aboutsummaryrefslogtreecommitdiff
path: root/mathcomp
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2019-10-24 13:56:19 +0200
committerCyril Cohen2019-12-11 14:26:52 +0100
commit843e345d5d8217a02de9e7fe20406b83074e807d (patch)
tree9c14b8fa455bbbc3c44bac58245b396087b57a0d /mathcomp
parente7df10a74264f52a17f54f87b8a89c9360a46926 (diff)
order.v: remove Order.Def, export Order.Syntax by default, and put missing scopes
Diffstat (limited to 'mathcomp')
-rw-r--r--mathcomp/algebra/interval.v10
-rw-r--r--mathcomp/algebra/ssrnum.v45
-rw-r--r--mathcomp/field/algebraics_fundamentals.v2
-rw-r--r--mathcomp/ssreflect/order.v121
4 files changed, 76 insertions, 102 deletions
diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v
index b34c1ad..3ed2825 100644
--- a/mathcomp/algebra/interval.v
+++ b/mathcomp/algebra/interval.v
@@ -40,7 +40,7 @@ Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope ring_scope.
-Import Order.TTheory Order.Syntax GRing.Theory Num.Theory.
+Import Order.TTheory GRing.Theory Num.Theory.
Local Notation mid x y := ((x + y) / 2%:R).
@@ -209,19 +209,19 @@ Lemma lersif_distl :
Proof. by case: b; apply lter_distl. Qed.
Lemma lersif_minr :
- (x <= y `&` z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
+ (x <= Num.min y z ?< if b) = (x <= y ?< if b) && (x <= z ?< if b).
Proof. by case: b; rewrite /= ltexI. Qed.
Lemma lersif_minl :
- (y `&` z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
+ (Num.min y z <= x ?< if b) = (y <= x ?< if b) || (z <= x ?< if b).
Proof. by case: b; rewrite /= lteIx. Qed.
Lemma lersif_maxr :
- (x <= y `|` z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
+ (x <= Num.max y z ?< if b) = (x <= y ?< if b) || (x <= z ?< if b).
Proof. by case: b; rewrite /= ltexU. Qed.
Lemma lersif_maxl :
- (y `|` z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
+ (Num.max y z <= x ?< if b) = (y <= x ?< if b) && (z <= x ?< if b).
Proof. by case: b; rewrite /= lteUx. Qed.
End LersifOrdered.
diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v
index e730eaf..5737a2d 100644
--- a/mathcomp/algebra/ssrnum.v
+++ b/mathcomp/algebra/ssrnum.v
@@ -125,7 +125,7 @@ Unset Printing Implicit Defensive.
Local Open Scope order_scope.
Local Open Scope ring_scope.
-Import Order.TTheory Order.Def Order.Syntax GRing.Theory.
+Import Order.TTheory GRing.Theory.
Reserved Notation "<= y" (at level 35).
Reserved Notation ">= y" (at level 35).
@@ -140,8 +140,8 @@ Fact ring_display : unit. Proof. exact: tt. Qed.
Module Num.
-Record normed_mixin_of (R : ringType) (T : zmodType) (Rorder : lePOrderMixin R)
- (le_op := Order.POrder.le Rorder) (lt_op := Order.POrder.lt Rorder)
+Record normed_mixin_of (R T : zmodType) (Rorder : lePOrderMixin R)
+ (le_op := Order.POrder.le Rorder)
:= NormedMixin {
norm_op : T -> R;
_ : forall x y, le_op (norm_op (x + y)) (norm_op x + norm_op y);
@@ -368,30 +368,30 @@ Definition normr (R : numDomainType) (T : normedZmodType R) : T -> R :=
nosimpl (norm_op (NormedZmodule.class T)).
Arguments normr {R T} x.
-Notation ler := (@le ring_display _) (only parsing).
+Notation ler := (@Order.le ring_display _) (only parsing).
Notation "@ 'ler' R" :=
- (@le ring_display R) (at level 10, R at level 8, only parsing).
-Notation ltr := (@lt ring_display _) (only parsing).
+ (@Order.le ring_display R) (at level 10, R at level 8, only parsing).
+Notation ltr := (@Order.lt ring_display _) (only parsing).
Notation "@ 'ltr' R" :=
- (@lt ring_display R) (at level 10, R at level 8, only parsing).
-Notation ger := (@ge ring_display _) (only parsing).
+ (@Order.lt ring_display R) (at level 10, R at level 8, only parsing).
+Notation ger := (@Order.ge ring_display _) (only parsing).
Notation "@ 'ger' R" :=
- (@ge ring_display R) (at level 10, R at level 8, only parsing).
-Notation gtr := (@gt ring_display _) (only parsing).
+ (@Order.ge ring_display R) (at level 10, R at level 8, only parsing).
+Notation gtr := (@Order.gt ring_display _) (only parsing).
Notation "@ 'gtr' R" :=
- (@gt ring_display R) (at level 10, R at level 8, only parsing).
-Notation lerif := (@leif ring_display _) (only parsing).
+ (@Order.gt ring_display R) (at level 10, R at level 8, only parsing).
+Notation lerif := (@Order.leif ring_display _) (only parsing).
Notation "@ 'lerif' R" :=
- (@lerif ring_display R) (at level 10, R at level 8, only parsing).
-Notation comparabler := (@comparable ring_display _) (only parsing).
+ (@Order.leif ring_display R) (at level 10, R at level 8, only parsing).
+Notation comparabler := (@Order.comparable ring_display _) (only parsing).
Notation "@ 'comparabler' R" :=
- (@comparable ring_display R) (at level 10, R at level 8, only parsing).
-Notation maxr := (@join ring_display _).
+ (@Order.comparable ring_display R) (at level 10, R at level 8, only parsing).
+Notation maxr := (@Order.join ring_display _).
Notation "@ 'maxr' R" :=
- (@join ring_display R) (at level 10, R at level 8, only parsing).
-Notation minr := (@meet ring_display _).
+ (@Order.join ring_display R) (at level 10, R at level 8, only parsing).
+Notation minr := (@Order.meet ring_display _).
Notation "@ 'minr' R" :=
- (@meet ring_display R) (at level 10, R at level 8, only parsing).
+ (@Order.meet ring_display R) (at level 10, R at level 8, only parsing).
Section Def.
Context {R : numDomainType}.
@@ -3546,7 +3546,7 @@ Hint Resolve num_real : core.
Section RealDomainOperations.
Notation "[ 'arg' 'min_' ( i < i0 | P ) F ]" :=
- (arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F))
+ (Order.arg_min (disp := ring_display) i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'min_' ( i < i0 | P ) F ]") : ring_scope.
@@ -3560,7 +3560,7 @@ Notation "[ 'arg' 'min_' ( i < i0 ) F ]" := [arg min_(i < i0 | true) F]
format "[ 'arg' 'min_' ( i < i0 ) F ]") : ring_scope.
Notation "[ 'arg' 'max_' ( i > i0 | P ) F ]" :=
- (arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F))
+ (Order.arg_max (disp := ring_display) i0 (fun i => P%B) (fun i => F))
(at level 0, i, i0 at level 10,
format "[ 'arg' 'max_' ( i > i0 | P ) F ]") : ring_scope.
@@ -5043,10 +5043,13 @@ Definition normedZmodMixin :
Canonical normedZmodType := NormedZmoduleType R (U * V) normedZmodMixin.
+Lemma prod_normE (x : U * V) : `|x| = Num.max `|x.1| `|x.2|. Proof. by []. Qed.
+
End ProdNormedZmodule.
Module Exports.
Canonical normedZmodType.
+Definition prod_normE := @prod_normE.
End Exports.
End ProdNormedZmodule.
diff --git a/mathcomp/field/algebraics_fundamentals.v b/mathcomp/field/algebraics_fundamentals.v
index f869378..4fe5f70 100644
--- a/mathcomp/field/algebraics_fundamentals.v
+++ b/mathcomp/field/algebraics_fundamentals.v
@@ -112,7 +112,7 @@ Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
-Import Order.TTheory Order.Syntax GroupScope GRing.Theory Num.Theory.
+Import Order.TTheory GroupScope GRing.Theory Num.Theory.
Local Open Scope ring_scope.
Local Notation "p ^ f" := (map_poly f p) : ring_scope.
diff --git a/mathcomp/ssreflect/order.v b/mathcomp/ssreflect/order.v
index 2d5def5..0daacfb 100644
--- a/mathcomp/ssreflect/order.v
+++ b/mathcomp/ssreflect/order.v
@@ -1,7 +1,7 @@
(* (c) Copyright 2006-2019 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
-From mathcomp Require Import ssreflect ssrbool eqtype ssrfun ssrnat choice seq.
-From mathcomp Require Import fintype tuple bigop path finset.
+From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
+From mathcomp Require Import div choice fintype tuple bigop finset.
(******************************************************************************)
(* This files defines a ordered and decidable relations on a type as *)
@@ -776,8 +776,7 @@ End POrder.
Import POrder.Exports.
Bind Scope cpo_sort with POrder.sort.
-Module Import POrderDef.
-Section Def.
+Section POrderDef.
Variable (disp : unit).
Local Notation porderType := (porderType disp).
@@ -800,12 +799,12 @@ Definition leif (x y : T) C : Prop := ((x <= y) * ((x == y) = C))%type.
Definition le_of_leif x y C (le_xy : @leif x y C) := le_xy.1 : le x y.
Variant le_xor_gt (x y : T) : bool -> bool -> Set :=
- | LerNotGt of x <= y : le_xor_gt x y true false
- | GtrNotLe of y < x : le_xor_gt x y false true.
+ | LeNotGt of x <= y : le_xor_gt x y true false
+ | GtNotLe of y < x : le_xor_gt x y false true.
Variant lt_xor_ge (x y : T) : bool -> bool -> Set :=
- | LtrNotGe of x < y : lt_xor_ge x y false true
- | GerNotLt of y <= x : lt_xor_ge x y true false.
+ | LtNotGe of x < y : lt_xor_ge x y false true
+ | GeNotLt of y <= x : lt_xor_ge x y true false.
Variant compare (x y : T) :
bool -> bool -> bool -> bool -> bool -> bool -> Set :=
@@ -827,7 +826,6 @@ Variant incompare (x y : T) :
| InCompareEq of x = y : incompare x y
true true true true false false true true.
-End Def.
End POrderDef.
Prenex Implicits lt le leif.
@@ -965,7 +963,6 @@ End Exports.
End Lattice.
Export Lattice.Exports.
-Module Import LatticeDef.
Section LatticeDef.
Context {disp : unit}.
Local Notation latticeType := (latticeType disp).
@@ -973,43 +970,42 @@ Context {T : latticeType}.
Definition meet : T -> T -> T := Lattice.meet (Lattice.class T).
Definition join : T -> T -> T := Lattice.join (Lattice.class T).
-Variant le_xor_gt (x y : T) : bool -> bool -> T -> T -> T -> T -> Set :=
- | LerNotGt of x <= y : le_xor_gt x y true false x x y y
- | GtrNotLe of y < x : le_xor_gt x y false true y y x x.
+Variant lel_xor_gt (x y : T) : bool -> bool -> T -> T -> T -> T -> Set :=
+ | LelNotGt of x <= y : lel_xor_gt x y true false x x y y
+ | GtlNotLe of y < x : lel_xor_gt x y false true y y x x.
-Variant lt_xor_ge (x y : T) : bool -> bool -> T -> T -> T -> T -> Set :=
- | LtrNotGe of x < y : lt_xor_ge x y false true x x y y
- | GerNotLt of y <= x : lt_xor_ge x y true false y y x x.
+Variant ltl_xor_ge (x y : T) : bool -> bool -> T -> T -> T -> T -> Set :=
+ | LtlNotGe of x < y : ltl_xor_ge x y false true x x y y
+ | GelNotLt of y <= x : ltl_xor_ge x y true false y y x x.
-Variant compare (x y : T) :
+Variant comparel (x y : T) :
bool -> bool -> bool -> bool -> bool -> bool -> T -> T -> T -> T -> Set :=
- | CompareLt of x < y : compare x y
+ | ComparelLt of x < y : comparel x y
false false false true false true x x y y
- | CompareGt of y < x : compare x y
+ | ComparelGt of y < x : comparel x y
false false true false true false y y x x
- | CompareEq of x = y : compare x y
+ | ComparelEq of x = y : comparel x y
true true true true false false x x x x.
-Variant incompare (x y : T) :
+Variant incomparel (x y : T) :
bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool ->
T -> T -> T -> T -> Set :=
- | InCompareLt of x < y : incompare x y
+ | InComparelLt of x < y : incomparel x y
false false false true false true true true x x y y
- | InCompareGt of y < x : incompare x y
+ | InComparelGt of y < x : incomparel x y
false false true false true false true true y y x x
- | InCompare of x >< y : incompare x y
+ | InComparel of x >< y : incomparel x y
false false false false false false false false
(meet x y) (meet x y) (join x y) (join x y)
- | InCompareEq of x = y : incompare x y
+ | InComparelEq of x = y : incomparel x y
true true true true false false true true x x x x.
End LatticeDef.
-End LatticeDef.
Module Import LatticeSyntax.
-Notation "x `&` y" := (meet x y).
-Notation "x `|` y" := (join x y).
+Notation "x `&` y" := (meet x y) : order_scope.
+Notation "x `|` y" := (join x y) : order_scope.
End LatticeSyntax.
@@ -1147,10 +1143,8 @@ End Exports.
End BLattice.
Export BLattice.Exports.
-Module Import BLatticeDef.
Definition bottom {disp : unit} {T : blatticeType disp} : T :=
BLattice.bottom (BLattice.class T).
-End BLatticeDef.
Module Import BLatticeSyntax.
Notation "0" := bottom : order_scope.
@@ -1253,10 +1247,8 @@ End Exports.
End TBLattice.
Export TBLattice.Exports.
-Module Import TBLatticeDef.
Definition top disp {T : tblatticeType disp} : T :=
TBLattice.top (TBLattice.class T).
-End TBLatticeDef.
Module Import TBLatticeSyntax.
@@ -1362,13 +1354,11 @@ End Exports.
End CBLattice.
Export CBLattice.Exports.
-Module Import CBLatticeDef.
Definition sub {disp : unit} {T : cblatticeType disp} : T -> T -> T :=
CBLattice.sub (CBLattice.class T).
-End CBLatticeDef.
Module Import CBLatticeSyntax.
-Notation "x `\` y" := (sub x y).
+Notation "x `\` y" := (sub x y) : order_scope.
End CBLatticeSyntax.
Module CTBLattice.
@@ -1464,22 +1454,18 @@ End Exports.
End CTBLattice.
Export CTBLattice.Exports.
-Module Import CTBLatticeDef.
Definition compl {d : unit} {T : ctblatticeType d} : T -> T :=
CTBLattice.compl (CTBLattice.class T).
-End CTBLatticeDef.
Module Import CTBLatticeSyntax.
-Notation "~` A" := (compl A).
+Notation "~` A" := (compl A) : order_scope.
End CTBLatticeSyntax.
-Module Import TotalDef.
Section TotalDef.
Context {disp : unit} {T : orderType disp} {I : finType}.
Definition arg_min := @extremum T I <=%O.
Definition arg_max := @extremum T I >=%O.
End TotalDef.
-End TotalDef.
Module Import TotalSyntax.
@@ -1977,8 +1963,8 @@ Notation "><^c x" := (fun y => ~~ (>=<^c%O x y)) : order_scope.
Notation "><^c x :> T" := (><^c (x : T)) (only parsing) : order_scope.
Notation "x ><^c y" := (~~ (><^c%O x y)) : order_scope.
-Notation "x `&^c` y" := (@meet (converse_display _) _ x y).
-Notation "x `|^c` y" := (@join (converse_display _) _ x y).
+Notation "x `&^c` y" := (@meet (converse_display _) _ x y) : order_scope.
+Notation "x `|^c` y" := (@join (converse_display _) _ x y) : order_scope.
Local Notation "0" := bottom.
Local Notation "1" := top.
@@ -2043,7 +2029,6 @@ End ConverseSyntax.
Module Import POrderTheory.
Section POrderTheory.
-Import POrderDef.
Context {disp : unit}.
Local Notation porderType := (porderType disp).
@@ -2538,7 +2523,6 @@ End LatticeTheoryMeet.
Module Import LatticeTheoryJoin.
Section LatticeTheoryJoin.
-Import LatticeDef.
Context {disp : unit}.
Local Notation latticeType := (latticeType disp).
Context {L : latticeType}.
@@ -2604,7 +2588,7 @@ Proof. exact: (@leI2 _ [latticeType of L^c]). Qed.
Lemma joinIr : right_distributive (@join _ L) (@meet _ L).
Proof. exact: (@meetUr _ [latticeType of L^c]). Qed.
-Lemma lcomparableP x y : incompare x y
+Lemma lcomparableP x y : incomparel x y
(y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
(y >=< x) (x >=< y) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
Proof.
@@ -2615,16 +2599,16 @@ by case: (comparableP x) => [hxy|hxy|hxy|->]; do 1?have hxy' := ltW hxy;
Qed.
Lemma lcomparable_ltgtP x y : x >=< y ->
- compare x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
+ comparel x y (y == x) (x == y) (x >= y) (x <= y) (x > y) (x < y)
(y `&` x) (x `&` y) (y `|` x) (x `|` y).
Proof. by case: (lcomparableP x) => // *; constructor. Qed.
Lemma lcomparable_leP x y : x >=< y ->
- le_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ lel_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
Proof. by move/lcomparable_ltgtP => [/ltW xy|xy|->]; constructor. Qed.
Lemma lcomparable_ltP x y : x >=< y ->
- lt_xor_ge x y (y <= x) (x < y) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ ltl_xor_ge x y (y <= x) (x < y) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
Proof. by move=> /lcomparable_ltgtP [xy|/ltW xy|->]; constructor. Qed.
End LatticeTheoryJoin.
@@ -3308,7 +3292,6 @@ End CTBLatticeTheory.
Module TotalPOrderMixin.
Section TotalPOrderMixin.
-Import POrderDef.
Variable (disp : unit) (T : porderType disp).
Definition of_ := total (<=%O : rel T).
Variable (m : of_).
@@ -3607,7 +3590,7 @@ Let T_total_latticeType : latticeType tt :=
Implicit Types (x y z : T_total_latticeType).
Fact leP x y :
- le_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
+ lel_xor_gt x y (x <= y) (y < x) (y `&` x) (x `&` y) (y `|` x) (x `|` y).
Proof. by apply/lcomparable_leP/le_total. Qed.
Fact meetE x y : meet m x y = x `&` y.
Proof. by rewrite meet_def (_ : lt m x y = (x < y)) //; case: (leP y). Qed.
@@ -3964,8 +3947,8 @@ Notation "><^p x" := (fun y => ~~ (>=<^p%O x y)) : order_scope.
Notation "><^p x :> T" := (><^p (x : T)) (only parsing) : order_scope.
Notation "x ><^p y" := (~~ (><^p%O x y)) : order_scope.
-Notation "x `&^p` y" := (@meet prod_display _ x y).
-Notation "x `|^p` y" := (@join prod_display _ x y).
+Notation "x `&^p` y" := (@meet prod_display _ x y) : order_scope.
+Notation "x `|^p` y" := (@join prod_display _ x y) : order_scope.
Notation "\join^p_ ( i <- r | P ) F" :=
(\big[join/0]_(i <- r | P%B) F%O) : order_scope.
@@ -4024,8 +4007,8 @@ Fact lexi_display : unit. Proof. by []. Qed.
Module Import LexiSyntax.
Notation "<=^l%O" := (@le lexi_display _) : order_scope.
-Notation ">=^l%O" := (@ge lexi_display _) : order_scope.
-Notation ">=^l%O" := (@ge lexi_display _) : order_scope.
+Notation ">=^l%O" := (@ge lexi_display _) : order_scope.
+Notation ">=^l%O" := (@ge lexi_display _) : order_scope.
Notation "<^l%O" := (@lt lexi_display _) : order_scope.
Notation ">^l%O" := (@gt lexi_display _) : order_scope.
Notation "<?=^l%O" := (@leif lexi_display _) : order_scope.
@@ -4076,8 +4059,8 @@ Notation "x ><^l y" := (~~ (><^l%O x y)) : order_scope.
Notation minlexi := (@meet lexi_display _).
Notation maxlexi := (@join lexi_display _).
-Notation "x `&^l` y" := (minlexi x y).
-Notation "x `|^l` y" := (maxlexi x y).
+Notation "x `&^l` y" := (minlexi x y) : order_scope.
+Notation "x `|^l` y" := (maxlexi x y) : order_scope.
Notation "\max^l_ ( i <- r | P ) F" :=
(\big[maxlexi/0]_(i <- r | P%B) F%O) : order_scope.
@@ -4211,7 +4194,7 @@ Fact meetKU y x : join x (meet x y) = x.
Proof. by case: x => ? ?; congr pair; rewrite meetKU. Qed.
Fact leEmeet x y : (x <= y) = (meet x y == x).
-Proof. by rewrite /POrderDef.le /= /le /meet eqE /= -!leEmeet. Qed.
+Proof. by rewrite eqE /= -!leEmeet. Qed.
Fact meetUl : left_distributive meet join.
Proof. by move=> ? ? ?; congr pair; rewrite meetUl. Qed.
@@ -4232,7 +4215,7 @@ Section BLattice.
Variable (T : blatticeType disp1) (T' : blatticeType disp2).
Fact le0x (x : T * T') : (0, 0) <= x :> T * T'.
-Proof. by rewrite /POrderDef.le /= /le !le0x. Qed.
+Proof. by rewrite /<=%O /= /le !le0x. Qed.
Canonical blatticeType := BLatticeType (T * T') (BLattice.Mixin le0x).
@@ -4244,7 +4227,7 @@ Section TBLattice.
Variable (T : tblatticeType disp1) (T' : tblatticeType disp2).
Fact lex1 (x : T * T') : x <= (top, top).
-Proof. by rewrite /POrderDef.le /= /le !lex1. Qed.
+Proof. by rewrite /<=%O /= /le !lex1. Qed.
Canonical tblatticeType := TBLatticeType (T * T') (TBLattice.Mixin lex1).
@@ -4572,8 +4555,7 @@ Implicit Types (x y : T * T').
Fact total : totalPOrderMixin [porderType of T * T'].
Proof.
-move=> x y; rewrite /POrderDef.le /= /le; case: (ltgtP x.1 y.1) => _ //=.
-by apply: le_total.
+move=> x y; rewrite /<=%O /= /le; case: ltgtP => //= _; exact: le_total.
Qed.
Canonical latticeType := LatticeType (T * T') total.
@@ -4769,8 +4751,7 @@ Proof. by elim: x y => [|? ? ih] [|? ?] //=; rewrite meetKU ih. Qed.
Fact leEmeet x y : (x <= y) = (meet x y == x).
Proof.
-rewrite /POrderDef.le /=.
-by elim: x y => [|? ? ih] [|? ?] //=; rewrite /eq_op /= leEmeet ih.
+by rewrite /<=%O /=; elim: x y => [|? ? ih] [|? ?] //=; rewrite eqE leEmeet ih.
Qed.
Fact meetUl : left_distributive meet join.
@@ -5471,16 +5452,6 @@ Canonical tlexi_finOrderType n (T : finOrderType disp) :=
End DefaultTupleLexiOrder.
End DefaultTupleLexiOrder.
-Module Def.
-Export POrderDef.
-Export LatticeDef.
-Export TotalDef.
-Export BLatticeDef.
-Export TBLatticeDef.
-Export CBLatticeDef.
-Export CTBLatticeDef.
-End Def.
-
Module Syntax.
Export POSyntax.
Export LatticeSyntax.
@@ -5519,6 +5490,8 @@ End Theory.
End Order.
+Export Order.Syntax.
+
Export Order.POrder.Exports.
Export Order.FinPOrder.Exports.
Export Order.Lattice.Exports.
@@ -5555,5 +5528,3 @@ Module DefaultTupleProdOrder := Order.DefaultTupleProdOrder.
Module DefaultProdLexiOrder := Order.DefaultProdLexiOrder.
Module DefaultSeqLexiOrder := Order.DefaultSeqLexiOrder.
Module DefaultTupleLexiOrder := Order.DefaultTupleLexiOrder.
-
-Import Order.Syntax.