aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/algebra/polydiv.v
diff options
context:
space:
mode:
Diffstat (limited to 'mathcomp/algebra/polydiv.v')
-rw-r--r--mathcomp/algebra/polydiv.v14
1 files changed, 6 insertions, 8 deletions
diff --git a/mathcomp/algebra/polydiv.v b/mathcomp/algebra/polydiv.v
index 6f9d837..2ac2c3e 100644
--- a/mathcomp/algebra/polydiv.v
+++ b/mathcomp/algebra/polydiv.v
@@ -2037,8 +2037,7 @@ Lemma egcdp_recP : forall k p q, q != 0 -> size q <= k -> size q <= size p ->
[/\ size e.1 <= size q, size e.2 <= size p & gcdp p q %= e.1 * p + e.2 * q].
Proof.
elim=> [|k ihk] p q /= qn0; first by rewrite leqn0 size_poly_eq0 (negPf qn0).
-move=> sqSn qsp; case: (eqVneq q 0)=> q0; first by rewrite q0 eqxx in qn0.
-rewrite (negPf qn0).
+move=> sqSn qsp; rewrite (negPf qn0).
have sp : size p > 0 by apply: leq_trans qsp; rewrite size_poly_gt0.
case: (eqVneq (p %% q) 0) => [r0 | rn0] /=.
rewrite r0 /egcdp_rec; case: k ihk sqSn => [|n] ihn sqSn /=.
@@ -2239,8 +2238,7 @@ Proof.
apply/eqP/idP=> [d0|]; last first.
case/or3P; [by move/eqP->; rewrite div0p| by move/eqP->; rewrite divp0|].
by move/divp_small.
-case: (eqVneq p 0) => [->|pn0]; first by rewrite eqxx.
-case: (eqVneq q 0) => [-> | qn0]; first by rewrite eqxx orbT.
+case: (eqVneq p 0) => [->//|pn0]; case: (eqVneq q 0) => [->//| qn0].
move: (divp_eq p q); rewrite d0 mul0r add0r.
move/(f_equal (fun x : {poly R} => size x)).
by rewrite size_scale ?lc_expn_scalp_neq0 // => ->; rewrite ltn_modp qn0 !orbT.
@@ -3039,8 +3037,8 @@ Proof.
move=> eqr; rewrite /gdcop; move: (size p)=> n.
elim: n p q r eqr {1 3}p (eqpxx p) => [|n ihn] p q r eqr s esp /=.
move: eqr; case: (eqVneq q 0)=> [-> | nq0 eqr] /=.
- by rewrite eqp_sym eqp0; move->; rewrite eqxx eqpxx.
- suff rn0 : r != 0 by rewrite (negPf nq0) (negPf rn0) eqpxx.
+ by rewrite eqp_sym eqp0 => ->; rewrite eqpxx.
+ suff rn0 : r != 0 by rewrite (negPf rn0) eqpxx.
by apply: contraTneq eqr => ->; rewrite eqp0.
rewrite (eqp_coprimepr _ eqr) (eqp_coprimepl _ esp); case: ifP=> _ //.
by apply: ihn => //; apply: eqp_div => //; apply: eqp_gcd.
@@ -3051,8 +3049,8 @@ Proof.
rewrite /rgdcop /gdcop; move: (size p)=> n.
elim: n p q {1 3}p {1 3}q (eqpxx p) (eqpxx q) => [|n ihn] p q s t /= sp tq.
move: tq; case: (eqVneq t 0)=> [-> | nt0 etq].
- by rewrite eqp_sym eqp0; move->; rewrite eqxx eqpxx.
- suff qn0 : q != 0 by rewrite (negPf nt0) (negPf qn0) eqpxx.
+ by rewrite eqp_sym eqp0 => ->; rewrite eqpxx.
+ suff qn0 : q != 0 by rewrite (negPf qn0) eqpxx.
by apply: contraTneq etq => ->; rewrite eqp0.
rewrite rcoprimep_coprimep (eqp_coprimepl t sp) (eqp_coprimepr p tq).
case: ifP=> // _; apply: ihn => //; apply: eqp_trans (eqp_rdiv_div _ _) _.