diff options
| author | Kazuhiko Sakaguchi | 2019-10-24 13:56:19 +0200 |
|---|---|---|
| committer | Cyril Cohen | 2019-12-11 14:26:52 +0100 |
| commit | 843e345d5d8217a02de9e7fe20406b83074e807d (patch) | |
| tree | 9c14b8fa455bbbc3c44bac58245b396087b57a0d /mathcomp/algebra | |
| parent | e7df10a74264f52a17f54f87b8a89c9360a46926 (diff) | |
order.v: remove Order.Def, export Order.Syntax by default, and put missing scopes
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/interval.v | 10 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 45 |
2 files changed, 29 insertions, 26 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index b34c1ad..3ed2825 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -40,7 +40,7 @@ Unset Strict Implicit. Unset Printing Implicit Defensive. Local Open Scope ring_scope. -Import Order.TTheory Order.Syntax GRing.Theory Num.Theory. +Import Order.TTheory GRing.Theory Num.Theory. Local Notation mid x y := ((x + y) / 2%:R). @@ -209,19 +209,19 @@ Lemma lersif_distl : Proof. by case: b; apply lter_distl. Qed. Lemma lersif_minr : - (x <= y `&` z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b). + (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b). Proof. by case: b; rewrite /= ltexI. Qed. Lemma lersif_minl : - (y `&` z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b). + (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b). Proof. by case: b; rewrite /= lteIx. Qed. Lemma lersif_maxr : - (x <= y `|` z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b). + (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b). Proof. by case: b; rewrite /= ltexU. Qed. Lemma lersif_maxl : - (y `|` z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b). + (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b). Proof. by case: b; rewrite /= lteUx. Qed. End LersifOrdered. diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index e730eaf..5737a2d 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -125,7 +125,7 @@ Unset Printing Implicit Defensive. Local Open Scope order_scope. Local Open Scope ring_scope. -Import Order.TTheory Order.Def Order.Syntax GRing.Theory. +Import Order.TTheory GRing.Theory. Reserved Notation "<= y" (at level 35). Reserved Notation ">= y" (at level 35). @@ -140,8 +140,8 @@ Fact ring_display : unit. Proof. exact: tt. Qed. Module Num. -Record normed_mixin_of (R : ringType) (T : zmodType) (Rorder : lePOrderMixin R) - (le_op := Order.POrder.le Rorder) (lt_op := Order.POrder.lt Rorder) +Record normed_mixin_of (R T : zmodType) (Rorder : lePOrderMixin R) + (le_op := Order.POrder.le Rorder) := NormedMixin { norm_op : T -> R; _ : forall x y, le_op (norm_op (x + y)) (norm_op x + norm_op y); @@ -368,30 +368,30 @@ Definition normr (R : numDomainType) (T : normedZmodType R) : T -> R := nosimpl (norm_op (NormedZmodule.class T)). Arguments normr {R T} x. -Notation ler := (@le ring_display _) (only parsing). +Notation ler := (@Order.le ring_display _) (only parsing). Notation "@ 'ler' R" := - (@le ring_display R) (at level 10, R at level 8, only parsing). -Notation ltr := (@lt ring_display _) (only parsing). + (@Order.le ring_display R) (at level 10, R at level 8, only parsing). +Notation ltr := (@Order.lt ring_display _) (only parsing). Notation "@ 'ltr' R" := - (@lt ring_display R) (at level 10, R at level 8, only parsing). -Notation ger := (@ge ring_display _) (only parsing). + (@Order.lt ring_display R) (at level 10, R at level 8, only parsing). +Notation ger := (@Order.ge ring_display _) (only parsing). Notation "@ 'ger' R" := - (@ge ring_display R) (at level 10, R at level 8, only parsing). -Notation gtr := (@gt ring_display _) (only parsing). + (@Order.ge ring_display R) (at level 10, R at level 8, only parsing). +Notation gtr := (@Order.gt ring_display _) (only parsing). Notation "@ 'gtr' R" := - (@gt ring_display R) (at level 10, R at level 8, only parsing). -Notation lerif := (@leif ring_display _) (only parsing). + (@Order.gt ring_display R) (at level 10, R at level 8, only parsing). +Notation lerif := (@Order.leif ring_display _) (only parsing). Notation "@ 'lerif' R" := - (@lerif ring_display R) (at level 10, R at level 8, only parsing). -Notation comparabler := (@comparable ring_display _) (only parsing). + (@Order.leif ring_display R) (at level 10, R at level 8, only parsing). +Notation comparabler := (@Order.comparable ring_display _) (only parsing). Notation "@ 'comparabler' R" := - (@comparable ring_display R) (at level 10, R at level 8, only parsing). -Notation maxr := (@join ring_display _). + (@Order.comparable ring_display R) (at level 10, R at level 8, only parsing). +Notation maxr := (@Order.join ring_display _). Notation "@ 'maxr' R" := - (@join ring_display R) (at level 10, R at level 8, only parsing). -Notation minr := (@meet ring_display _). + (@Order.join ring_display R) (at level 10, R at level 8, only parsing). +Notation minr := (@Order.meet ring_display _). Notation "@ 'minr' R" := - (@meet ring_display R) (at level 10, R at level 8, only parsing). + (@Order.meet ring_display R) (at level 10, R at level 8, only parsing). Section Def. Context {R : numDomainType}. @@ -3546,7 +3546,7 @@ Hint Resolve num_real : core. Section RealDomainOperations. Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" := - (arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F)) + (Order.arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F)) (at level 0, i, i0 at level 10, format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : ring_scope. @@ -3560,7 +3560,7 @@ Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F] format "[ 'arg' 'min_' ( i < i0 ) F ]") : ring_scope. Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" := - (arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F)) + (Order.arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F)) (at level 0, i, i0 at level 10, format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : ring_scope. @@ -5043,10 +5043,13 @@ Definition normedZmodMixin : Canonical normedZmodType := NormedZmoduleType R (U * V) normedZmodMixin. +Lemma prod_normE (x : U * V) : `|x| = Num.max `|x.1| `|x.2|. Proof. by []. Qed. + End ProdNormedZmodule. Module Exports. Canonical normedZmodType. +Definition prod_normE := @prod_normE. End Exports. End ProdNormedZmodule. |
