diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/real_closed | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/real_closed')
| -rw-r--r-- | mathcomp/real_closed/bigenough.v | 2 | ||||
| -rw-r--r-- | mathcomp/real_closed/cauchyreals.v | 4 | ||||
| -rw-r--r-- | mathcomp/real_closed/complex.v | 12 | ||||
| -rw-r--r-- | mathcomp/real_closed/mxtens.v | 4 | ||||
| -rw-r--r-- | mathcomp/real_closed/ordered_qelim.v | 28 | ||||
| -rw-r--r-- | mathcomp/real_closed/polyorder.v | 4 | ||||
| -rw-r--r-- | mathcomp/real_closed/polyrcf.v | 20 | ||||
| -rw-r--r-- | mathcomp/real_closed/qe_rcf.v | 10 | ||||
| -rw-r--r-- | mathcomp/real_closed/qe_rcf_th.v | 14 | ||||
| -rw-r--r-- | mathcomp/real_closed/realalg.v | 2 |
10 files changed, 50 insertions, 50 deletions
diff --git a/mathcomp/real_closed/bigenough.v b/mathcomp/real_closed/bigenough.v index 90e46e8..1ee8bef 100644 --- a/mathcomp/real_closed/bigenough.v +++ b/mathcomp/real_closed/bigenough.v @@ -28,7 +28,7 @@ Module BigEnough. Record big_rel_class_of T (leq : rel T) := BigRelClass { - leq_big_internal_op : rel T; + leq_big_internal_op : rel T; bigger_than_op : seq T -> T; _ : leq_big_internal_op = leq; _ : forall i s, leq_big_internal_op i (bigger_than_op (i :: s)); diff --git a/mathcomp/real_closed/cauchyreals.v b/mathcomp/real_closed/cauchyreals.v index 9d2dff3..1d7d7ab 100644 --- a/mathcomp/real_closed/cauchyreals.v +++ b/mathcomp/real_closed/cauchyreals.v @@ -447,7 +447,7 @@ rewrite -{1}[x](addrNK z) -{1}[p.[x]](addrNK p.[z]). rewrite !addrA -![_ - _ + _ - _]addrA mulrDr ltr_add //. rewrite -ltr_pdivl_mulr ?subr_gt0 //. by rewrite ltr_minl hk1 ?gtr_eqF. -rewrite -ltr_pdivl_mulr ?subr_gt0 //. +rewrite -ltr_pdivl_mulr ?subr_gt0 //. by rewrite ltr_minl hk2 ?orbT ?gtr_eqF. Qed. @@ -1325,7 +1325,7 @@ have upx_eq0 : u.[x] * p.[x] == 0 by rewrite px0 mul_creal0. pose_big_enough i. have := (erefl ((1 : {poly F}).[x i])). rewrite -{1}hpq /= hornerD hornerC. - set upxi := (u * _).[_]; move=> hpqi. + set upxi := (u * _).[_] => - hpqi. apply: (@neq_crealP ((ubound v.[x])%CR^-1 / 2%:R) i i) => //. by rewrite pmulr_rgt0 ?gtr0E // ubound_gt0. rewrite /= subr0 ler_pdivr_mull ?ubound_gt0 //. diff --git a/mathcomp/real_closed/complex.v b/mathcomp/real_closed/complex.v index ef32266..30b4b04 100644 --- a/mathcomp/real_closed/complex.v +++ b/mathcomp/real_closed/complex.v @@ -58,7 +58,7 @@ Section ComplexEqChoice. Variable R : Type. -Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [::a; b]. +Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [::a; b]. Definition complex_of_sqR (x : seq R) := if x is [:: a; b] then Some (a +i* b) else None. @@ -462,7 +462,7 @@ by rewrite -mulrA ['i%C * _]sqr_i mulrN1 opprB. Qed. Lemma complex_real (a b : R) : a +i* b \is Num.real = (b == 0). -Proof. +Proof. rewrite realE; simpc; rewrite [0 == _]eq_sym. by have [] := ltrgtP 0 a; rewrite ?(andbF, andbT, orbF, orbb). Qed. @@ -557,7 +557,7 @@ have F3: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) - a) / 2%:R. have F4: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) + a) / 2%:R. rewrite mulr_ge0 // -{2}[a]opprK subr_ge0 (ler_trans _ F2) //. by rewrite -(maxrN a) ler_maxr lerr orbT. -congr (_ +i* _); set u := if _ then _ else _. +congr (_ +i* _); set u := if _ then _ else _. rewrite mulrCA !mulrA. have->: (u * u) = 1. rewrite /u; case: (altP (_ =P _)); rewrite ?mul1r //. @@ -573,7 +573,7 @@ rewrite [_^+2 + _]addrC addrK -mulrA -expr2 sqrtrM ?exprn_even_ge0 //. rewrite !sqrtr_sqr -mulr_natr. rewrite [`|_^-1|]ger0_norm // -mulrA [_ * _%:R]mulrC divff //. rewrite mulr1 /u; case: (_ =P _)=>[->|]. - by rewrite normr0 mulr0. + by rewrite normr0 mulr0. by rewrite mulr_sg_norm. Qed. @@ -998,7 +998,7 @@ Qed. Lemma Lemma3 K d : Eigen1Vec K d -> forall r, CommonEigenVec K d r.+1. Proof. -move=> E1V_K_d; elim => [|r IHr m V]; first exact/Eigen1VecP. +move=> E1V_K_d; elim=> [|r IHr m V]; first exact/Eigen1VecP. move: (\rank V) {-2}V (leqnn (\rank V)) => n {V}. elim: n m => [|n IHn] m V. by rewrite leqn0 => /eqP ->; rewrite dvdn0. @@ -1111,7 +1111,7 @@ have [] := @Lemma4 _ _ 1%:M _ [::L1; L2] (erefl _). case: n {x} (vec_mx x) => [//|n] x in HrV u v *. do ?[rewrite -(scalemxAl, scalemxAr, scalerN, scalerDr) |rewrite (mulmxN, mulNmx, trmxK, trmx_mul) - |rewrite ?[(_ *: _)^T]linearZ ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=]. + |rewrite ?[(_ *: _)^T]linearZ ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=]. congr (_ *: _). rewrite !(mulmxDr, mulmxDl, mulNmx, mulmxN, mulmxA, opprD, opprK). do ![move: (_ *m _ *m _)] => t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12. diff --git a/mathcomp/real_closed/mxtens.v b/mathcomp/real_closed/mxtens.v index 5189369..4e6b72a 100644 --- a/mathcomp/real_closed/mxtens.v +++ b/mathcomp/real_closed/mxtens.v @@ -186,7 +186,7 @@ rewrite !tensmxE castmxE /= cast_ord_id esymK !mxE /=. case: splitP=> i0' /= hi0'; case: splitP=> k /= hk. + case: (mxtens_indexP k) hk=> k0 k1 /=; rewrite tensmxE. move=> /(f_equal (edivn^~ p)); rewrite !edivn_eq // => [] [h0 h1]. - by congr (r _ _ * N _ _); apply:val_inj; rewrite /= -?h0 ?h1. + by congr (r _ _ * N _ _); apply: val_inj; rewrite /= -?h0 ?h1. + move: hk (ltn_ord i1); rewrite hi0'. by rewrite [i0']ord1 mul0n mul1n add0n ltnNge=> ->; rewrite leq_addr. + move: (ltn_ord k); rewrite -hk hi0' ltnNge {1}mul1n. @@ -194,7 +194,7 @@ case: splitP=> i0' /= hi0'; case: splitP=> k /= hk. case: (mxtens_indexP k) hk=> k0 k1 /=; rewrite tensmxE. rewrite hi0' mulnDl -addnA=> /addnI. move=> /(f_equal (edivn^~ p)); rewrite !edivn_eq // => [] [h0 h1]. -by congr (M _ _ * N _ _); apply:val_inj; rewrite /= -?h0 ?h1. +by congr (M _ _ * N _ _); apply: val_inj; rewrite /= -?h0 ?h1. Qed. Lemma tens_row_mx {m n p q} (r : 'cV[R]_m) (M :'M[R]_(m,n)) (N : 'M[R]_(p,q)) : diff --git a/mathcomp/real_closed/ordered_qelim.v b/mathcomp/real_closed/ordered_qelim.v index f5d0b38..4779540 100644 --- a/mathcomp/real_closed/ordered_qelim.v +++ b/mathcomp/real_closed/ordered_qelim.v @@ -189,7 +189,7 @@ Definition oclause_eq (T : eqType)(t1 t2 : oclause T) := Lemma oclause_eqP (T : eqType) : Equality.axiom (@oclause_eq T). Proof. -move=> t1 t2; apply: (iffP idP) => [|<-] /= ; last first. +move=> t1 t2; apply: (iffP idP) => [|<-] /=; last first. by rewrite /oclause_eq; case: t1=> l1 l2 l3 l4; rewrite !eqxx. case: t1 => [l1 l2 l3 l4]; case: t2 => m1 m2 m3 m4 /=; case/and4P. by move/eqP=> -> /eqP -> /eqP -> /eqP ->. @@ -780,11 +780,11 @@ Lemma odnf_to_oform_cat e c d : holds e (odnf_to_oform (c ++ d)) Proof. elim: c d => [| tc c ihc] d /=; first by split => // hd; [right | case: hd]. rewrite ihc /=; split. - case; first by case=> ?; case => ?; case => ? ?; left; left. + case; first by case=> ?; case=> ?; case=> ? ?; left; left. case; first by move=> ?; left; right. by move=> ?; right. case; last by move=> ?; right; right. -case; last by move=> ?; right; left. +case; last by move=> ?; right; left. by do 3!case=> ?; move=> ?; left. Qed. @@ -801,8 +801,8 @@ have -> : (holds e x1 /\ holds e x2 /\ holds e x3 /\ 0%:R <= eval e t /\ holds e x4 \/ false) <-> (0%:R <= eval e t) /\ (holds e x1 /\ holds e x2 /\ holds e x3 /\ holds e x4 \/ false). - split; first by case=> //; do 4! (case => ?); move=> ?; split => //; left. - by case=> ?; case => //; do 3! (case=> ?); move=> ?; left. + split; first by case=> //; do 4!(case=> ?); move=> ?; split => //; left. + by case=> ?; case=> //; do 3!(case=> ?); move=> ?; left. rewrite h {h} /= !map_cat /= -!map_comp. set s1 := [seq _ | _ <- _]; set s2 := [seq _ | _ <- _]. set s3 := [seq _ | _ <- _]. rewrite odnf_to_oform_cat. @@ -822,7 +822,7 @@ rewrite /s2 /s1. elim: (leq_elim_aux eq_l lt_l le_l) => /= [| t1 l ih]; first by split=> // [[]]. rewrite /= ih; split. case; last by case=> -> ?; split=> //; right. - by case; case=> /eqP ? ?; do 2! case=> ?; move=> _; split=>//; left. + by case; case=> /eqP ? ?; do 2!case=> ?; move=> _; split=> //; left. case=> /eqP ?; case; first by do 3!case=> ?; move=> _; left. by right; split=> //; apply/eqP. Qed. @@ -857,7 +857,7 @@ rewrite -/f in ih; case/orP. move=> u. rewrite !mem_cat !in_cons orbAC orbC mem_cat -!orbA. case/orP; first by move->; rewrite !orbT. rewrite !orbA [_ || (_ \in eq1)]orbC; move: (h u); rewrite !mem_cat=> hu. - by move/hu; do 2! (case/orP; last by move->; rewrite !orbT); move->. + by move/hu; do 2!(case/orP; last by move->; rewrite !orbT); move->. case/mapP=> y yin ye. move: (ih lt1 (f y)); rewrite mem_map //; last first. by move=> u v; rewrite /f /=; case. @@ -865,7 +865,7 @@ move/(_ yin); move: ye; rewrite /f /=; case=> -> -> -> -> /= h. move=> u; rewrite !mem_cat !in_cons orbAC orbC mem_cat -!orbA. case/orP; first by move->; rewrite !orbT. rewrite !orbA [_ || (_ \in eq1)]orbC; move: (h u); rewrite !mem_cat=> hu. -by move/hu; do 2! (case/orP; last by move->; rewrite !orbT); move->. +by move/hu; do 2!(case/orP; last by move->; rewrite !orbT); move->. Qed. @@ -885,9 +885,9 @@ have -> : holds e x1 /\ false <-> (eval e t <> 0%:R) /\ (holds e x1 /\ holds e x2 /\ holds e x3 /\ holds e x4 \/ false). - split; case => //. + split; case=> //. - by case=> ?; case; case=> ? ? [] ? ?; split=> //; left. - - by move=> ?; case => //; do 3! case => ?; move=> ?; left. + - by move=> ?; case=> //; do 3!case=> ?; move=> ?; left. rewrite h {h} /= !map_cat /= -!map_comp. set s1 := [seq _ | _ <- _]; set s2 := [seq _ | _ <- _]. set s3 := [seq _ | _ <- _]; rewrite odnf_to_oform_cat. @@ -904,7 +904,7 @@ suff {x1 x2 x3 x4} /= -> : rewrite ih; split. case; first by case=> ?; case=> _; case; case=> -> ? ?; split=> //; left. by case=> ? ?; split=> //; right. - by case=> ->; case; [case=> ?; case=> _; case=> ? ?; left| move=> ? ; right]. + by case=> ->; case; [case=> ?; case=> _; case=> ? ?; left| move=> ?; right]. rewrite /s1 /s2. elim: (neq_elim_aux lt_l neq_l) => /= [| t1 l ih] /=; first by split => //; case. set y1 := foldr _ _ _; set y2 := foldr _ _ _; set y3 := foldr _ _ _. @@ -922,7 +922,7 @@ Lemma terms_of_neq_leq_elim oc1 oc2: oc2 \in (oclause_neq_leq_elim oc1) -> {subset (terms_of_oclause oc2) <= (terms_of_oclause oc1) ++ map Opp oc1.2}. Proof. -rewrite /oclause_neq_leq_elim /flatten; rewrite foldr_map. +rewrite /oclause_neq_leq_elim/flatten; rewrite foldr_map. suff : forall oc3, oc3 \in (oclause_leq_elim oc1) -> (terms_of_oclause oc3 =i terms_of_oclause oc1) /\ oc3.2 = oc1.2. @@ -938,7 +938,7 @@ rewrite map_cat mem_cat; move: ih. elim: (leq_elim_aux eq1 lt1 le1) => [| t2 l2 ih2] //=; rewrite !in_cons. move=> h1; case/orP=> /=. case/orP; first by case/eqP. - by move=> h2; apply: ih2; rewrite ?h2 //; move=> h3; apply: h1; rewrite h3 orbT. + by move=> h2; apply: ih2; rewrite ?h2 // => - h3; apply: h1; rewrite h3 orbT. case/orP; first by case/eqP. move=> h3; apply: ih2; last by rewrite h3 orbT. by move=> h2; apply: h1; rewrite h2 orbT. @@ -1009,7 +1009,7 @@ rewrite -[holds e (_ \/ _)]/(holds e _ \/ holds e _). suff <- : (oclause_neq_elim t1) = map w_to_oclause [seq (let: Oclause eq_l _ lt_l _ := x in (eq_l, lt_l)) | x <- oclause_neq_elim t1]. - by rewrite ih1 //; move=> oc hoc; apply: h4; rewrite in_cons hoc orbT. + by rewrite ih1 // => - oc hoc; apply: h4; rewrite in_cons hoc orbT. have : forall oc, oc \in (oclause_neq_elim t1) -> oc.2 = [::] /\ oc.4 = [::]. move=> oc hoc; move/oclause_neq_elim2: (hoc); case/andP=> /eqP -> /eqP ->. by move/eqP: (h4 _ (mem_head _ _))->. diff --git a/mathcomp/real_closed/polyorder.v b/mathcomp/real_closed/polyorder.v index f84abb6..4a96dcc 100644 --- a/mathcomp/real_closed/polyorder.v +++ b/mathcomp/real_closed/polyorder.v @@ -139,9 +139,9 @@ Qed. Lemma mu_mul p q x : p * q != 0 -> \mu_x (p * q) = (\mu_x p + \mu_x q)%N. Proof. -move=>hpqn0; apply/eqP; rewrite eq_sym -muP//. +move=> hpqn0; apply/eqP; rewrite eq_sym -muP//. rewrite exprD dvdp_mul ?root_mu//=. -move:hpqn0; rewrite mulf_eq0 negb_or; case/andP=> hp0 hq0. +move: hpqn0; rewrite mulf_eq0 negb_or; case/andP=> hp0 hq0. move: (mu_spec x hp0)=> [qp qp0 hp]. move: (mu_spec x hq0)=> [qq qq0 hq]. rewrite {2}hp {2}hq exprS exprD !mulrA [qp * _ * _]mulrAC. diff --git a/mathcomp/real_closed/polyrcf.v b/mathcomp/real_closed/polyrcf.v index 9e73204..8aaeb97 100644 --- a/mathcomp/real_closed/polyrcf.v +++ b/mathcomp/real_closed/polyrcf.v @@ -441,7 +441,7 @@ elim: (size p) a b lab pa0 pb0=> [|n ihn] a b lab pa0 pb0 max_roots. rewrite (@max_roots [::]) //=. by exists (mid a b); rewrite ?mid_in_itv // derivE horner0. case: (@rolle_weak a b p); rewrite // ?pa0 ?pb0 //=. -move=> c hc; case: (altP (_ =P 0))=> //= p'c0 pc0; first by exists c. +move=> c hc; case: (altP (_ =P 0))=> //= p'c0 pc0; first by exists c. suff: { d : R | d \in `]a, c[ & (p^`()).[d] = 0 }. case=> [d hd] p'd0; exists d=> //. by apply: subitvPr hd; rewrite //= (itvP hc). @@ -860,7 +860,7 @@ rewrite in_cons; case ezy: (z == y)=> /=. by rewrite (eqP ezy) py0 andbT (subitvPr _ hy) //= ?(itvP hx). rewrite -(ihs y) //; last exact: path_sorted ss; last first. by rewrite inE /= (itvP hx) (itvP hy). -case pz0: root; rewrite ?(andbT, andbF) //. +case pz0: root; rewrite ?(andbT, andbF) //. rewrite (@itv_splitU2 _ y); last by rewrite (subitvPr _ hy) //= (itvP hx). rewrite ezy /=; case: (z \in `]y, b[); rewrite ?orbF ?orbT //. by apply/negP=> hz; move: (hay z); rewrite hz pz0 in_nil. @@ -913,7 +913,7 @@ move: (roots_on_nil har1). case pr1 : (root p r1); case/monotonic_rootN => hrootsl; last 2 first. - exists s; constructor=> //. by rewrite -[s]cat0s; apply: (cat_roots_on hr1)=> //; rewrite pr1. -- case:hrootsl=> r hr; exists (r::s); constructor=> //=. +- case: hrootsl=> r hr; exists (r::s); constructor=> //=. by rewrite -cat1s; apply: (cat_roots_on hr1)=> //; rewrite pr1. rewrite path_min_sorted // => y; rewrite -hroot; case/andP=> hy _. rewrite (@ltr_trans _ r1) ?(itvP hy) //. @@ -954,7 +954,7 @@ Proof. by case: rootsP=> //=; rewrite eqxx. Qed. Lemma roots_on_roots : forall p a b, p != 0 -> roots_on p `]a, b[ (roots p a b). -Proof. by move=> a b p; case:rootsP. Qed. +Proof. by move=> a b p; case: rootsP. Qed. Hint Resolve roots_on_roots. Lemma sorted_roots a b p : sorted <%R (roots p a b). @@ -1012,7 +1012,7 @@ elim: s1 p a b s2 => [| r1 s1 ih] p a b [| r2 s2] ps1 ps2 rs1 rs2 //. move/(@sym_eq _ true); case/orP => hr2; first by rewrite (eqP hr2). move: ps1=> /=; move/(order_path_min (@ltr_trans R)); move/allP. move/(_ r2 hr2) => h1. - move: (rs2 r1); rewrite (roots_on_root rs1) ?mem_head //. + move: (rs2 r1); rewrite (roots_on_root rs1) ?mem_head //. rewrite !(roots_on_in rs1) ?mem_head //= in_cons. move/(@sym_eq _ true); case/orP => hr1; first by rewrite (eqP hr1). move: ps2=> /=; move/(order_path_min (@ltr_trans R)); move/allP. @@ -1212,7 +1212,7 @@ case; first by move->; rewrite /next_root eqxx. move=> c p0 ->; case: maxrP=> hab; last by rewrite itv_gte //= ltrW. by move=> hpz _ py0 hy; move/hpz:hy; rewrite rootE py0 eqxx. case: next_rootP => //; first by move->; rewrite eqxx. - by move=> y np0 py0 hy _ c _ _; move/(_ _ hy); rewrite rootE py0 eqxx. + by move=> y np0 py0 hy _ c _ _; move/(_ _ hy); rewrite rootE py0 eqxx. by move=> c _ -> _ c' _ ->. Qed. @@ -1507,11 +1507,11 @@ Lemma sgr_neighpr b p x : Proof. elim: (size p) {-2}p (leqnn (size p))=> [|n ihn] {p} p. rewrite leqn0 size_poly_eq0 /neighpr; move/eqP=> -> /=. - by move=>y; rewrite next_root0 itv_xx. + by move=> y; rewrite next_root0 itv_xx. rewrite leq_eqVlt ltnS; case/orP; last exact: ihn. move/eqP=> sp; rewrite /sgp_right sp /=. case px0: root=> /=; last first. - move=> y; rewrite/neighpr => hy /=; symmetry. + move=> y; rewrite /neighpr => hy /=; symmetry. apply: (@polyrN0_itv `[x, y]); do ?by rewrite bound_in_itv /= (itvP hy). move=> z; rewrite (@itv_splitU _ x true) ?bound_in_itv /= ?(itvP hy) //. rewrite itv_xx /=; case/predU1P=> hz; first by rewrite hz px0. @@ -1547,11 +1547,11 @@ Lemma sgr_neighpl a p x : Proof. elim: (size p) {-2}p (leqnn (size p))=> [|n ihn] {p} p. rewrite leqn0 size_poly_eq0 /neighpl; move/eqP=> -> /=. - by move=>y; rewrite prev_root0 itv_xx. + by move=> y; rewrite prev_root0 itv_xx. rewrite leq_eqVlt ltnS; case/orP; last exact: ihn. move/eqP=> sp; rewrite /sgp_right sp /=. case px0: root=> /=; last first. - move=> y; rewrite/neighpl => hy /=; symmetry. + move=> y; rewrite /neighpl => hy /=; symmetry. move: (negbT px0); rewrite -mu_gt0; last first. by apply: contraFN px0; move/eqP->; rewrite rootC. rewrite -leqNgt leqn0; move/eqP=> -> /=; rewrite expr0 mul1r. diff --git a/mathcomp/real_closed/qe_rcf.v b/mathcomp/real_closed/qe_rcf.v index e1b3b97..272c44a 100644 --- a/mathcomp/real_closed/qe_rcf.v +++ b/mathcomp/real_closed/qe_rcf.v @@ -160,7 +160,7 @@ Fixpoint eval (e : seq R) (t : term R) {struct t} : R := end. Lemma evalE (e : seq R) (t : term R) : eval e t = GRing.eval e t. -Proof. by elim: t=> /=; do ?[move->|move=>?]. Qed. +Proof. by elim: t=> /=; do ?[move->|move=> ?]. Qed. Definition qf_eval e := fix loop (f : formula R) : bool := match f with @@ -175,7 +175,7 @@ Definition qf_eval e := fix loop (f : formula R) : bool := end%qfT. Lemma qf_evalE (e : seq R) (f : formula R) : qf_eval e f = ord.qf_eval e f. -Proof. by elim: f=> /=; do ?[rewrite evalE|move->|move=>?]. Qed. +Proof. by elim: f=> /=; do ?[rewrite evalE|move->|move=> ?]. Qed. Lemma to_rtermE (t : GRing.term R) : GRing.rterm t -> to_rterm t = t :> GRing.term _. @@ -206,10 +206,10 @@ Lemma qf_formF (f : fF) : qf_form f. Proof. by elim: f=> // *; apply/andP; split. Qed. Lemma rtermF (t : tF) : GRing.rterm t. -Proof. by elim: t=> //=; do ?[move->|move=>?]. Qed. +Proof. by elim: t=> //=; do ?[move->|move=> ?]. Qed. Lemma rformulaF (f : fF) : rformula f. -Proof. by elim: f=> /=; do ?[rewrite rtermF|move->|move=>?]. Qed. +Proof. by elim: f=> /=; do ?[rewrite rtermF|move->|move=> ?]. Qed. Section If. @@ -846,7 +846,7 @@ symmetry; rewrite /ctmat1. apply/matrixP => i j; rewrite !(big_ord_recl, big_ord0, mxE) /=. have halfP (K : numFieldType) : 2%:R^-1 + 2%:R^-1 = 1 :> K. by rewrite -mulr2n -[_ *+ 2]mulr_natl mulfV // pnatr_eq0. -move: i; do ?[case => //=]; move: j; do ?[case => //=] => _ _; +move: i; do ?[case=> //=]; move: j; do ?[case=> //=] => _ _; rewrite !(mulr1, mul1r, mulrN1, mulN1r, mulr0, mul0r, opprK); by rewrite !(addr0, add0r, oppr0, subrr, addrA, halfP). Qed. diff --git a/mathcomp/real_closed/qe_rcf_th.v b/mathcomp/real_closed/qe_rcf_th.v index 3aebce4..b125997 100644 --- a/mathcomp/real_closed/qe_rcf_th.v +++ b/mathcomp/real_closed/qe_rcf_th.v @@ -143,7 +143,7 @@ move/eqP: (rdivp_eq q p). rewrite eq_sym (can2_eq (addKr _ ) (addNKr _)); move/eqP=> hr. rewrite hr; case qpq0: (rdivp p q == 0). by rewrite (eqP qpq0) mul0r oppr0 add0r mu_mulC // lcn_neq0. -rewrite (leq_trans _ (mu_add _ _)) // -?hr //. +rewrite (leq_trans _ (mu_add _ _)) // -?hr //. rewrite leq_min mu_opp mu_mul ?mulf_neq0 ?qpq0 ?q0 // leq_addl. by rewrite mu_mulC // lcn_neq0. Qed. @@ -185,7 +185,7 @@ Definition ctmat n := (ctmat1 ^t n). Lemma ctmat_unit : forall n, zmxR (ctmat n) \in unitmx. Proof. case=> [|n] /=; first by rewrite map_mx1 ?unitmx1//; apply: zinjR_morph. -elim:n=> [|n ihn] /=; first by apply: ctmat1_unit. +elim: n=> [|n ihn] /=; first by apply: ctmat1_unit. rewrite map_mxT //. apply: tensmx_unit=> //; last exact: ctmat1_unit. by elim: n {ihn}=> // n ihn; rewrite muln_eq0. @@ -277,7 +277,7 @@ Qed. Fixpoint sg_tab n : seq (seq int) := if n is m.+1 - then flatten (map (fun x => map (fun l => x :: l) (sg_tab m)) [::1;-1;0]) + then flatten (map (fun x => map (fun l => x :: l) (sg_tab m)) [::1; -1; 0]) else [::[::]]. Lemma sg_tab_nil n : (sg_tab n == [::]) = false. @@ -522,7 +522,7 @@ have [p'0|p'_neq0] := eqVneq p^`() 0. move/(root_size_gt1 p_neq0): rpx. by rewrite -subn_gt0 subn1 -size_deriv p'0 size_poly0. have p'q0: p^`() * q != 0 by rewrite mulf_neq0. -move:(p'q0); rewrite mulf_eq0 negb_or; case/andP=> p'0 q0. +move: (p'q0); rewrite mulf_eq0 negb_or; case/andP=> p'0 q0. have p0: p != 0 by move: p'0; apply: contra; move/eqP->; rewrite derivC. rewrite /jump mu_mul// {1}(@mu_deriv_root _ _ p)// addn1 p'q0 /=. case emq: (\mu_(_) q)=> [|m]. @@ -825,10 +825,10 @@ wlog cpq: p q hpqa hpqb / coprimep p q => [hwlog|]. apply: hwlog; rewrite ?coprimep_div_gcd ?p0 // rootM. + apply: contra hpqa; rewrite -!dvdp_XsubCl => /orP. case=> /dvdp_trans-> //; rewrite (dvdp_trans (divp_dvd _)); - by rewrite ?(dvdp_gcdl, dvdp_gcdr) ?(dvdp_mulIl, dvdp_mulIr). + by rewrite ?(dvdp_gcdl, dvdp_gcdr) ?(dvdp_mulIl, dvdp_mulIr). + apply: contra hpqb; rewrite -!dvdp_XsubCl => /orP. case=> /dvdp_trans-> //; rewrite (dvdp_trans (divp_dvd _)); - by rewrite ?(dvdp_gcdl, dvdp_gcdr) ?(dvdp_mulIl, dvdp_mulIr). + by rewrite ?(dvdp_gcdl, dvdp_gcdr) ?(dvdp_mulIl, dvdp_mulIr). have p0: p != 0 by apply: contraNneq hpqa => ->; rewrite mul0r rootC. have q0: q != 0 by apply: contraNneq hpqa => ->; rewrite mulr0 rootC. have pq0 : p * q != 0 by rewrite mulf_neq0. @@ -903,7 +903,7 @@ pose m p q := maxn (size p) (size q).+1; rewrite -!/(m _ _). suff {p q} Hnext p q : q != 0 -> (m q (next_mod p q) < m p q)%N; last first. rewrite /m -maxnSS leq_max !geq_max !ltnS leqnn /= /next_mod. rewrite size_scale ?oppr_eq0 ?lcn_neq0 //=. - by move=> q_neq0; rewrite ltn_rmodp ?q_neq0 ?orbT. + by move=> q_neq0; rewrite ltn_rmodp ?q_neq0 ?orbT. suff {p q} m_gt0 p q : (0 < m p q)%N; last by rewrite leq_max orbT. rewrite -[m p q]prednK //=; have [//|p_neq0] := altP (p =P 0). have [->|q_neq0] := altP (q =P 0); first by rewrite !aux0. diff --git a/mathcomp/real_closed/realalg.v b/mathcomp/real_closed/realalg.v index 69fb9c4..0cbba9f 100644 --- a/mathcomp/real_closed/realalg.v +++ b/mathcomp/real_closed/realalg.v @@ -229,7 +229,7 @@ Lemma root_inv_algcreal (x : algcreal) (x_neq0 : (x != 0)%CR) : Proof. rewrite /div_algcreal; case: eq_algcreal_dec=> [/(_ x_neq0)|x_neq0'] //=. case: simplify_algcreal=> x' px'0_neq0 [x'_neq0 eq_xx']. -apply: is_root_annul_creal;rewrite /= -(@eq_creal_inv _ _ _ x_neq0) //. +apply: is_root_annul_creal; rewrite /= -(@eq_creal_inv _ _ _ x_neq0) //. by apply: eq_crealP; exists m0=> * /=; rewrite div1r subrr normr0. Qed. |
