diff options
| author | Cyril Cohen | 2019-04-26 14:14:15 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-04-26 15:08:48 +0200 |
| commit | 22c182b681c2852afa13efc2bc1d6d083646f061 (patch) | |
| tree | 240ce34774221645650404da1337e94c5e3f63b3 /mathcomp/character/classfun.v | |
| parent | dec1f90d13c44016ea53da360e9692fd768bc24b (diff) | |
Cleaning Require and Require Imports
Diffstat (limited to 'mathcomp/character/classfun.v')
| -rw-r--r-- | mathcomp/character/classfun.v | 36 |
1 files changed, 15 insertions, 21 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 2048868..2cf17aa 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -1,16 +1,11 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly finset. -From mathcomp -Require Import fingroup morphism perm automorphism quotient finalg action. -From mathcomp -Require Import gproduct zmodp commutator cyclic center pgroup sylow. -From mathcomp -Require Import matrix vector falgebra ssrnum algC algnum. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. +From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg poly finset fingroup morphism perm. +From mathcomp Require Import automorphism quotient finalg action gproduct. +From mathcomp Require Import zmodp commutator cyclic center pgroup sylow. +From mathcomp Require Import matrix vector falgebra ssrnum algC algnum. (******************************************************************************) (* This file contains the basic theory of class functions: *) @@ -432,7 +427,7 @@ Definition cfaithful phi := cfker phi \subset [1]. Definition ortho_rec S1 S2 := all [pred phi | all [pred psi | '[phi, psi] == 0] S2] S1. -Fixpoint pair_ortho_rec S := +Fixpoint pair_ortho_rec S := if S is psi :: S' then ortho_rec psi S' && pair_ortho_rec S' else true. (* We exclude 0 from pairwise orthogonal sets. *) @@ -853,7 +848,7 @@ Proof. rewrite /cfdot rmorphM fmorphV rmorph_nat rmorph_sum; congr (_ * _). by apply: eq_bigr=> x _; rewrite rmorphM conjCK mulrC. Qed. - + Lemma eq_cfdotr A phi psi1 psi2 : phi \in 'CF(G, A) -> {in A, psi1 =1 psi2} -> '[phi, psi1] = '[phi, psi2]. Proof. by move=> Aphi /eq_cfdotl eq_dot; rewrite cfdotC eq_dot // -cfdotC. Qed. @@ -875,7 +870,7 @@ Proof. exact: raddf_sum. Qed. Lemma cfdotZr a xi phi : '[xi, a *: phi] = a^* * '[xi, phi]. Proof. by rewrite !(cfdotC xi) cfdotZl rmorphM. Qed. -Lemma cfdot_cfAut (u : {rmorphism algC -> algC}) phi psi : +Lemma cfdot_cfAut (u : {rmorphism algC -> algC}) phi psi : {in image psi G, {morph u : x / x^*}} -> '[cfAut u phi, cfAut u psi] = u '[phi, psi]. Proof. @@ -1149,7 +1144,7 @@ rewrite addr0 cfdotZr mulf_eq0 conjC_eq0 cfnorm_eq0. by case/pred2P=> // Si0; rewrite -Si0 S_i in notS0. Qed. -Lemma filter_pairwise_orthogonal S p : +Lemma filter_pairwise_orthogonal S p : pairwise_orthogonal S -> pairwise_orthogonal (filter p S). Proof. move=> orthoS; apply: sub_pairwise_orthogonal (orthoS). @@ -1768,7 +1763,7 @@ Proof. by rewrite cfaithfulE cfker_quo ?cfker_normal ?trivg_quotient. Qed. (* Note that there is no requirement that K be normal in H or G. *) Lemma cfResQuo H K phi : - K \subset cfker phi -> K \subset H -> H \subset G -> + K \subset cfker phi -> K \subset H -> H \subset G -> ('Res[H / K] (phi / K) = 'Res[H] phi / K)%CF. Proof. move=> kerK sKH sHG; apply/cfun_inP=> xb Hxb; rewrite cfResE ?quotientS //. @@ -1796,14 +1791,14 @@ Section Product. Variable (gT : finGroupType) (G : {group gT}). -Lemma cfunM_onI A B phi psi : +Lemma cfunM_onI A B phi psi : phi \in 'CF(G, A) -> psi \in 'CF(G, B) -> phi * psi \in 'CF(G, A :&: B). Proof. rewrite !cfun_onE => Aphi Bpsi; apply/subsetP=> x; rewrite !inE cfunE mulf_eq0. by case/norP=> /(subsetP Aphi)-> /(subsetP Bpsi). Qed. -Lemma cfunM_on A phi psi : +Lemma cfunM_on A phi psi : phi \in 'CF(G, A) -> psi \in 'CF(G, A) -> phi * psi \in 'CF(G, A). Proof. by move=> Aphi Bpsi; rewrite -[A]setIid cfunM_onI. Qed. @@ -2259,7 +2254,7 @@ Proof. case/andP=> sHG nHG; apply: (cfun_onS (class_support_sub_norm (subxx _) nHG)). by rewrite cfInd_on ?cfun_onG. Qed. - + Lemma cfInd1 phi : H \subset G -> 'Ind[G] phi 1%g = #|G : H|%:R * phi 1%g. Proof. move=> sHG; rewrite cfIndE // natf_indexg // -mulrA mulrCA; congr (_ * _). @@ -2315,7 +2310,7 @@ Definition cfdot_Res_r := Frobenius_reciprocity. Lemma cfdot_Res_l psi phi : '['Res[H] psi, phi] = '[psi, 'Ind[G] phi]. Proof. by rewrite cfdotC cfdot_Res_r -cfdotC. Qed. -Lemma cfIndM phi psi: H \subset G -> +Lemma cfIndM phi psi: H \subset G -> 'Ind[G] (phi * ('Res[H] psi)) = 'Ind[G] phi * psi. Proof. move=> HsG; apply/cfun_inP=> x Gx; rewrite !cfIndE // !cfunE !cfIndE // -mulrA. @@ -2496,4 +2491,3 @@ Definition conj_cfQuo := cfAutQuo conjC. Definition conj_cfMod := cfAutMod conjC. Definition conj_cfInd := cfAutInd conjC. Definition cfconjC_eq1 := cfAut_eq1 conjC. - |
