diff options
| author | Anton Trunov | 2019-05-29 15:17:39 +0300 |
|---|---|---|
| committer | Anton Trunov | 2019-05-29 15:17:39 +0300 |
| commit | 42db44ce8df9f24d90c321d57e81e2d5bf83bd48 (patch) | |
| tree | c928479b8231901da1cfb4efece42ebe2d419da7 /mathcomp/algebra | |
| parent | 1aa27b589c437b88cc6fb556edfceac42da449ea (diff) | |
Replace eqVneq with eqPsym
Also changed eqsVneq.
Diffstat (limited to 'mathcomp/algebra')
| -rw-r--r-- | mathcomp/algebra/intdiv.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/matrix.v | 4 | ||||
| -rw-r--r-- | mathcomp/algebra/poly.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/polydiv.v | 14 |
4 files changed, 10 insertions, 12 deletions
diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v index edd2620..0a5bfde 100644 --- a/mathcomp/algebra/intdiv.v +++ b/mathcomp/algebra/intdiv.v @@ -969,7 +969,7 @@ without loss{IHa} /forallP/(_ (_, _))/= a_dvM: / [forall k, a %| M k.1 k.2]%Z. by exists i; rewrite mxE. exists R^T; last exists L^T; rewrite ?unitmx_tr //; exists d => //. rewrite -[M]trmxK dM !trmx_mul mulmxA; congr (_ *m _ *m _). - by apply/matrixP=> i1 j1; rewrite !mxE; case: eqPsym => // ->. + by apply/matrixP=> i1 j1; rewrite !mxE; case: eqVneq => // ->. without loss{nz_a a_dvM} a1: M a Da / a = 1. pose M1 := map_mx (divz^~ a) M; case/(_ M1 1)=> // [k|L uL [R uR [d dvD dM]]]. by rewrite !mxE Da divzz nz_a. diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v index ff9d43a..9d6e2be 100644 --- a/mathcomp/algebra/matrix.v +++ b/mathcomp/algebra/matrix.v @@ -1392,7 +1392,7 @@ Definition diag_mx n (d : 'rV[R]_n) := \matrix[diag_mx_key]_(i, j) (d 0 i *+ (i == j)). Lemma tr_diag_mx n (d : 'rV_n) : (diag_mx d)^T = diag_mx d. -Proof. by apply/matrixP=> i j; rewrite !mxE; case: eqPsym => // ->. Qed. +Proof. by apply/matrixP=> i j; rewrite !mxE; case: eqVneq => // ->. Qed. Lemma diag_mx_is_linear n : linear (@diag_mx n). Proof. @@ -1744,7 +1744,7 @@ by rewrite eqn_leq andbC leqNgt lshift_subproof. Qed. Lemma tr_pid_mx m n r : (pid_mx r)^T = pid_mx r :> 'M_(n, m). -Proof. by apply/matrixP=> i j; rewrite !mxE; case: eqPsym => // ->. Qed. +Proof. by apply/matrixP=> i j; rewrite !mxE; case: eqVneq => // ->. Qed. Lemma pid_mx_minv m n r : pid_mx (minn m r) = pid_mx r :> 'M_(m, n). Proof. by apply/matrixP=> i j; rewrite !mxE leq_min ltn_ord. Qed. diff --git a/mathcomp/algebra/poly.v b/mathcomp/algebra/poly.v index d898774..a3b9211 100644 --- a/mathcomp/algebra/poly.v +++ b/mathcomp/algebra/poly.v @@ -368,7 +368,7 @@ Lemma nil_poly p : nilp p = (p == 0). Proof. exact: size_poly_eq0. Qed. Lemma poly0Vpos p : {p = 0} + {size p > 0}. -Proof. by rewrite lt0n size_poly_eq0; apply: eqVneq. Qed. +Proof. by rewrite lt0n size_poly_eq0; case: eqVneq; [left | right]. Qed. Lemma polySpred p : p != 0 -> size p = (size p).-1.+1. Proof. by rewrite -size_poly_eq0 -lt0n => /prednK. Qed. diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v index 6f9d837..2ac2c3e 100644 --- a/mathcomp/algebra/polydiv.v +++ b/mathcomp/algebra/polydiv.v @@ -2037,8 +2037,7 @@ Lemma egcdp_recP : forall k p q, q != 0 -> size q <= k -> size q <= size p -> [/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q]. Proof. elim=> [|k ihk] p q /= qn0; first by rewrite leqn0 size_poly_eq0 (negPf qn0). -move=> sqSn qsp; case: (eqVneq q 0)=> q0; first by rewrite q0 eqxx in qn0. -rewrite (negPf qn0). +move=> sqSn qsp; rewrite (negPf qn0). have sp : size p > 0 by apply: leq_trans qsp; rewrite size_poly_gt0. case: (eqVneq (p %% q) 0) => [r0 | rn0] /=. rewrite r0 /egcdp_rec; case: k ihk sqSn => [|n] ihn sqSn /=. @@ -2239,8 +2238,7 @@ Proof. apply/eqP/idP=> [d0|]; last first. case/or3P; [by move/eqP->; rewrite div0p| by move/eqP->; rewrite divp0|]. by move/divp_small. -case: (eqVneq p 0) => [->|pn0]; first by rewrite eqxx. -case: (eqVneq q 0) => [-> | qn0]; first by rewrite eqxx orbT. +case: (eqVneq p 0) => [->//|pn0]; case: (eqVneq q 0) => [->//| qn0]. move: (divp_eq p q); rewrite d0 mul0r add0r. move/(f_equal (fun x : {poly R} => size x)). by rewrite size_scale ?lc_expn_scalp_neq0 // => ->; rewrite ltn_modp qn0 !orbT. @@ -3039,8 +3037,8 @@ Proof. move=> eqr; rewrite /gdcop; move: (size p)=> n. elim: n p q r eqr {1 3}p (eqpxx p) => [|n ihn] p q r eqr s esp /=. move: eqr; case: (eqVneq q 0)=> [-> | nq0 eqr] /=. - by rewrite eqp_sym eqp0; move->; rewrite eqxx eqpxx. - suff rn0 : r != 0 by rewrite (negPf nq0) (negPf rn0) eqpxx. + by rewrite eqp_sym eqp0 => ->; rewrite eqpxx. + suff rn0 : r != 0 by rewrite (negPf rn0) eqpxx. by apply: contraTneq eqr => ->; rewrite eqp0. rewrite (eqp_coprimepr _ eqr) (eqp_coprimepl _ esp); case: ifP=> _ //. by apply: ihn => //; apply: eqp_div => //; apply: eqp_gcd. @@ -3051,8 +3049,8 @@ Proof. rewrite /rgdcop /gdcop; move: (size p)=> n. elim: n p q {1 3}p {1 3}q (eqpxx p) (eqpxx q) => [|n ihn] p q s t /= sp tq. move: tq; case: (eqVneq t 0)=> [-> | nt0 etq]. - by rewrite eqp_sym eqp0; move->; rewrite eqxx eqpxx. - suff qn0 : q != 0 by rewrite (negPf nt0) (negPf qn0) eqpxx. + by rewrite eqp_sym eqp0 => ->; rewrite eqpxx. + suff qn0 : q != 0 by rewrite (negPf qn0) eqpxx. by apply: contraTneq etq => ->; rewrite eqp0. rewrite rcoprimep_coprimep (eqp_coprimepl t sp) (eqp_coprimepr p tq). case: ifP=> // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _. |
