diff options
| author | Jasper Hugunin | 2018-02-21 23:27:04 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2018-02-21 23:27:04 -0800 |
| commit | 64ceb784611e5ded0c715835a36490de1c3bb1ca (patch) | |
| tree | 105ff4785b1ac83c081d04379423451fb84ac257 /mathcomp/algebra/mxalgebra.v | |
| parent | 181e9e94e04f45e0deb231246e1783c48be4f99d (diff) | |
Change Implicit Arguments to Arguments in algebra
Diffstat (limited to 'mathcomp/algebra/mxalgebra.v')
| -rw-r--r-- | mathcomp/algebra/mxalgebra.v | 126 |
1 files changed, 63 insertions, 63 deletions
diff --git a/mathcomp/algebra/mxalgebra.v b/mathcomp/algebra/mxalgebra.v index 463f07b..9cf3f6e 100644 --- a/mathcomp/algebra/mxalgebra.v +++ b/mathcomp/algebra/mxalgebra.v @@ -432,7 +432,7 @@ Proof. by rewrite mulmxA -[col_base A *m _]mulmxA pid_mx_id ?mulmx_ebase. Qed. Lemma mulmx1_min_rank r m n (A : 'M_(m, n)) M N : M *m A *m N = 1%:M :> 'M_r -> r <= \rank A. Proof. by rewrite -{1}(mulmx_base A) mulmxA -mulmxA; move/mulmx1_min. Qed. -Implicit Arguments mulmx1_min_rank [r m n A]. +Arguments mulmx1_min_rank [r m n A]. Lemma mulmx_max_rank r m n (M : 'M_(m, r)) (N : 'M_(r, n)) : \rank (M *m N) <= r. @@ -444,7 +444,7 @@ suffices: L *m M *m (N *m U) = 1%:M by apply: mulmx1_min. rewrite mulmxA -(mulmxA L) -[M *m N]mulmx_ebase -/MN. by rewrite !mulmxA mulmxKV // mulmxK // !pid_mx_id /rMN ?pid_mx_1. Qed. -Implicit Arguments mulmx_max_rank [r m n]. +Arguments mulmx_max_rank [r m n]. Lemma mxrank_tr m n (A : 'M_(m, n)) : \rank A^T = \rank A. Proof. @@ -511,7 +511,7 @@ Proof. apply: (iffP idP) => [/mulmxKpV | [D ->]]; first by exists (A *m pinvmx B). by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed. -Implicit Arguments submxP [m1 m2 n A B]. +Arguments submxP [m1 m2 n A B]. Lemma submx_refl m n (A : 'M_(m, n)) : (A <= A)%MS. Proof. by rewrite submxE mulmx_coker. Qed. @@ -612,7 +612,7 @@ apply: (iffP idP) => [sAB i|sAB]. rewrite submxE; apply/eqP/row_matrixP=> i; apply/eqP. by rewrite row_mul row0 -submxE. Qed. -Implicit Arguments row_subP [m1 m2 n A B]. +Arguments row_subP [m1 m2 n A B]. Lemma rV_subP m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall v : 'rV_n, v <= A -> v <= B)%MS (A <= B)%MS. @@ -620,7 +620,7 @@ Proof. apply: (iffP idP) => [sAB v Av | sAB]; first exact: submx_trans sAB. by apply/row_subP=> i; rewrite sAB ?row_sub. Qed. -Implicit Arguments rV_subP [m1 m2 n A B]. +Arguments rV_subP [m1 m2 n A B]. Lemma row_subPn m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (exists i, ~~ (row i A <= B)%MS) (~~ (A <= B)%MS). @@ -668,7 +668,7 @@ apply: (iffP idP) => [Afull | [B kA]]. by exists (1%:M *m pinvmx A); apply: mulmxKpV (submx_full _ Afull). by rewrite [_ A]eqn_leq rank_leq_col (mulmx1_min_rank B 1%:M) ?mulmx1. Qed. -Implicit Arguments row_fullP [m n A]. +Arguments row_fullP [m n A]. Lemma row_full_inj m n p A : row_full A -> injective (@mulmx _ m n p A). Proof. @@ -739,7 +739,7 @@ split=> [|m3 C]; first by apply/eqP; rewrite eqn_leq !mxrankS. split; first by apply/idP/idP; apply: submx_trans. by apply/idP/idP=> sC; apply: submx_trans sC _. Qed. -Implicit Arguments eqmxP [m1 m2 n A B]. +Arguments eqmxP [m1 m2 n A B]. Lemma rV_eqP m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall u : 'rV_n, (u <= A) = (u <= B))%MS (A == B)%MS. @@ -860,7 +860,7 @@ Proof. apply: (iffP idP) => eqAB; first exact: eq_genmx (eqmxP _). by rewrite -!(genmxE A) eqAB !genmxE andbb. Qed. -Implicit Arguments genmxP [m1 m2 n A B]. +Arguments genmxP [m1 m2 n A B]. Lemma genmx0 m n : <<0 : 'M_(m, n)>>%MS = 0. Proof. by apply/eqP; rewrite -submx0 genmxE sub0mx. Qed. @@ -1066,7 +1066,7 @@ apply: (iffP idP) => [|[u ->]]; last by rewrite addmx_sub_adds ?submxMl. rewrite addsmxE; case/submxP=> u ->; exists (lsubmx u, rsubmx u). by rewrite -mul_row_col hsubmxK. Qed. -Implicit Arguments sub_addsmxP [m1 m2 m3 n A B C]. +Arguments sub_addsmxP [m1 m2 m3 n A B C]. Variable I : finType. Implicit Type P : pred I. @@ -1080,7 +1080,7 @@ Lemma sumsmx_sup i0 P m n (A : 'M_(m, n)) (B_ : I -> 'M_n) : Proof. by move=> Pi0 sAB; apply: submx_trans sAB _; rewrite (bigD1 i0) // addsmxSl. Qed. -Implicit Arguments sumsmx_sup [P m n A B_]. +Arguments sumsmx_sup i0 [P m n A B_]. Lemma sumsmx_subP P m n (A_ : I -> 'M_n) (B : 'M_(m, n)) : reflect (forall i, P i -> A_ i <= B)%MS (\sum_(i | P i) A_ i <= B)%MS. @@ -1790,7 +1790,7 @@ Notation mxdirect A := (mxdirect_def (Phantom 'M_(_,_) A%MS)). Lemma mxdirectP n (S : proper_mxsum_expr n) : reflect (\rank S = proper_mxsum_rank S) (mxdirect S). Proof. exact: eqnP. Qed. -Implicit Arguments mxdirectP [n S]. +Arguments mxdirectP [n S]. Lemma mxdirect_trivial m n A : mxdirect (unwrap (@trivial_mxsum m n A)). Proof. exact: eqxx. Qed. @@ -1972,38 +1972,38 @@ End Eigenspace. End RowSpaceTheory. Hint Resolve submx_refl. -Implicit Arguments submxP [F m1 m2 n A B]. -Implicit Arguments eq_row_sub [F m n v A]. -Implicit Arguments row_subP [F m1 m2 n A B]. -Implicit Arguments rV_subP [F m1 m2 n A B]. -Implicit Arguments row_subPn [F m1 m2 n A B]. -Implicit Arguments sub_rVP [F n u v]. -Implicit Arguments rV_eqP [F m1 m2 n A B]. -Implicit Arguments rowV0Pn [F m n A]. -Implicit Arguments rowV0P [F m n A]. -Implicit Arguments eqmx0P [F m n A]. -Implicit Arguments row_fullP [F m n A]. -Implicit Arguments row_freeP [F m n A]. -Implicit Arguments eqmxP [F m1 m2 n A B]. -Implicit Arguments genmxP [F m1 m2 n A B]. -Implicit Arguments addsmx_idPr [F m1 m2 n A B]. -Implicit Arguments addsmx_idPl [F m1 m2 n A B]. -Implicit Arguments sub_addsmxP [F m1 m2 m3 n A B C]. -Implicit Arguments sumsmx_sup [F I P m n A B_]. -Implicit Arguments sumsmx_subP [F I P m n A_ B]. -Implicit Arguments sub_sumsmxP [F I P m n A B_]. -Implicit Arguments sub_kermxP [F p m n A B]. -Implicit Arguments capmx_idPr [F m1 m2 n A B]. -Implicit Arguments capmx_idPl [F m1 m2 n A B]. -Implicit Arguments bigcapmx_inf [F I P m n A_ B]. -Implicit Arguments sub_bigcapmxP [F I P m n A B_]. -Implicit Arguments mxrank_injP [F m n A f]. -Implicit Arguments mxdirectP [F n S]. -Implicit Arguments mxdirect_addsP [F m1 m2 n A B]. -Implicit Arguments mxdirect_sumsP [F I P n A_]. -Implicit Arguments mxdirect_sumsE [F I P n S_]. -Implicit Arguments eigenspaceP [F n g a m W]. -Implicit Arguments eigenvalueP [F n g a]. +Arguments submxP [F m1 m2 n A B]. +Arguments eq_row_sub [F m n v A]. +Arguments row_subP [F m1 m2 n A B]. +Arguments rV_subP [F m1 m2 n A B]. +Arguments row_subPn [F m1 m2 n A B]. +Arguments sub_rVP [F n u v]. +Arguments rV_eqP [F m1 m2 n A B]. +Arguments rowV0Pn [F m n A]. +Arguments rowV0P [F m n A]. +Arguments eqmx0P [F m n A]. +Arguments row_fullP [F m n A]. +Arguments row_freeP [F m n A]. +Arguments eqmxP [F m1 m2 n A B]. +Arguments genmxP [F m1 m2 n A B]. +Arguments addsmx_idPr [F m1 m2 n A B]. +Arguments addsmx_idPl [F m1 m2 n A B]. +Arguments sub_addsmxP [F m1 m2 m3 n A B C]. +Arguments sumsmx_sup [F I] i0 [P m n A B_]. +Arguments sumsmx_subP [F I P m n A_ B]. +Arguments sub_sumsmxP [F I P m n A B_]. +Arguments sub_kermxP [F p m n A B]. +Arguments capmx_idPr [F n m1 m2 A B]. +Arguments capmx_idPl [F n m1 m2 A B]. +Arguments bigcapmx_inf [F I] i0 [P m n A_ B]. +Arguments sub_bigcapmxP [F I P m n A B_]. +Arguments mxrank_injP [F m n] p [A f]. +Arguments mxdirectP [F n S]. +Arguments mxdirect_addsP [F m1 m2 n A B]. +Arguments mxdirect_sumsP [F I P n A_]. +Arguments mxdirect_sumsE [F I P n S_]. +Arguments eigenspaceP [F n g a m W]. +Arguments eigenvalueP [F n g a]. Arguments Scope mxrank [_ nat_scope nat_scope matrix_set_scope]. Arguments Scope complmx [_ nat_scope nat_scope matrix_set_scope]. @@ -2241,7 +2241,7 @@ Proof. apply: (iffP idP) => [sR12 A R1_A | sR12]; first exact: submx_trans sR12. by apply/rV_subP=> vA; rewrite -(vec_mxK vA); apply: sR12. Qed. -Implicit Arguments memmx_subP [m1 m2 n R1 R2]. +Arguments memmx_subP [m1 m2 n R1 R2]. Lemma memmx_eqP m1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (forall A, (A \in R1) = (A \in R2)) (R1 == R2)%MS. @@ -2249,7 +2249,7 @@ Proof. apply: (iffP eqmxP) => [eqR12 A | eqR12]; first by rewrite eqR12. by apply/eqmxP; apply/rV_eqP=> vA; rewrite -(vec_mxK vA) eqR12. Qed. -Implicit Arguments memmx_eqP [m1 m2 n R1 R2]. +Arguments memmx_eqP [m1 m2 n R1 R2]. Lemma memmx_addsP m1 m2 n A (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (exists D, [/\ D.1 \in R1, D.2 \in R2 & A = D.1 + D.2]) @@ -2261,7 +2261,7 @@ apply: (iffP sub_addsmxP) => [[u /(canRL mxvecK)->] | [D []]]. case/submxP=> u1 defD1 /submxP[u2 defD2] ->. by exists (u1, u2); rewrite linearD /= defD1 defD2. Qed. -Implicit Arguments memmx_addsP [m1 m2 n A R1 R2]. +Arguments memmx_addsP [m1 m2 n A R1 R2]. Lemma memmx_sumsP (I : finType) (P : pred I) n (A : 'M_n) R_ : reflect (exists2 A_, A = \sum_(i | P i) A_ i & forall i, A_ i \in R_ i) @@ -2274,7 +2274,7 @@ apply: (iffP sub_sumsmxP) => [[C defA] | [A_ -> R_A] {A}]. exists (fun i => mxvec (A_ i) *m pinvmx (R_ i)). by rewrite linear_sum; apply: eq_bigr => i _; rewrite mulmxKpV. Qed. -Implicit Arguments memmx_sumsP [I P n A R_]. +Arguments memmx_sumsP [I P n A R_]. Lemma has_non_scalar_mxP m n (R : 'A_(m, n)) : (1%:M \in R)%MS -> @@ -2325,7 +2325,7 @@ case/memmx_sumsP=> A_ -> R_A; rewrite linear_sum summx_sub //= => j _. rewrite (submx_trans (R_A _)) // genmxE; apply/row_subP=> i. by rewrite row_mul mul_rV_lin sR12R ?vec_mxK ?row_sub. Qed. -Implicit Arguments mulsmx_subP [m1 m2 m n R1 R2 R]. +Arguments mulsmx_subP [m1 m2 m n R1 R2 R]. Lemma mulsmxS m1 m2 m3 m4 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) (R4 : 'A_(m4, n)) : @@ -2360,7 +2360,7 @@ exists A2_ => [i|]; first by rewrite vec_mxK -(genmxE R2) row_sub. apply: eq_bigr => i _; rewrite -[_ *m _](mx_rV_lin (mulmxr_linear _ _)). by rewrite -mulmxA mulmxKpV ?mxvecK // -(genmxE (_ *m _)) R_A. Qed. -Implicit Arguments mulsmxP [m1 m2 n A R1 R2]. +Arguments mulsmxP [m1 m2 n A R1 R2]. Lemma mulsmxA m1 m2 m3 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) : (R1 * (R2 * R3) = R1 * R2 * R3)%MS. @@ -2450,7 +2450,7 @@ congr (row_mx 0 (row_mx (mxvec _) (mxvec _))); apply/row_matrixP=> i. by rewrite !row_mul !mul_rV_lin1 /= mxvecK ideR vec_mxK ?row_sub. by rewrite !row_mul !mul_rV_lin1 /= mxvecK idRe vec_mxK ?row_sub. Qed. -Implicit Arguments mxring_idP [m n R]. +Arguments mxring_idP [m n R]. Section CentMxDef. @@ -2486,7 +2486,7 @@ apply: (iffP sub_kermxP); rewrite mul_vec_lin => cBE. apply: (canLR vec_mxK); apply/row_matrixP=> i. by rewrite row_mul mul_rV_lin /= cBE subrr !linear0. Qed. -Implicit Arguments cent_rowP [m n B R]. +Arguments cent_rowP [m n B R]. Lemma cent_mxP m n B (R : 'A_(m, n)) : reflect (forall A, A \in R -> A *m B = B *m A) (B \in 'C(R))%MS. @@ -2497,7 +2497,7 @@ apply: (iffP cent_rowP) => cEB => [A sAE | i A]. by rewrite !linearZ -scalemxAl /= cEB. by rewrite cEB // vec_mxK row_sub. Qed. -Implicit Arguments cent_mxP [m n B R]. +Arguments cent_mxP [m n B R]. Lemma scalar_mx_cent m n a (R : 'A_(m, n)) : (a%:M \in 'C(R))%MS. Proof. by apply/cent_mxP=> A _; apply: scalar_mxC. Qed. @@ -2512,7 +2512,7 @@ Proof. rewrite sub_capmx; case R_A: (A \in R); last by right; case. by apply: (iffP cent_mxP) => [cAR | [_ cAR]]. Qed. -Implicit Arguments center_mxP [m n A R]. +Arguments center_mxP [m n A R]. Lemma mxring_id_uniq m n (R : 'A_(m, n)) e1 e2 : mxring_id R e1 -> mxring_id R e2 -> e1 = e2. @@ -2634,16 +2634,16 @@ Notation "''C_' R ( S )" := (R :&: 'C(S))%MS : matrix_set_scope. Notation "''C_' ( R ) ( S )" := ('C_R(S))%MS (only parsing) : matrix_set_scope. Notation "''Z' ( R )" := (center_mx R) : matrix_set_scope. -Implicit Arguments memmx_subP [F m1 m2 n R1 R2]. -Implicit Arguments memmx_eqP [F m1 m2 n R1 R2]. -Implicit Arguments memmx_addsP [F m1 m2 n R1 R2]. -Implicit Arguments memmx_sumsP [F I P n A R_]. -Implicit Arguments mulsmx_subP [F m1 m2 m n R1 R2 R]. -Implicit Arguments mulsmxP [F m1 m2 n A R1 R2]. -Implicit Arguments mxring_idP [m n R]. -Implicit Arguments cent_rowP [F m n B R]. -Implicit Arguments cent_mxP [F m n B R]. -Implicit Arguments center_mxP [F m n A R]. +Arguments memmx_subP [F m1 m2 n R1 R2]. +Arguments memmx_eqP [F m1 m2 n R1 R2]. +Arguments memmx_addsP [F m1 m2 n] A [R1 R2]. +Arguments memmx_sumsP [F I P n A R_]. +Arguments mulsmx_subP [F m1 m2 m n R1 R2 R]. +Arguments mulsmxP [F m1 m2 n A R1 R2]. +Arguments mxring_idP F [m n R]. +Arguments cent_rowP [F m n B R]. +Arguments cent_mxP [F m n B R]. +Arguments center_mxP [F m n A R]. (* Parametricity for the row-space/F-algebra theory. *) Section MapMatrixSpaces. |
