diff options
| author | Jasper Hugunin | 2018-02-21 23:27:04 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2018-02-21 23:27:04 -0800 |
| commit | 64ceb784611e5ded0c715835a36490de1c3bb1ca (patch) | |
| tree | 105ff4785b1ac83c081d04379423451fb84ac257 | |
| parent | 181e9e94e04f45e0deb231246e1783c48be4f99d (diff) | |
Change Implicit Arguments to Arguments in algebra
| -rw-r--r-- | mathcomp/algebra/finalg.v | 3 | ||||
| -rw-r--r-- | mathcomp/algebra/intdiv.v | 12 | ||||
| -rw-r--r-- | mathcomp/algebra/interval.v | 4 | ||||
| -rw-r--r-- | mathcomp/algebra/matrix.v | 34 | ||||
| -rw-r--r-- | mathcomp/algebra/mxalgebra.v | 126 | ||||
| -rw-r--r-- | mathcomp/algebra/mxpoly.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/poly.v | 18 | ||||
| -rw-r--r-- | mathcomp/algebra/rat.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssralg.v | 40 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrint.v | 2 | ||||
| -rw-r--r-- | mathcomp/algebra/ssrnum.v | 38 | ||||
| -rw-r--r-- | mathcomp/algebra/vector.v | 64 | ||||
| -rw-r--r-- | mathcomp/algebra/zmodp.v | 6 |
13 files changed, 175 insertions, 176 deletions
diff --git a/mathcomp/algebra/finalg.v b/mathcomp/algebra/finalg.v index 3a50934..7a1cacf 100644 --- a/mathcomp/algebra/finalg.v +++ b/mathcomp/algebra/finalg.v @@ -62,8 +62,7 @@ Definition gen_pack T := End Generic. -Implicit Arguments - gen_pack [type base_type class_of base_of to_choice base_sort]. +Arguments gen_pack [type base_type class_of base_of to_choice base_sort]. Local Notation fin_ c := (@Finite.Class _ c c). Local Notation do_pack pack T := (pack T _ _ id _ _ id). Import GRing.Theory. diff --git a/mathcomp/algebra/intdiv.v b/mathcomp/algebra/intdiv.v index a85b3ec..e043561 100644 --- a/mathcomp/algebra/intdiv.v +++ b/mathcomp/algebra/intdiv.v @@ -186,11 +186,11 @@ rewrite {1}(divz_eq m d) mulrDr mulrCA divzMDl ?mulf_neq0 ?gtr_eqF // addrC. rewrite divz_small ?add0r // PoszM pmulr_rge0 ?modz_ge0 ?gtr_eqF //=. by rewrite ltr_pmul2l ?ltz_pmod. Qed. -Implicit Arguments divzMpl [p m d]. +Arguments divzMpl [p m d]. Lemma divzMpr p m d : p > 0 -> (m * p %/ (d * p) = m %/ d)%Z. Proof. by move=> p_gt0; rewrite -!(mulrC p) divzMpl. Qed. -Implicit Arguments divzMpr [p m d]. +Arguments divzMpr [p m d]. Lemma lez_floor m d : d != 0 -> (m %/ d)%Z * d <= m. Proof. by rewrite -subr_ge0; apply: modz_ge0. Qed. @@ -340,14 +340,14 @@ apply: (iffP dvdnP) => [] [q Dm]; last by exists `|q|%N; rewrite Dm abszM. exists ((-1) ^+ (m < 0)%R * q%:Z * (-1) ^+ (d < 0)%R). by rewrite -!mulrA -abszEsign -PoszM -Dm -intEsign. Qed. -Implicit Arguments dvdzP [d m]. +Arguments dvdzP [d m]. Lemma dvdz_mod0P d m : reflect (m %% d = 0)%Z (d %| m)%Z. Proof. apply: (iffP dvdzP) => [[q ->] | md0]; first by rewrite modzMl. by rewrite (divz_eq m d) md0 addr0; exists (m %/ d)%Z. Qed. -Implicit Arguments dvdz_mod0P [d m]. +Arguments dvdz_mod0P [d m]. Lemma dvdz_eq d m : (d %| m)%Z = ((m %/ d)%Z * d == m). Proof. by rewrite (sameP dvdz_mod0P eqP) subr_eq0 eq_sym. Qed. @@ -408,11 +408,11 @@ Proof. by rewrite -!(mulrC p); apply: divzMl. Qed. Lemma dvdz_mul2l p d m : p != 0 -> (p * d %| p * m)%Z = (d %| m)%Z. Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2l. Qed. -Implicit Arguments dvdz_mul2l [p m d]. +Arguments dvdz_mul2l [p d m]. Lemma dvdz_mul2r p d m : p != 0 -> (d * p %| m * p)%Z = (d %| m)%Z. Proof. by rewrite !dvdzE -absz_gt0 !abszM; apply: dvdn_pmul2r. Qed. -Implicit Arguments dvdz_mul2r [p m d]. +Arguments dvdz_mul2r [p d m]. Lemma dvdz_exp2l p m n : (m <= n)%N -> (p ^+ m %| p ^+ n)%Z. Proof. by rewrite dvdzE !abszX; apply: dvdn_exp2l. Qed. diff --git a/mathcomp/algebra/interval.v b/mathcomp/algebra/interval.v index e269752..b699da1 100644 --- a/mathcomp/algebra/interval.v +++ b/mathcomp/algebra/interval.v @@ -134,7 +134,7 @@ Lemma itv_dec : forall (x : R) (i : interval R), reflect (itv_decompose i x) (x \in i). Proof. by move=> x [[[] a|] [[] b|]]; apply: (iffP andP); case. Qed. -Implicit Arguments itv_dec [x i]. +Arguments itv_dec [x i]. Definition lersif (x y : R) b := if b then x < y else x <= y. @@ -243,7 +243,7 @@ move=> x [[[] a|] [[] b|]]; move/itv_dec=> //= [hl hu]; do ?[split=> //; Qed. Hint Rewrite intP. -Implicit Arguments itvP [x i]. +Arguments itvP [x i]. Definition subitv (i1 i2 : interval R) := match i1, i2 with diff --git a/mathcomp/algebra/matrix.v b/mathcomp/algebra/matrix.v index aecbce9..b54e586 100644 --- a/mathcomp/algebra/matrix.v +++ b/mathcomp/algebra/matrix.v @@ -306,7 +306,7 @@ Variable R : Type. (* Constant matrix *) Fact const_mx_key : unit. Proof. by []. Qed. Definition const_mx m n a : 'M[R]_(m, n) := \matrix[const_mx_key]_(i, j) a. -Implicit Arguments const_mx [[m] [n]]. +Arguments const_mx {m n}. Section FixedDim. (* Definitions and properties for which we can work with fixed dimensions. *) @@ -911,10 +911,10 @@ End VecMatrix. End MatrixStructural. -Implicit Arguments const_mx [R m n]. -Implicit Arguments row_mxA [R m n1 n2 n3 A1 A2 A3]. -Implicit Arguments col_mxA [R m1 m2 m3 n A1 A2 A3]. -Implicit Arguments block_mxA +Arguments const_mx [R m n]. +Arguments row_mxA [R m n1 n2 n3 A1 A2 A3]. +Arguments col_mxA [R m1 m2 m3 n A1 A2 A3]. +Arguments block_mxA [R m1 m2 m3 n1 n2 n3 A11 A12 A13 A21 A22 A23 A31 A32 A33]. Prenex Implicits const_mx castmx trmx lsubmx rsubmx usubmx dsubmx row_mx col_mx. Prenex Implicits block_mx ulsubmx ursubmx dlsubmx drsubmx. @@ -2042,19 +2042,19 @@ Definition adjugate n (A : 'M_n) := \matrix[adjugate_key]_(i, j) cofactor A j i. End MatrixAlgebra. -Implicit Arguments delta_mx [R m n]. -Implicit Arguments scalar_mx [R n]. -Implicit Arguments perm_mx [R n]. -Implicit Arguments tperm_mx [R n]. -Implicit Arguments pid_mx [R m n]. -Implicit Arguments copid_mx [R n]. -Implicit Arguments lin_mulmxr [R m n p]. +Arguments delta_mx [R m n]. +Arguments scalar_mx [R n]. +Arguments perm_mx [R n]. +Arguments tperm_mx [R n]. +Arguments pid_mx [R m n]. +Arguments copid_mx [R n]. +Arguments lin_mulmxr [R m n p]. Prenex Implicits delta_mx diag_mx scalar_mx is_scalar_mx perm_mx tperm_mx. Prenex Implicits pid_mx copid_mx mulmx lin_mulmxr. Prenex Implicits mxtrace determinant cofactor adjugate. -Implicit Arguments is_scalar_mxP [R n A]. -Implicit Arguments mul_delta_mx [R m n p]. +Arguments is_scalar_mxP [R n A]. +Arguments mul_delta_mx [R m n p]. Prenex Implicits mul_delta_mx. Notation "a %:M" := (scalar_mx a) : ring_scope. @@ -2496,8 +2496,8 @@ Proof. by rewrite -det_tr tr_block_mx trmx0 det_ublock !det_tr. Qed. End ComMatrix. -Implicit Arguments lin_mul_row [R m n]. -Implicit Arguments lin_mulmx [R m n p]. +Arguments lin_mul_row [R m n]. +Arguments lin_mulmx [R m n p]. Prenex Implicits lin_mul_row lin_mulmx. Canonical matrix_finAlgType (R : finComRingType) n' := @@ -2779,7 +2779,7 @@ Qed. End MatrixDomain. -Implicit Arguments det0P [R n A]. +Arguments det0P [R n A]. (* Parametricity at the field level (mx_is_scalar, unit and inverse are only *) (* mapped at this level). *) diff --git a/mathcomp/algebra/mxalgebra.v b/mathcomp/algebra/mxalgebra.v index 463f07b..9cf3f6e 100644 --- a/mathcomp/algebra/mxalgebra.v +++ b/mathcomp/algebra/mxalgebra.v @@ -432,7 +432,7 @@ Proof. by rewrite mulmxA -[col_base A *m _]mulmxA pid_mx_id ?mulmx_ebase. Qed. Lemma mulmx1_min_rank r m n (A : 'M_(m, n)) M N : M *m A *m N = 1%:M :> 'M_r -> r <= \rank A. Proof. by rewrite -{1}(mulmx_base A) mulmxA -mulmxA; move/mulmx1_min. Qed. -Implicit Arguments mulmx1_min_rank [r m n A]. +Arguments mulmx1_min_rank [r m n A]. Lemma mulmx_max_rank r m n (M : 'M_(m, r)) (N : 'M_(r, n)) : \rank (M *m N) <= r. @@ -444,7 +444,7 @@ suffices: L *m M *m (N *m U) = 1%:M by apply: mulmx1_min. rewrite mulmxA -(mulmxA L) -[M *m N]mulmx_ebase -/MN. by rewrite !mulmxA mulmxKV // mulmxK // !pid_mx_id /rMN ?pid_mx_1. Qed. -Implicit Arguments mulmx_max_rank [r m n]. +Arguments mulmx_max_rank [r m n]. Lemma mxrank_tr m n (A : 'M_(m, n)) : \rank A^T = \rank A. Proof. @@ -511,7 +511,7 @@ Proof. apply: (iffP idP) => [/mulmxKpV | [D ->]]; first by exists (A *m pinvmx B). by rewrite submxE -mulmxA mulmx_coker mulmx0. Qed. -Implicit Arguments submxP [m1 m2 n A B]. +Arguments submxP [m1 m2 n A B]. Lemma submx_refl m n (A : 'M_(m, n)) : (A <= A)%MS. Proof. by rewrite submxE mulmx_coker. Qed. @@ -612,7 +612,7 @@ apply: (iffP idP) => [sAB i|sAB]. rewrite submxE; apply/eqP/row_matrixP=> i; apply/eqP. by rewrite row_mul row0 -submxE. Qed. -Implicit Arguments row_subP [m1 m2 n A B]. +Arguments row_subP [m1 m2 n A B]. Lemma rV_subP m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall v : 'rV_n, v <= A -> v <= B)%MS (A <= B)%MS. @@ -620,7 +620,7 @@ Proof. apply: (iffP idP) => [sAB v Av | sAB]; first exact: submx_trans sAB. by apply/row_subP=> i; rewrite sAB ?row_sub. Qed. -Implicit Arguments rV_subP [m1 m2 n A B]. +Arguments rV_subP [m1 m2 n A B]. Lemma row_subPn m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (exists i, ~~ (row i A <= B)%MS) (~~ (A <= B)%MS). @@ -668,7 +668,7 @@ apply: (iffP idP) => [Afull | [B kA]]. by exists (1%:M *m pinvmx A); apply: mulmxKpV (submx_full _ Afull). by rewrite [_ A]eqn_leq rank_leq_col (mulmx1_min_rank B 1%:M) ?mulmx1. Qed. -Implicit Arguments row_fullP [m n A]. +Arguments row_fullP [m n A]. Lemma row_full_inj m n p A : row_full A -> injective (@mulmx _ m n p A). Proof. @@ -739,7 +739,7 @@ split=> [|m3 C]; first by apply/eqP; rewrite eqn_leq !mxrankS. split; first by apply/idP/idP; apply: submx_trans. by apply/idP/idP=> sC; apply: submx_trans sC _. Qed. -Implicit Arguments eqmxP [m1 m2 n A B]. +Arguments eqmxP [m1 m2 n A B]. Lemma rV_eqP m1 m2 n (A : 'M_(m1, n)) (B : 'M_(m2, n)) : reflect (forall u : 'rV_n, (u <= A) = (u <= B))%MS (A == B)%MS. @@ -860,7 +860,7 @@ Proof. apply: (iffP idP) => eqAB; first exact: eq_genmx (eqmxP _). by rewrite -!(genmxE A) eqAB !genmxE andbb. Qed. -Implicit Arguments genmxP [m1 m2 n A B]. +Arguments genmxP [m1 m2 n A B]. Lemma genmx0 m n : <<0 : 'M_(m, n)>>%MS = 0. Proof. by apply/eqP; rewrite -submx0 genmxE sub0mx. Qed. @@ -1066,7 +1066,7 @@ apply: (iffP idP) => [|[u ->]]; last by rewrite addmx_sub_adds ?submxMl. rewrite addsmxE; case/submxP=> u ->; exists (lsubmx u, rsubmx u). by rewrite -mul_row_col hsubmxK. Qed. -Implicit Arguments sub_addsmxP [m1 m2 m3 n A B C]. +Arguments sub_addsmxP [m1 m2 m3 n A B C]. Variable I : finType. Implicit Type P : pred I. @@ -1080,7 +1080,7 @@ Lemma sumsmx_sup i0 P m n (A : 'M_(m, n)) (B_ : I -> 'M_n) : Proof. by move=> Pi0 sAB; apply: submx_trans sAB _; rewrite (bigD1 i0) // addsmxSl. Qed. -Implicit Arguments sumsmx_sup [P m n A B_]. +Arguments sumsmx_sup i0 [P m n A B_]. Lemma sumsmx_subP P m n (A_ : I -> 'M_n) (B : 'M_(m, n)) : reflect (forall i, P i -> A_ i <= B)%MS (\sum_(i | P i) A_ i <= B)%MS. @@ -1790,7 +1790,7 @@ Notation mxdirect A := (mxdirect_def (Phantom 'M_(_,_) A%MS)). Lemma mxdirectP n (S : proper_mxsum_expr n) : reflect (\rank S = proper_mxsum_rank S) (mxdirect S). Proof. exact: eqnP. Qed. -Implicit Arguments mxdirectP [n S]. +Arguments mxdirectP [n S]. Lemma mxdirect_trivial m n A : mxdirect (unwrap (@trivial_mxsum m n A)). Proof. exact: eqxx. Qed. @@ -1972,38 +1972,38 @@ End Eigenspace. End RowSpaceTheory. Hint Resolve submx_refl. -Implicit Arguments submxP [F m1 m2 n A B]. -Implicit Arguments eq_row_sub [F m n v A]. -Implicit Arguments row_subP [F m1 m2 n A B]. -Implicit Arguments rV_subP [F m1 m2 n A B]. -Implicit Arguments row_subPn [F m1 m2 n A B]. -Implicit Arguments sub_rVP [F n u v]. -Implicit Arguments rV_eqP [F m1 m2 n A B]. -Implicit Arguments rowV0Pn [F m n A]. -Implicit Arguments rowV0P [F m n A]. -Implicit Arguments eqmx0P [F m n A]. -Implicit Arguments row_fullP [F m n A]. -Implicit Arguments row_freeP [F m n A]. -Implicit Arguments eqmxP [F m1 m2 n A B]. -Implicit Arguments genmxP [F m1 m2 n A B]. -Implicit Arguments addsmx_idPr [F m1 m2 n A B]. -Implicit Arguments addsmx_idPl [F m1 m2 n A B]. -Implicit Arguments sub_addsmxP [F m1 m2 m3 n A B C]. -Implicit Arguments sumsmx_sup [F I P m n A B_]. -Implicit Arguments sumsmx_subP [F I P m n A_ B]. -Implicit Arguments sub_sumsmxP [F I P m n A B_]. -Implicit Arguments sub_kermxP [F p m n A B]. -Implicit Arguments capmx_idPr [F m1 m2 n A B]. -Implicit Arguments capmx_idPl [F m1 m2 n A B]. -Implicit Arguments bigcapmx_inf [F I P m n A_ B]. -Implicit Arguments sub_bigcapmxP [F I P m n A B_]. -Implicit Arguments mxrank_injP [F m n A f]. -Implicit Arguments mxdirectP [F n S]. -Implicit Arguments mxdirect_addsP [F m1 m2 n A B]. -Implicit Arguments mxdirect_sumsP [F I P n A_]. -Implicit Arguments mxdirect_sumsE [F I P n S_]. -Implicit Arguments eigenspaceP [F n g a m W]. -Implicit Arguments eigenvalueP [F n g a]. +Arguments submxP [F m1 m2 n A B]. +Arguments eq_row_sub [F m n v A]. +Arguments row_subP [F m1 m2 n A B]. +Arguments rV_subP [F m1 m2 n A B]. +Arguments row_subPn [F m1 m2 n A B]. +Arguments sub_rVP [F n u v]. +Arguments rV_eqP [F m1 m2 n A B]. +Arguments rowV0Pn [F m n A]. +Arguments rowV0P [F m n A]. +Arguments eqmx0P [F m n A]. +Arguments row_fullP [F m n A]. +Arguments row_freeP [F m n A]. +Arguments eqmxP [F m1 m2 n A B]. +Arguments genmxP [F m1 m2 n A B]. +Arguments addsmx_idPr [F m1 m2 n A B]. +Arguments addsmx_idPl [F m1 m2 n A B]. +Arguments sub_addsmxP [F m1 m2 m3 n A B C]. +Arguments sumsmx_sup [F I] i0 [P m n A B_]. +Arguments sumsmx_subP [F I P m n A_ B]. +Arguments sub_sumsmxP [F I P m n A B_]. +Arguments sub_kermxP [F p m n A B]. +Arguments capmx_idPr [F n m1 m2 A B]. +Arguments capmx_idPl [F n m1 m2 A B]. +Arguments bigcapmx_inf [F I] i0 [P m n A_ B]. +Arguments sub_bigcapmxP [F I P m n A B_]. +Arguments mxrank_injP [F m n] p [A f]. +Arguments mxdirectP [F n S]. +Arguments mxdirect_addsP [F m1 m2 n A B]. +Arguments mxdirect_sumsP [F I P n A_]. +Arguments mxdirect_sumsE [F I P n S_]. +Arguments eigenspaceP [F n g a m W]. +Arguments eigenvalueP [F n g a]. Arguments Scope mxrank [_ nat_scope nat_scope matrix_set_scope]. Arguments Scope complmx [_ nat_scope nat_scope matrix_set_scope]. @@ -2241,7 +2241,7 @@ Proof. apply: (iffP idP) => [sR12 A R1_A | sR12]; first exact: submx_trans sR12. by apply/rV_subP=> vA; rewrite -(vec_mxK vA); apply: sR12. Qed. -Implicit Arguments memmx_subP [m1 m2 n R1 R2]. +Arguments memmx_subP [m1 m2 n R1 R2]. Lemma memmx_eqP m1 m2 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (forall A, (A \in R1) = (A \in R2)) (R1 == R2)%MS. @@ -2249,7 +2249,7 @@ Proof. apply: (iffP eqmxP) => [eqR12 A | eqR12]; first by rewrite eqR12. by apply/eqmxP; apply/rV_eqP=> vA; rewrite -(vec_mxK vA) eqR12. Qed. -Implicit Arguments memmx_eqP [m1 m2 n R1 R2]. +Arguments memmx_eqP [m1 m2 n R1 R2]. Lemma memmx_addsP m1 m2 n A (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) : reflect (exists D, [/\ D.1 \in R1, D.2 \in R2 & A = D.1 + D.2]) @@ -2261,7 +2261,7 @@ apply: (iffP sub_addsmxP) => [[u /(canRL mxvecK)->] | [D []]]. case/submxP=> u1 defD1 /submxP[u2 defD2] ->. by exists (u1, u2); rewrite linearD /= defD1 defD2. Qed. -Implicit Arguments memmx_addsP [m1 m2 n A R1 R2]. +Arguments memmx_addsP [m1 m2 n A R1 R2]. Lemma memmx_sumsP (I : finType) (P : pred I) n (A : 'M_n) R_ : reflect (exists2 A_, A = \sum_(i | P i) A_ i & forall i, A_ i \in R_ i) @@ -2274,7 +2274,7 @@ apply: (iffP sub_sumsmxP) => [[C defA] | [A_ -> R_A] {A}]. exists (fun i => mxvec (A_ i) *m pinvmx (R_ i)). by rewrite linear_sum; apply: eq_bigr => i _; rewrite mulmxKpV. Qed. -Implicit Arguments memmx_sumsP [I P n A R_]. +Arguments memmx_sumsP [I P n A R_]. Lemma has_non_scalar_mxP m n (R : 'A_(m, n)) : (1%:M \in R)%MS -> @@ -2325,7 +2325,7 @@ case/memmx_sumsP=> A_ -> R_A; rewrite linear_sum summx_sub //= => j _. rewrite (submx_trans (R_A _)) // genmxE; apply/row_subP=> i. by rewrite row_mul mul_rV_lin sR12R ?vec_mxK ?row_sub. Qed. -Implicit Arguments mulsmx_subP [m1 m2 m n R1 R2 R]. +Arguments mulsmx_subP [m1 m2 m n R1 R2 R]. Lemma mulsmxS m1 m2 m3 m4 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) (R4 : 'A_(m4, n)) : @@ -2360,7 +2360,7 @@ exists A2_ => [i|]; first by rewrite vec_mxK -(genmxE R2) row_sub. apply: eq_bigr => i _; rewrite -[_ *m _](mx_rV_lin (mulmxr_linear _ _)). by rewrite -mulmxA mulmxKpV ?mxvecK // -(genmxE (_ *m _)) R_A. Qed. -Implicit Arguments mulsmxP [m1 m2 n A R1 R2]. +Arguments mulsmxP [m1 m2 n A R1 R2]. Lemma mulsmxA m1 m2 m3 n (R1 : 'A_(m1, n)) (R2 : 'A_(m2, n)) (R3 : 'A_(m3, n)) : (R1 * (R2 * R3) = R1 * R2 * R3)%MS. @@ -2450,7 +2450,7 @@ congr (row_mx 0 (row_mx (mxvec _) (mxvec _))); apply/row_matrixP=> i. by rewrite !row_mul !mul_rV_lin1 /= mxvecK ideR vec_mxK ?row_sub. by rewrite !row_mul !mul_rV_lin1 /= mxvecK idRe vec_mxK ?row_sub. Qed. -Implicit Arguments mxring_idP [m n R]. +Arguments mxring_idP [m n R]. Section CentMxDef. @@ -2486,7 +2486,7 @@ apply: (iffP sub_kermxP); rewrite mul_vec_lin => cBE. apply: (canLR vec_mxK); apply/row_matrixP=> i. by rewrite row_mul mul_rV_lin /= cBE subrr !linear0. Qed. -Implicit Arguments cent_rowP [m n B R]. +Arguments cent_rowP [m n B R]. Lemma cent_mxP m n B (R : 'A_(m, n)) : reflect (forall A, A \in R -> A *m B = B *m A) (B \in 'C(R))%MS. @@ -2497,7 +2497,7 @@ apply: (iffP cent_rowP) => cEB => [A sAE | i A]. by rewrite !linearZ -scalemxAl /= cEB. by rewrite cEB // vec_mxK row_sub. Qed. -Implicit Arguments cent_mxP [m n B R]. +Arguments cent_mxP [m n B R]. Lemma scalar_mx_cent m n a (R : 'A_(m, n)) : (a%:M \in 'C(R))%MS. Proof. by apply/cent_mxP=> A _; apply: scalar_mxC. Qed. @@ -2512,7 +2512,7 @@ Proof. rewrite sub_capmx; case R_A: (A \in R); last by right; case. by apply: (iffP cent_mxP) => [cAR | [_ cAR]]. Qed. -Implicit Arguments center_mxP [m n A R]. +Arguments center_mxP [m n A R]. Lemma mxring_id_uniq m n (R : 'A_(m, n)) e1 e2 : mxring_id R e1 -> mxring_id R e2 -> e1 = e2. @@ -2634,16 +2634,16 @@ Notation "''C_' R ( S )" := (R :&: 'C(S))%MS : matrix_set_scope. Notation "''C_' ( R ) ( S )" := ('C_R(S))%MS (only parsing) : matrix_set_scope. Notation "''Z' ( R )" := (center_mx R) : matrix_set_scope. -Implicit Arguments memmx_subP [F m1 m2 n R1 R2]. -Implicit Arguments memmx_eqP [F m1 m2 n R1 R2]. -Implicit Arguments memmx_addsP [F m1 m2 n R1 R2]. -Implicit Arguments memmx_sumsP [F I P n A R_]. -Implicit Arguments mulsmx_subP [F m1 m2 m n R1 R2 R]. -Implicit Arguments mulsmxP [F m1 m2 n A R1 R2]. -Implicit Arguments mxring_idP [m n R]. -Implicit Arguments cent_rowP [F m n B R]. -Implicit Arguments cent_mxP [F m n B R]. -Implicit Arguments center_mxP [F m n A R]. +Arguments memmx_subP [F m1 m2 n R1 R2]. +Arguments memmx_eqP [F m1 m2 n R1 R2]. +Arguments memmx_addsP [F m1 m2 n] A [R1 R2]. +Arguments memmx_sumsP [F I P n A R_]. +Arguments mulsmx_subP [F m1 m2 m n R1 R2 R]. +Arguments mulsmxP [F m1 m2 n A R1 R2]. +Arguments mxring_idP F [m n R]. +Arguments cent_rowP [F m n B R]. +Arguments cent_mxP [F m n B R]. +Arguments center_mxP [F m n A R]. (* Parametricity for the row-space/F-algebra theory. *) Section MapMatrixSpaces. diff --git a/mathcomp/algebra/mxpoly.v b/mathcomp/algebra/mxpoly.v index 4d043ea..5f83ab0 100644 --- a/mathcomp/algebra/mxpoly.v +++ b/mathcomp/algebra/mxpoly.v @@ -115,7 +115,7 @@ Canonical rVpoly_linear := Linear rVpoly_is_linear. End RowPoly. -Implicit Arguments poly_rV [R d]. +Arguments poly_rV [R d]. Prenex Implicits rVpoly poly_rV. Section Resultant. diff --git a/mathcomp/algebra/poly.v b/mathcomp/algebra/poly.v index 5e684a1..409930c 100644 --- a/mathcomp/algebra/poly.v +++ b/mathcomp/algebra/poly.v @@ -1662,7 +1662,7 @@ Qed. End PolynomialTheory. Prenex Implicits polyC Poly lead_coef root horner polyOver. -Implicit Arguments monic [[R]]. +Arguments monic {R}. Notation "\poly_ ( i < n ) E" := (poly n (fun i => E)) : ring_scope. Notation "c %:P" := (polyC c) : ring_scope. Notation "'X" := (polyX _) : ring_scope. @@ -1674,12 +1674,12 @@ Notation "a ^` ()" := (deriv a) : ring_scope. Notation "a ^` ( n )" := (derivn n a) : ring_scope. Notation "a ^`N ( n )" := (nderivn n a) : ring_scope. -Implicit Arguments monicP [R p]. -Implicit Arguments rootP [R p x]. -Implicit Arguments rootPf [R p x]. -Implicit Arguments rootPt [R p x]. -Implicit Arguments unity_rootP [R n z]. -Implicit Arguments polyOverP [[R] [S0] [addS] [kS] [p]]. +Arguments monicP [R p]. +Arguments rootP [R p x]. +Arguments rootPf [R p x]. +Arguments rootPt [R p x]. +Arguments unity_rootP [R n z]. +Arguments polyOverP {R S0 addS kS p}. (* Container morphism. *) Section MapPoly. @@ -2342,7 +2342,7 @@ Qed. End MapFieldPoly. -Implicit Arguments map_poly_inj [[F] [R] x1 x2]. +Arguments map_poly_inj {F R} f [x1 x2]. Section MaxRoots. @@ -2523,7 +2523,7 @@ Open Scope unity_root_scope. Definition unity_rootE := unity_rootE. Definition unity_rootP := @unity_rootP. -Implicit Arguments unity_rootP [R n z]. +Arguments unity_rootP [R n z]. Definition prim_order_exists := prim_order_exists. Notation prim_order_gt0 := prim_order_gt0. diff --git a/mathcomp/algebra/rat.v b/mathcomp/algebra/rat.v index 393b37b..cd7d306 100644 --- a/mathcomp/algebra/rat.v +++ b/mathcomp/algebra/rat.v @@ -777,7 +777,7 @@ Qed. End InPrealField. -Implicit Arguments ratr [[R]]. +Arguments ratr {R}. (* Conntecting rationals to the ring an field tactics *) diff --git a/mathcomp/algebra/ssralg.v b/mathcomp/algebra/ssralg.v index 9a0314e..1725e5e 100644 --- a/mathcomp/algebra/ssralg.v +++ b/mathcomp/algebra/ssralg.v @@ -859,9 +859,9 @@ End ClosedPredicates. End ZmoduleTheory. -Implicit Arguments addrI [[V] x1 x2]. -Implicit Arguments addIr [[V] x1 x2]. -Implicit Arguments oppr_inj [[V] x1 x2]. +Arguments addrI {V} y [x1 x2]. +Arguments addIr {V} x [x1 x2]. +Arguments oppr_inj {V} [x1 x2]. Module Ring. @@ -2476,7 +2476,7 @@ End ClassDef. Module Exports. Coercion base : class_of >-> Ring.class_of. -Implicit Arguments mixin [R]. +Arguments mixin [R]. Coercion mixin : class_of >-> commutative. Coercion sort : type >-> Sortclass. Bind Scope ring_scope with sort. @@ -3016,7 +3016,7 @@ End ClosedPredicates. End UnitRingTheory. -Implicit Arguments invr_inj [[R] x1 x2]. +Arguments invr_inj {R} [x1 x2]. Section UnitRingMorphism. @@ -3740,7 +3740,7 @@ Arguments Scope Not [_ term_scope]. Arguments Scope Exists [_ nat_scope term_scope]. Arguments Scope Forall [_ nat_scope term_scope]. -Implicit Arguments Bool [R]. +Arguments Bool [R]. Prenex Implicits Const Add Opp NatMul Mul Exp Bool Unit And Or Implies Not. Prenex Implicits Exists Forall. @@ -4363,7 +4363,7 @@ End ClassDef. Module Exports. Coercion base : class_of >-> ComUnitRing.class_of. -Implicit Arguments mixin [R x y]. +Arguments mixin [R] c [x y]. Coercion mixin : class_of >-> axiom. Coercion sort : type >-> Sortclass. Bind Scope ring_scope with sort. @@ -4511,8 +4511,8 @@ Canonical regular_idomainType := [idomainType of R^o]. End IntegralDomainTheory. -Implicit Arguments lregP [[R] [x]]. -Implicit Arguments rregP [[R] [x]]. +Arguments lregP {R x}. +Arguments rregP {R x}. Module Field. @@ -4580,7 +4580,7 @@ End ClassDef. Module Exports. Coercion base : class_of >-> IntegralDomain.class_of. -Implicit Arguments mixin [F x]. +Arguments mixin [F] c [x]. Coercion mixin : class_of >-> mixin_of. Coercion sort : type >-> Sortclass. Bind Scope ring_scope with sort. @@ -4794,7 +4794,7 @@ End Predicates. End FieldTheory. -Implicit Arguments fmorph_inj [[F] [R] x1 x2]. +Arguments fmorph_inj {F R} f [x1 x2]. Module DecidableField. @@ -4928,8 +4928,8 @@ Qed. End DecidableFieldTheory. -Implicit Arguments satP [[F] [e] [f]]. -Implicit Arguments solP [[F] [n] [f]]. +Arguments satP {F e f}. +Arguments solP {F n f}. Section QE_Mixin. @@ -5349,13 +5349,13 @@ Definition addrI := @addrI. Definition addIr := @addIr. Definition subrI := @subrI. Definition subIr := @subIr. -Implicit Arguments addrI [[V] x1 x2]. -Implicit Arguments addIr [[V] x1 x2]. -Implicit Arguments subrI [[V] x1 x2]. -Implicit Arguments subIr [[V] x1 x2]. +Arguments addrI {V} y [x1 x2]. +Arguments addIr {V} x [x1 x2]. +Arguments subrI {V} y [x1 x2]. +Arguments subIr {V} x [x1 x2]. Definition opprK := opprK. Definition oppr_inj := @oppr_inj. -Implicit Arguments oppr_inj [[V] x1 x2]. +Arguments oppr_inj {V} [x1 x2]. Definition oppr0 := oppr0. Definition oppr_eq0 := oppr_eq0. Definition opprD := opprD. @@ -5539,7 +5539,7 @@ Definition commrV := commrV. Definition unitrE := unitrE. Definition invrK := invrK. Definition invr_inj := @invr_inj. -Implicit Arguments invr_inj [[R] x1 x2]. +Arguments invr_inj {R} [x1 x2]. Definition unitrV := unitrV. Definition unitr1 := unitr1. Definition invr1 := invr1. @@ -5702,7 +5702,7 @@ Definition rmorphV := rmorphV. Definition rmorph_div := rmorph_div. Definition fmorph_eq0 := fmorph_eq0. Definition fmorph_inj := @fmorph_inj. -Implicit Arguments fmorph_inj [[F] [R] x1 x2]. +Arguments fmorph_inj {F R} f [x1 x2]. Definition fmorph_eq1 := fmorph_eq1. Definition fmorph_char := fmorph_char. Definition fmorph_unit := fmorph_unit. diff --git a/mathcomp/algebra/ssrint.v b/mathcomp/algebra/ssrint.v index e6c4ca6..752be45 100644 --- a/mathcomp/algebra/ssrint.v +++ b/mathcomp/algebra/ssrint.v @@ -970,7 +970,7 @@ End NumMorphism. End MorphTheory. -Implicit Arguments intr_inj [[R] x1 x2]. +Arguments intr_inj {R} [x1 x2]. Definition exprz (R : unitRingType) (x : R) (n : int) := nosimpl match n with diff --git a/mathcomp/algebra/ssrnum.v b/mathcomp/algebra/ssrnum.v index 219f804..0d9d135 100644 --- a/mathcomp/algebra/ssrnum.v +++ b/mathcomp/algebra/ssrnum.v @@ -1251,11 +1251,11 @@ Definition normrE x := (normr_id, normr0, normr1, normrN1, normr_ge0, normr_eq0, End NumIntegralDomainTheory. -Implicit Arguments ler01 [R]. -Implicit Arguments ltr01 [R]. -Implicit Arguments normr_idP [R x]. -Implicit Arguments normr0P [R x]. -Implicit Arguments lerifP [R x y C]. +Arguments ler01 [R]. +Arguments ltr01 [R]. +Arguments normr_idP [R x]. +Arguments normr0P [R x]. +Arguments lerifP [R x y C]. Hint Resolve @ler01 @ltr01 lerr ltrr ltrW ltr_eqF ltr0Sn ler0n normr_ge0. Section NumIntegralDomainMonotonyTheory. @@ -2680,7 +2680,7 @@ Lemma real_ler_normlP x y : Proof. by move=> Rx; rewrite real_ler_norml // ler_oppl; apply: (iffP andP) => [] []. Qed. -Implicit Arguments real_ler_normlP [x y]. +Arguments real_ler_normlP [x y]. Lemma real_eqr_norml x y : x \is real -> (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y). @@ -2716,7 +2716,7 @@ Proof. move=> Rx; rewrite real_ltr_norml // ltr_oppl. by apply: (iffP (@andP _ _)); case. Qed. -Implicit Arguments real_ltr_normlP [x y]. +Arguments real_ltr_normlP [x y]. Lemma real_ler_normr x y : y \is real -> (x <= `|y|) = (x <= y) || (x <= - y). Proof. @@ -3138,16 +3138,16 @@ Qed. End NumDomainOperationTheory. Hint Resolve ler_opp2 ltr_opp2 real0 real1 normr_real. -Implicit Arguments ler_sqr [[R] x y]. -Implicit Arguments ltr_sqr [[R] x y]. -Implicit Arguments signr_inj [[R] x1 x2]. -Implicit Arguments real_ler_normlP [R x y]. -Implicit Arguments real_ltr_normlP [R x y]. -Implicit Arguments lerif_refl [R x C]. -Implicit Arguments mono_in_lerif [R A f C]. -Implicit Arguments nmono_in_lerif [R A f C]. -Implicit Arguments mono_lerif [R f C]. -Implicit Arguments nmono_lerif [R f C]. +Arguments ler_sqr {R} [x y]. +Arguments ltr_sqr {R} [x y]. +Arguments signr_inj {R} [x1 x2]. +Arguments real_ler_normlP [R x y]. +Arguments real_ltr_normlP [R x y]. +Arguments lerif_refl [R x C]. +Arguments mono_in_lerif [R A f C]. +Arguments nmono_in_lerif [R A f C]. +Arguments mono_lerif [R f C]. +Arguments nmono_lerif [R f C]. Section NumDomainMonotonyTheoryForReals. @@ -3631,7 +3631,7 @@ Proof. exact: real_ler_norml. Qed. Lemma ler_normlP x y : reflect ((- x <= y) * (x <= y)) (`|x| <= y). Proof. exact: real_ler_normlP. Qed. -Implicit Arguments ler_normlP [x y]. +Arguments ler_normlP [x y]. Lemma eqr_norml x y : (`|x| == y) = ((x == y) || (x == -y)) && (0 <= y). Proof. exact: real_eqr_norml. Qed. @@ -3646,7 +3646,7 @@ Definition lter_norml := (ler_norml, ltr_norml). Lemma ltr_normlP x y : reflect ((-x < y) * (x < y)) (`|x| < y). Proof. exact: real_ltr_normlP. Qed. -Implicit Arguments ltr_normlP [x y]. +Arguments ltr_normlP [x y]. Lemma ler_normr x y : (x <= `|y|) = (x <= y) || (x <= - y). Proof. by rewrite lerNgt ltr_norml negb_and -!lerNgt orbC ler_oppr. Qed. diff --git a/mathcomp/algebra/vector.v b/mathcomp/algebra/vector.v index c4865ca..73354bf 100644 --- a/mathcomp/algebra/vector.v +++ b/mathcomp/algebra/vector.v @@ -303,7 +303,7 @@ Notation "U <= V <= W" := (subsetv U V && subsetv V W) : vspace_scope. Notation "<[ v ] >" := (vline v) : vspace_scope. Notation "<< X >>" := (span X) : vspace_scope. Notation "0" := (vline 0) : vspace_scope. -Implicit Arguments fullv [[K] [vT]]. +Arguments fullv {K vT}. Prenex Implicits subsetv addv capv complv diffv span free basis_of. Notation "U + V" := (addv U V) : vspace_scope. @@ -568,7 +568,7 @@ Implicit Type P : pred I. Lemma sumv_sup i0 P U Vs : P i0 -> (U <= Vs i0)%VS -> (U <= \sum_(i | P i) Vs i)%VS. Proof. by move=> Pi0 /subv_trans-> //; rewrite (bigD1 i0) ?addvSl. Qed. -Implicit Arguments sumv_sup [P U Vs]. +Arguments sumv_sup i0 [P U Vs]. Lemma subv_sumP {P Us V} : reflect (forall i, P i -> Us i <= V)%VS (\sum_(i | P i) Us i <= V)%VS. @@ -1223,27 +1223,27 @@ End BigSumBasis. End VectorTheory. Hint Resolve subvv. -Implicit Arguments subvP [K vT U V]. -Implicit Arguments addv_idPl [K vT U V]. -Implicit Arguments addv_idPr [K vT U V]. -Implicit Arguments memv_addP [K vT U V w]. -Implicit Arguments sumv_sup [K vT I P U Vs]. -Implicit Arguments memv_sumP [K vT I P Us v]. -Implicit Arguments subv_sumP [K vT I P Us V]. -Implicit Arguments capv_idPl [K vT U V]. -Implicit Arguments capv_idPr [K vT U V]. -Implicit Arguments memv_capP [K vT U V w]. -Implicit Arguments bigcapv_inf [K vT I P Us V]. -Implicit Arguments subv_bigcapP [K vT I P U Vs]. -Implicit Arguments directvP [K vT S]. -Implicit Arguments directv_addP [K vT U V]. -Implicit Arguments directv_add_unique [K vT U V]. -Implicit Arguments directv_sumP [K vT I P Us]. -Implicit Arguments directv_sumE [K vT I P Ss]. -Implicit Arguments directv_sum_independent [K vT I P Us]. -Implicit Arguments directv_sum_unique [K vT I P Us]. -Implicit Arguments span_subvP [K vT X U]. -Implicit Arguments freeP [K vT n X]. +Arguments subvP [K vT U V]. +Arguments addv_idPl [K vT U V]. +Arguments addv_idPr [K vT U V]. +Arguments memv_addP [K vT w U V ]. +Arguments sumv_sup [K vT I] i0 [P U Vs]. +Arguments memv_sumP [K vT I P Us v]. +Arguments subv_sumP [K vT I P Us V]. +Arguments capv_idPl [K vT U V]. +Arguments capv_idPr [K vT U V]. +Arguments memv_capP [K vT w U V]. +Arguments bigcapv_inf [K vT I] i0 [P Us V]. +Arguments subv_bigcapP [K vT I P U Vs]. +Arguments directvP [K vT S]. +Arguments directv_addP [K vT U V]. +Arguments directv_add_unique [K vT U V]. +Arguments directv_sumP [K vT I P Us]. +Arguments directv_sumE [K vT I P Ss]. +Arguments directv_sum_independent [K vT I P Us]. +Arguments directv_sum_unique [K vT I P Us]. +Arguments span_subvP [K vT X U]. +Arguments freeP [K vT n X]. Prenex Implicits coord. Notation directv S := (directv_def (Phantom _ S%VS)). @@ -1598,11 +1598,11 @@ Proof. by move/lker0_lfunK=> fK; apply/lfunP=> u; rewrite !lfunE /= fK. Qed. End LinearImage. -Implicit Arguments memv_imgP [K aT rT f U w]. -Implicit Arguments lfunPn [K aT rT f g]. -Implicit Arguments lker0P [K aT rT f]. -Implicit Arguments eqlfunP [K aT rT f g v]. -Implicit Arguments eqlfun_inP [K aT rT f g V]. +Arguments memv_imgP [K aT rT f w U]. +Arguments lfunPn [K aT rT f g]. +Arguments lker0P [K aT rT f]. +Arguments eqlfunP [K aT rT f g v]. +Arguments eqlfun_inP [K aT rT V f g]. Section FixedSpace. @@ -1632,8 +1632,8 @@ Qed. End FixedSpace. -Implicit Arguments fixedSpaceP [K vT f a]. -Implicit Arguments fixedSpacesP [K vT f U]. +Arguments fixedSpaceP [K vT f a]. +Arguments fixedSpacesP [K vT f U]. Section LinAut. @@ -1943,8 +1943,8 @@ Canonical subvs_vectType := VectType K subvs_of subvs_vectMixin. End SubVector. Prenex Implicits vsval vsproj vsvalK. -Implicit Arguments subvs_inj [[K] [vT] [U] x1 x2]. -Implicit Arguments vsprojK [[K] [vT] [U] x]. +Arguments subvs_inj {K vT U} [x1 x2]. +Arguments vsprojK {K vT U} [x]. Section MatrixVectType. diff --git a/mathcomp/algebra/zmodp.v b/mathcomp/algebra/zmodp.v index ec9750a..f9bdaaa 100644 --- a/mathcomp/algebra/zmodp.v +++ b/mathcomp/algebra/zmodp.v @@ -178,9 +178,9 @@ Proof. by rewrite orderE -Zp_cycle cardsT card_ord. Qed. End ZpDef. -Implicit Arguments Zp0 [[p']]. -Implicit Arguments Zp1 [[p']]. -Implicit Arguments inZp [[p']]. +Arguments Zp0 {p'}. +Arguments Zp1 {p'}. +Arguments inZp {p'}. Lemma ord1 : all_equal_to (0 : 'I_1). Proof. by case=> [[] // ?]; apply: val_inj. Qed. |
