => hr2; first by rewrite (eqP hr2). move: ps1=> /=; move/(order_path_min (@ltr_trans R)); move/allP. move/(_ r2 hr2) => h1. - move: (rs2 r1); rewrite (roots_on_root rs1) ?mem_head //. + move: (rs2 r1); rewrite (roots_on_root rs1) ?mem_head //. rewrite !(roots_on_in rs1) ?mem_head //= in_cons. move/(@sym_eq _ true); case/orP => hr1; first by rewrite (eqP hr1). move: ps2=> /=; move/(order_path_min (@ltr_trans R)); move/allP. @@ -1212,7 +1212,7 @@ case; first by move->; rewrite /next_root eqxx. move=> c p0 ->; case: maxrP=> hab; last by rewrite itv_gte //= ltrW. by move=> hpz _ py0 hy; move/hpz:hy; rewrite rootE py0 eqxx. case: next_rootP => //; first by move->; rewrite eqxx. - by move=> y np0 py0 hy _ c _ _; move/(_ _ hy); rewrite rootE py0 eqxx. + by move=> y np0 py0 hy _ c _ _; move/(_ _ hy); rewrite rootE py0 eqxx. by move=> c _ -> _ c' _ ->. Qed. @@ -1507,11 +1507,11 @@ Lemma sgr_neighpr b p x : Proof. elim: (size p) {-2}p (leqnn (size p))=> [|n ihn] {p} p. rewrite leqn0 size_poly_eq0 /neighpr; move/eqP=> -> /=. - by move=>y; rewrite next_root0 itv_xx. + by move=> y; rewrite next_root0 itv_xx. rewrite leq_eqVlt ltnS; case/orP; last exact: ihn. move/eqP=> sp; rewrite /sgp_right sp /=. case px0: root=> /=; last first. - move=> y; rewrite/neighpr => hy /=; symmetry. + move=> y; rewrite /neighpr => hy /=; symmetry. apply: (@polyrN0_itv `[x, y]); do ?by rewrite bound_in_itv /= (itvP hy). move=> z; rewrite (@itv_splitU _ x true) ?bound_in_itv /= ?(itvP hy) //. rewrite itv_xx /=; case/predU1P=> hz; first by rewrite hz px0. @@ -1547,11 +1547,11 @@ Lemma sgr_neighpl a p x : Proof. elim: (size p) {-2}p (leqnn (size p))=> [|n ihn] {p} p. rewrite leqn0 size_poly_eq0 /neighpl; move/eqP=> -> /=. - by move=>y; rewrite prev_root0 itv_xx. + by move=> y; rewrite prev_root0 itv_xx. rewrite leq_eqVlt ltnS; case/orP; last exact: ihn. move/eqP=> sp; rewrite /sgp_right sp /=. case px0: root=> /=; last first. - move=> y; rewrite/neighpl => hy /=; symmetry. + move=> y; rewrite /neighpl => hy /=; symmetry. move: (negbT px0); rewrite -mu_gt0; last first. by apply: contraFN px0; move/eqP->; rewrite rootC. rewrite -leqNgt leqn0; move/eqP=> -> /=; rewrite expr0 mul1r. |
