diff options
| author | Christian Doczkal | 2020-09-10 18:15:25 +0200 |
|---|---|---|
| committer | Christian Doczkal | 2020-09-29 11:10:31 +0200 |
| commit | 5b31a9e767694ce134fdff4461a876411eba0f2d (patch) | |
| tree | 3cccd5964f214d314aca7f77a1742b9d57245ef0 /mathcomp/fingroup | |
| parent | 298830c5a3860c7a645df6effe7d1cc228d56150 (diff) | |
rename mem_imset2 to imset2_f (with deprecation)
Diffstat (limited to 'mathcomp/fingroup')
| -rw-r--r-- | mathcomp/fingroup/fingroup.v | 6 | ||||
| -rw-r--r-- | mathcomp/fingroup/gproduct.v | 4 | ||||
| -rw-r--r-- | mathcomp/fingroup/morphism.v | 6 |
3 files changed, 8 insertions, 8 deletions
diff --git a/mathcomp/fingroup/fingroup.v b/mathcomp/fingroup/fingroup.v index 2a498d0..38b3490 100644 --- a/mathcomp/fingroup/fingroup.v +++ b/mathcomp/fingroup/fingroup.v @@ -1168,14 +1168,14 @@ Proof. exact: imset_f. Qed. Lemma memJ_class_support A B x y : x \in A -> y \in B -> x ^ y \in class_support A B. -Proof. by move=> Ax By; apply: mem_imset2. Qed. +Proof. by move=> Ax By; apply: imset2_f. Qed. Lemma class_supportM A B C : class_support A (B * C) = class_support (class_support A B) C. Proof. apply/setP=> x; apply/imset2P/imset2P=> [[a y Aa] | [y c]]. case/mulsgP=> b c Bb Cc -> ->{x y}. - by exists (a ^ b) c; rewrite ?(mem_imset2, conjgM). + by exists (a ^ b) c; rewrite ?(imset2_f, conjgM). case/imset2P=> a b Aa Bb -> Cc ->{x y}. by exists a (b * c); rewrite ?(mem_mulg, conjgM). Qed. @@ -2326,7 +2326,7 @@ by apply: eq_bigr => i _; rewrite genGidG. Qed. Lemma mem_commg A B x y : x \in A -> y \in B -> [~ x, y] \in [~: A, B]. -Proof. by move=> Ax By; rewrite mem_gen ?mem_imset2. Qed. +Proof. by move=> Ax By; rewrite mem_gen ?imset2_f. Qed. Lemma commSg A B C : A \subset B -> [~: A, C] \subset [~: B, C]. Proof. by move=> sAC; rewrite genS ?imset2S. Qed. diff --git a/mathcomp/fingroup/gproduct.v b/mathcomp/fingroup/gproduct.v index b1181c0..7e14ce0 100644 --- a/mathcomp/fingroup/gproduct.v +++ b/mathcomp/fingroup/gproduct.v @@ -1369,7 +1369,7 @@ move=> sAH sBK; rewrite [f @* _]morphimEsub /=; last first. by rewrite norm_joinEr // mulgSS. apply/setP=> y; apply/imsetP/idP=> [[_ /mulsgP[x a Ax Ba ->] ->{y}] |]. have Hx := subsetP sAH x Ax; have Ka := subsetP sBK a Ba. - by rewrite pprodmE // mem_imset2 ?mem_morphim. + by rewrite pprodmE // imset2_f ?mem_morphim. case/mulsgP=> _ _ /morphimP[x Hx Ax ->] /morphimP[a Ka Ba ->] ->{y}. by exists (x * a); rewrite ?mem_mulg ?pprodmE. Qed. @@ -1391,7 +1391,7 @@ apply/andP/imset2P=> [[/mulsgP[x a Hx Ka ->{y}]]|[x a Hx]]. rewrite pprodmE // => fxa1. by exists x a^-1; rewrite ?invgK // inE groupVr ?morphV // eq_mulgV1 invgK. case/setIdP=> Kx /eqP fx ->{y}. -by rewrite mem_imset2 ?pprodmE ?groupV ?morphV // fx mulgV. +by rewrite imset2_f ?pprodmE ?groupV ?morphV // fx mulgV. Qed. Lemma injm_pprodm : diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v index 3530b35..ac4aaa7 100644 --- a/mathcomp/fingroup/morphism.v +++ b/mathcomp/fingroup/morphism.v @@ -290,7 +290,7 @@ Proof. move=> sAD; rewrite /morphim setIC -group_modl // (setIidPr sAD). apply/setP=> fxy; apply/idP/idP. case/imsetP=> _ /imset2P[x y Ax /setIP[Dy By] ->] ->{fxy}. - by rewrite morphM // (subsetP sAD, mem_imset2) // imset_f // inE By. + by rewrite morphM // (subsetP sAD, imset2_f) // imset_f // inE By. case/imset2P=> _ _ /imsetP[x Ax ->] /morphimP[y Dy By ->] ->{fxy}. by rewrite -morphM // (subsetP sAD, imset_f) // mem_mulg // inE By. Qed. @@ -307,7 +307,7 @@ Proof. move=> sRfD; apply/setP=> x; rewrite !inE. apply/andP/imset2P=> [[Dx] | [y z]]; last first. rewrite !inE => /andP[Dy Rfy] /andP[Dz Rfz] ->. - by rewrite ?(groupM, morphM, mem_imset2). + by rewrite ?(groupM, morphM, imset2_f). case/imset2P=> fy fz Rfy Rfz def_fx. have /morphimP[y Dy _ def_fy]: fy \in f @* D := subsetP sRfD fy Rfy. exists y (y^-1 * x); last by rewrite mulKVg. @@ -610,7 +610,7 @@ apply/setP=> fz; apply/morphimP/imset2P=> [[z _] | [fx fy]]. have Dx := sAD x Ax; have Dy := sBD y By. by exists (f x) (f y); rewrite ?(imset_f, morphR) // ?(inE, Dx, Dy). case/morphimP=> x Dx Ax ->{fx}; case/morphimP=> y Dy By ->{fy} -> {fz}. -by exists [~ x, y]; rewrite ?(inE, morphR, groupR, mem_imset2). +by exists [~ x, y]; rewrite ?(inE, morphR, groupR, imset2_f). Qed. Lemma morphim_norm A : f @* 'N(A) \subset 'N(f @* A). |
