diff options
| author | Cyril Cohen | 2019-04-26 14:14:15 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-04-26 15:08:48 +0200 |
| commit | 22c182b681c2852afa13efc2bc1d6d083646f061 (patch) | |
| tree | 240ce34774221645650404da1337e94c5e3f63b3 /mathcomp/character | |
| parent | dec1f90d13c44016ea53da360e9692fd768bc24b (diff) | |
Cleaning Require and Require Imports
Diffstat (limited to 'mathcomp/character')
| -rw-r--r-- | mathcomp/character/character.v | 20 | ||||
| -rw-r--r-- | mathcomp/character/classfun.v | 36 | ||||
| -rw-r--r-- | mathcomp/character/inertia.v | 20 | ||||
| -rw-r--r-- | mathcomp/character/integral_char.v | 24 | ||||
| -rw-r--r-- | mathcomp/character/mxabelem.v | 18 | ||||
| -rw-r--r-- | mathcomp/character/mxrepresentation.v | 15 | ||||
| -rw-r--r-- | mathcomp/character/vcharacter.v | 34 |
7 files changed, 65 insertions, 102 deletions
diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v index eda6f5a..862e1ba 100644 --- a/mathcomp/character/character.v +++ b/mathcomp/character/character.v @@ -1,18 +1,12 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly finset gproduct. -From mathcomp -Require Import fingroup morphism perm automorphism quotient finalg action. -From mathcomp -Require Import zmodp commutator cyclic center pgroup nilpotent sylow abelian. -From mathcomp -Require Import matrix mxalgebra mxpoly mxrepresentation vector ssrnum algC. -From mathcomp -Require Import classfun. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype choice ssrnat seq. +From mathcomp Require Import path div fintype tuple finfun bigop prime ssralg. +From mathcomp Require Import poly finset gproduct fingroup morphism perm. +From mathcomp Require Import automorphism quotient finalg action zmodp. +From mathcomp Require Import commutator cyclic center pgroup nilpotent sylow. +From mathcomp Require Import abelian matrix mxalgebra mxpoly mxrepresentation. +From mathcomp Require Import vector ssrnum algC classfun. (******************************************************************************) (* This file contains the basic notions of character theory, based on Isaacs. *) diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 2048868..2cf17aa 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -1,16 +1,11 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly finset. -From mathcomp -Require Import fingroup morphism perm automorphism quotient finalg action. -From mathcomp -Require Import gproduct zmodp commutator cyclic center pgroup sylow. -From mathcomp -Require Import matrix vector falgebra ssrnum algC algnum. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. +From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg poly finset fingroup morphism perm. +From mathcomp Require Import automorphism quotient finalg action gproduct. +From mathcomp Require Import zmodp commutator cyclic center pgroup sylow. +From mathcomp Require Import matrix vector falgebra ssrnum algC algnum. (******************************************************************************) (* This file contains the basic theory of class functions: *) @@ -432,7 +427,7 @@ Definition cfaithful phi := cfker phi \subset [1]. Definition ortho_rec S1 S2 := all [pred phi | all [pred psi | '[phi, psi] == 0] S2] S1. -Fixpoint pair_ortho_rec S := +Fixpoint pair_ortho_rec S := if S is psi :: S' then ortho_rec psi S' && pair_ortho_rec S' else true. (* We exclude 0 from pairwise orthogonal sets. *) @@ -853,7 +848,7 @@ Proof. rewrite /cfdot rmorphM fmorphV rmorph_nat rmorph_sum; congr (_ * _). by apply: eq_bigr=> x _; rewrite rmorphM conjCK mulrC. Qed. - + Lemma eq_cfdotr A phi psi1 psi2 : phi \in 'CF(G, A) -> {in A, psi1 =1 psi2} -> '[phi, psi1] = '[phi, psi2]. Proof. by move=> Aphi /eq_cfdotl eq_dot; rewrite cfdotC eq_dot // -cfdotC. Qed. @@ -875,7 +870,7 @@ Proof. exact: raddf_sum. Qed. Lemma cfdotZr a xi phi : '[xi, a *: phi] = a^* * '[xi, phi]. Proof. by rewrite !(cfdotC xi) cfdotZl rmorphM. Qed. -Lemma cfdot_cfAut (u : {rmorphism algC -> algC}) phi psi : +Lemma cfdot_cfAut (u : {rmorphism algC -> algC}) phi psi : {in image psi G, {morph u : x / x^*}} -> '[cfAut u phi, cfAut u psi] = u '[phi, psi]. Proof. @@ -1149,7 +1144,7 @@ rewrite addr0 cfdotZr mulf_eq0 conjC_eq0 cfnorm_eq0. by case/pred2P=> // Si0; rewrite -Si0 S_i in notS0. Qed. -Lemma filter_pairwise_orthogonal S p : +Lemma filter_pairwise_orthogonal S p : pairwise_orthogonal S -> pairwise_orthogonal (filter p S). Proof. move=> orthoS; apply: sub_pairwise_orthogonal (orthoS). @@ -1768,7 +1763,7 @@ Proof. by rewrite cfaithfulE cfker_quo ?cfker_normal ?trivg_quotient. Qed. (* Note that there is no requirement that K be normal in H or G. *) Lemma cfResQuo H K phi : - K \subset cfker phi -> K \subset H -> H \subset G -> + K \subset cfker phi -> K \subset H -> H \subset G -> ('Res[H / K] (phi / K) = 'Res[H] phi / K)%CF. Proof. move=> kerK sKH sHG; apply/cfun_inP=> xb Hxb; rewrite cfResE ?quotientS //. @@ -1796,14 +1791,14 @@ Section Product. Variable (gT : finGroupType) (G : {group gT}). -Lemma cfunM_onI A B phi psi : +Lemma cfunM_onI A B phi psi : phi \in 'CF(G, A) -> psi \in 'CF(G, B) -> phi * psi \in 'CF(G, A :&: B). Proof. rewrite !cfun_onE => Aphi Bpsi; apply/subsetP=> x; rewrite !inE cfunE mulf_eq0. by case/norP=> /(subsetP Aphi)-> /(subsetP Bpsi). Qed. -Lemma cfunM_on A phi psi : +Lemma cfunM_on A phi psi : phi \in 'CF(G, A) -> psi \in 'CF(G, A) -> phi * psi \in 'CF(G, A). Proof. by move=> Aphi Bpsi; rewrite -[A]setIid cfunM_onI. Qed. @@ -2259,7 +2254,7 @@ Proof. case/andP=> sHG nHG; apply: (cfun_onS (class_support_sub_norm (subxx _) nHG)). by rewrite cfInd_on ?cfun_onG. Qed. - + Lemma cfInd1 phi : H \subset G -> 'Ind[G] phi 1%g = #|G : H|%:R * phi 1%g. Proof. move=> sHG; rewrite cfIndE // natf_indexg // -mulrA mulrCA; congr (_ * _). @@ -2315,7 +2310,7 @@ Definition cfdot_Res_r := Frobenius_reciprocity. Lemma cfdot_Res_l psi phi : '['Res[H] psi, phi] = '[psi, 'Ind[G] phi]. Proof. by rewrite cfdotC cfdot_Res_r -cfdotC. Qed. -Lemma cfIndM phi psi: H \subset G -> +Lemma cfIndM phi psi: H \subset G -> 'Ind[G] (phi * ('Res[H] psi)) = 'Ind[G] phi * psi. Proof. move=> HsG; apply/cfun_inP=> x Gx; rewrite !cfIndE // !cfunE !cfIndE // -mulrA. @@ -2496,4 +2491,3 @@ Definition conj_cfQuo := cfAutQuo conjC. Definition conj_cfMod := cfAutMod conjC. Definition conj_cfInd := cfAutInd conjC. Definition cfconjC_eq1 := cfAut_eq1 conjC. - diff --git a/mathcomp/character/inertia.v b/mathcomp/character/inertia.v index 80d5cc5..5350075 100644 --- a/mathcomp/character/inertia.v +++ b/mathcomp/character/inertia.v @@ -1,18 +1,12 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrfun ssrbool eqtype ssrnat seq path choice div. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg ssrnum finset fingroup. -From mathcomp -Require Import morphism perm automorphism quotient action zmodp cyclic center. -From mathcomp -Require Import gproduct commutator gseries nilpotent pgroup sylow maximal. -From mathcomp -Require Import frobenius. -From mathcomp -Require Import matrix mxalgebra mxrepresentation vector algC classfun character. +From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path. +From mathcomp Require Import choice div fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg ssrnum finset fingroup morphism perm. +From mathcomp Require Import automorphism quotient action zmodp cyclic center. +From mathcomp Require Import gproduct commutator gseries nilpotent pgroup. +From mathcomp Require Import sylow maximal frobenius matrix mxalgebra. +From mathcomp Require Import mxrepresentation vector algC classfun character. Set Implicit Arguments. Unset Strict Implicit. diff --git a/mathcomp/character/integral_char.v b/mathcomp/character/integral_char.v index d73f938..0109b83 100644 --- a/mathcomp/character/integral_char.v +++ b/mathcomp/character/integral_char.v @@ -1,20 +1,14 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly finset. -From mathcomp -Require Import fingroup morphism perm automorphism quotient action finalg zmodp. -From mathcomp -Require Import commutator cyclic center pgroup sylow gseries nilpotent abelian. -From mathcomp -Require Import ssrnum ssrint polydiv rat matrix mxalgebra intdiv mxpoly. -From mathcomp -Require Import vector falgebra fieldext separable galois algC cyclotomic algnum. -From mathcomp -Require Import mxrepresentation classfun character. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. +From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg poly finset fingroup morphism perm. +From mathcomp Require Import automorphism quotient action finalg zmodp. +From mathcomp Require Import commutator cyclic center pgroup sylow gseries. +From mathcomp Require Import nilpotent abelian ssrnum ssrint polydiv rat. +From mathcomp Require Import matrix mxalgebra intdiv mxpoly vector falgebra. +From mathcomp Require Import fieldext separable galois algC cyclotomic algnum. +From mathcomp Require Import mxrepresentation classfun character. (******************************************************************************) (* This file provides some standard results based on integrality properties *) diff --git a/mathcomp/character/mxabelem.v b/mathcomp/character/mxabelem.v index 65f06c4..f5755a3 100644 --- a/mathcomp/character/mxabelem.v +++ b/mathcomp/character/mxabelem.v @@ -1,16 +1,12 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly finset. -From mathcomp -Require Import fingroup morphism perm automorphism quotient gproduct action. -From mathcomp -Require Import finalg zmodp commutator cyclic center pgroup gseries nilpotent. -From mathcomp -Require Import sylow maximal abelian matrix mxalgebra mxrepresentation. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. +From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg poly finset fingroup morphism perm. +From mathcomp Require Import automorphism quotient gproduct action finalg. +From mathcomp Require Import zmodp commutator cyclic center pgroup gseries. +From mathcomp Require Import nilpotent sylow maximal abelian matrix. +From mathcomp Require Import mxalgebra mxrepresentation. (******************************************************************************) (* This file completes the theory developed in mxrepresentation.v with the *) diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v index 532b382..94c9ce2 100644 --- a/mathcomp/character/mxrepresentation.v +++ b/mathcomp/character/mxrepresentation.v @@ -1,14 +1,11 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly polydiv finset. -From mathcomp -Require Import fingroup morphism perm automorphism quotient finalg action zmodp. -From mathcomp -Require Import commutator cyclic center pgroup matrix mxalgebra mxpoly. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. +From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg poly polydiv finset fingroup morphism. +From mathcomp Require Import perm automorphism quotient finalg action zmodp. +From mathcomp Require Import commutator cyclic center pgroup matrix mxalgebra. +From mathcomp Require Import mxpoly. (******************************************************************************) (* This file provides linkage between classic Group Theory and commutative *) diff --git a/mathcomp/character/vcharacter.v b/mathcomp/character/vcharacter.v index 246e955..8d7d7e9 100644 --- a/mathcomp/character/vcharacter.v +++ b/mathcomp/character/vcharacter.v @@ -1,25 +1,12 @@ (* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) -Require Import mathcomp.ssreflect.ssreflect. -From mathcomp -Require Import ssrbool ssrfun eqtype ssrnat seq path div choice. -From mathcomp -Require Import fintype tuple finfun bigop prime ssralg poly finset. -From mathcomp -Require Import fingroup morphism perm automorphism quotient finalg action. -From mathcomp -Require Import gproduct zmodp commutator cyclic center pgroup sylow frobenius. -From mathcomp -Require Import vector ssrnum ssrint intdiv algC algnum. -From mathcomp -Require Import classfun character integral_char. - -Set Implicit Arguments. -Unset Strict Implicit. -Unset Printing Implicit Defensive. - -Import GroupScope GRing.Theory Num.Theory. -Local Open Scope ring_scope. +From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path. +From mathcomp Require Import div choice fintype tuple finfun bigop prime. +From mathcomp Require Import ssralg poly finset fingroup morphism perm. +From mathcomp Require Import automorphism quotient finalg action gproduct. +From mathcomp Require Import zmodp commutator cyclic center pgroup sylow. +From mathcomp Require Import frobenius vector ssrnum ssrint intdiv algC. +From mathcomp Require Import algnum classfun character integral_char. (******************************************************************************) (* This file provides basic notions of virtual character theory: *) @@ -49,6 +36,13 @@ Local Open Scope ring_scope. (* irreducible constituent i, when i \in irr_constt phi. *) (******************************************************************************) +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Import GroupScope GRing.Theory Num.Theory. +Local Open Scope ring_scope. + Section Basics. Variables (gT : finGroupType) (B : {set gT}) (S : seq 'CF(B)) (A : {set gT}). |
