aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/fingroup/morphism.v
diff options
context:
space:
mode:
authorChristian Doczkal2020-09-10 18:15:25 +0200
committerChristian Doczkal2020-09-29 11:10:31 +0200
commit5b31a9e767694ce134fdff4461a876411eba0f2d (patch)
tree3cccd5964f214d314aca7f77a1742b9d57245ef0 /mathcomp/fingroup/morphism.v
parent298830c5a3860c7a645df6effe7d1cc228d56150 (diff)
rename mem_imset2 to imset2_f (with deprecation)
Diffstat (limited to 'mathcomp/fingroup/morphism.v')
-rw-r--r--mathcomp/fingroup/morphism.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v
index 3530b35..ac4aaa7 100644
--- a/mathcomp/fingroup/morphism.v
+++ b/mathcomp/fingroup/morphism.v
@@ -290,7 +290,7 @@ Proof.
move=> sAD; rewrite /morphim setIC -group_modl // (setIidPr sAD).
apply/setP=> fxy; apply/idP/idP.
case/imsetP=> _ /imset2P[x y Ax /setIP[Dy By] ->] ->{fxy}.
- by rewrite morphM // (subsetP sAD, mem_imset2) // imset_f // inE By.
+ by rewrite morphM // (subsetP sAD, imset2_f) // imset_f // inE By.
case/imset2P=> _ _ /imsetP[x Ax ->] /morphimP[y Dy By ->] ->{fxy}.
by rewrite -morphM // (subsetP sAD, imset_f) // mem_mulg // inE By.
Qed.
@@ -307,7 +307,7 @@ Proof.
move=> sRfD; apply/setP=> x; rewrite !inE.
apply/andP/imset2P=> [[Dx] | [y z]]; last first.
rewrite !inE => /andP[Dy Rfy] /andP[Dz Rfz] ->.
- by rewrite ?(groupM, morphM, mem_imset2).
+ by rewrite ?(groupM, morphM, imset2_f).
case/imset2P=> fy fz Rfy Rfz def_fx.
have /morphimP[y Dy _ def_fy]: fy \in f @* D := subsetP sRfD fy Rfy.
exists y (y^-1 * x); last by rewrite mulKVg.
@@ -610,7 +610,7 @@ apply/setP=> fz; apply/morphimP/imset2P=> [[z _] | [fx fy]].
have Dx := sAD x Ax; have Dy := sBD y By.
by exists (f x) (f y); rewrite ?(imset_f, morphR) // ?(inE, Dx, Dy).
case/morphimP=> x Dx Ax ->{fx}; case/morphimP=> y Dy By ->{fy} -> {fz}.
-by exists [~ x, y]; rewrite ?(inE, morphR, groupR, mem_imset2).
+by exists [~ x, y]; rewrite ?(inE, morphR, groupR, imset2_f).
Qed.
Lemma morphim_norm A : f @* 'N(A) \subset 'N(f @* A).