aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2019-10-24 13:56:19 +0200
committerCyril Cohen2019-12-11 14:26:52 +0100
commit843e345d5d8217a02de9e7fe20406b83074e807d (patch)
tree9c14b8fa455bbbc3c44bac58245b396087b57a0d /mathcomp/algebra
parente7df10a74264f52a17f54f87b8a89c9360a46926 (diff)
order.v: remove Order.Def, export Order.Syntax by default, and put missing scopes
Diffstat (limited to 'mathcomp/algebra')
-rw-r--r--mathcomp/algebra/interval.v10
-rw-r--r--mathcomp/algebra/ssrnum.v45
2 files changed, 29 insertions, 26 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v
index b34c1ad..3ed2825 100644
--- a/mathcomp/algebra/interval.v
+++ b/mathcomp/algebra/interval.v
@@ -40,7 +40,7 @@ Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
-Import Order.TTheory Order.Syntax GRing.Theory Num.Theory.
+Import Order.TTheory GRing.Theory Num.Theory.
Local Notation mid x y := ((x + y) / 2%:R).
@@ -209,19 +209,19 @@ Lemma lersif_distl :
Proof. by case: b; apply lter_distl. Qed.
Lemma lersif_minr :
- (x <= y `&` z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
+ (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
Proof. by case: b; rewrite /= ltexI. Qed.
Lemma lersif_minl :
- (y `&` z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
+ (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
Proof. by case: b; rewrite /= lteIx. Qed.
Lemma lersif_maxr :
- (x <= y `|` z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
+ (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
Proof. by case: b; rewrite /= ltexU. Qed.
Lemma lersif_maxl :
- (y `|` z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
+ (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
Proof. by case: b; rewrite /= lteUx. Qed.
End LersifOrdered.
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index e730eaf..5737a2d 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -125,7 +125,7 @@ Unset Printing Implicit Defensive.
Local Open Scope order_scope.
Local Open Scope ring_scope.
-Import Order.TTheory Order.Def Order.Syntax GRing.Theory.
+Import Order.TTheory GRing.Theory.
Reserved Notation "<= y" (at level 35).
Reserved Notation ">= y" (at level 35).
@@ -140,8 +140,8 @@ Fact ring_display : unit. Proof. exact: tt. Qed.
Module Num.
-Record normed_mixin_of (R : ringType) (T : zmodType) (Rorder : lePOrderMixin R)
- (le_op := Order.POrder.le Rorder) (lt_op := Order.POrder.lt Rorder)
+Record normed_mixin_of (R T : zmodType) (Rorder : lePOrderMixin R)
+ (le_op := Order.POrder.le Rorder)
:= NormedMixin {
norm_op : T -> R;
_ : forall x y, le_op (norm_op (x + y)) (norm_op x + norm_op y);
@@ -368,30 +368,30 @@ Definition normr (R : numDomainType) (T : normedZmodType R) : T -> R :=
nosimpl (norm_op (NormedZmodule.class T)).
Arguments normr {R T} x.
-Notation ler := (@le ring_display _) (only parsing).
+Notation ler := (@Order.le ring_display _) (only parsing).
Notation "@ 'ler' R" :=
- (@le ring_display R) (at level 10, R at level 8, only parsing).
-Notation ltr := (@lt ring_display _) (only parsing).
+ (@Order.le ring_display R) (at level 10, R at level 8, only parsing).
+Notation ltr := (@Order.lt ring_display _) (only parsing).
Notation "@ 'ltr' R" :=
- (@lt ring_display R) (at level 10, R at level 8, only parsing).
-Notation ger := (@ge ring_display _) (only parsing).
+ (@Order.lt ring_display R) (at level 10, R at level 8, only parsing).
+Notation ger := (@Order.ge ring_display _) (only parsing).
Notation "@ 'ger' R" :=
- (@ge ring_display R) (at level 10, R at level 8, only parsing).
-Notation gtr := (@gt ring_display _) (only parsing).
+ (@Order.ge ring_display R) (at level 10, R at level 8, only parsing).
+Notation gtr := (@Order.gt ring_display _) (only parsing).
Notation "@ 'gtr' R" :=
- (@gt ring_display R) (at level 10, R at level 8, only parsing).
-Notation lerif := (@leif ring_display _) (only parsing).
+ (@Order.gt ring_display R) (at level 10, R at level 8, only parsing).
+Notation lerif := (@Order.leif ring_display _) (only parsing).
Notation "@ 'lerif' R" :=
- (@lerif ring_display R) (at level 10, R at level 8, only parsing).
-Notation comparabler := (@comparable ring_display _) (only parsing).
+ (@Order.leif ring_display R) (at level 10, R at level 8, only parsing).
+Notation comparabler := (@Order.comparable ring_display _) (only parsing).
Notation "@ 'comparabler' R" :=
- (@comparable ring_display R) (at level 10, R at level 8, only parsing).
-Notation maxr := (@join ring_display _).
+ (@Order.comparable ring_display R) (at level 10, R at level 8, only parsing).
+Notation maxr := (@Order.join ring_display _).
Notation "@ 'maxr' R" :=
- (@join ring_display R) (at level 10, R at level 8, only parsing).
-Notation minr := (@meet ring_display _).
+ (@Order.join ring_display R) (at level 10, R at level 8, only parsing).
+Notation minr := (@Order.meet ring_display _).
Notation "@ 'minr' R" :=
- (@meet ring_display R) (at level 10, R at level 8, only parsing).
+ (@Order.meet ring_display R) (at level 10, R at level 8, only parsing).
Section Def.
Context {R : numDomainType}.
@@ -3546,7 +3546,7 @@ Hint Resolve num_real : core.
Section RealDomainOperations.
Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
- (arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F))
+ (Order.arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : ring_scope.
@@ -3560,7 +3560,7 @@ Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
format "[ 'arg' 'min_' ( i < i0 ) F ]") : ring_scope.
Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
- (arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F))
+ (Order.arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : ring_scope.
@@ -5043,10 +5043,13 @@ Definition normedZmodMixin :
Canonical normedZmodType := NormedZmoduleType R (U * V) normedZmodMixin.
+Lemma prod_normE (x : U * V) : `|x| = Num.max `|x.1| `|x.2|. Proof. by []. Qed.
+
End ProdNormedZmodule.
Module Exports.
Canonical normedZmodType.
+Definition prod_normE := @prod_normE.
End Exports.
End ProdNormedZmodule.