summaryrefslogtreecommitdiff
path: root/src/main/scala/Chisel/utils.scala
blob: f1c5e4846406f591a1ab13a904edffb63b0d24fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
package Chisel
import Builder._
import scala.math._

object log2Up
{
  def apply(in: Int): Int = if(in == 1) 1 else ceil(log(in)/log(2)).toInt
}

object log2Ceil
{
  def apply(in: Int): Int = ceil(log(in)/log(2)).toInt
}


object log2Down
{
  def apply(x : Int): Int = if (x == 1) 1 else floor(log(x)/log(2.0)).toInt
}

object log2Floor
{
  def apply(x : Int): Int = floor(log(x)/log(2.0)).toInt
}


object isPow2
{
  def apply(in: Int): Boolean = in > 0 && ((in & (in-1)) == 0)
}

object FillInterleaved
{
  def apply(n: Int, in: UInt): UInt = apply(n, in.toBools)
  def apply(n: Int, in: Seq[Bool]): UInt = Vec(in.map(Fill(n, _))).toBits
}

/** Returns the number of bits set (i.e value is 1) in the input signal.
  */
object PopCount
{
  def apply(in: Iterable[Bool]): UInt = {
    if (in.size == 0) {
      UInt(0)
    } else if (in.size == 1) {
      in.head
    } else {
      apply(in.slice(0, in.size/2)) + Cat(UInt(0), apply(in.slice(in.size/2, in.size)))
    }
  }
  def apply(in: Bits): UInt = apply((0 until in.getWidth).map(in(_)))
}

object RegNext {

  def apply[T <: Data](next: T): T = Reg[T](next, next, null.asInstanceOf[T])

  def apply[T <: Data](next: T, init: T): T = Reg[T](next, next, init)

}

object RegInit {

  def apply[T <: Data](init: T): T = Reg[T](init, null.asInstanceOf[T], init)

}

object RegEnable
{
  def apply[T <: Data](updateData: T, enable: Bool) = {
    val r = Reg(updateData)
    when (enable) { r := updateData }
    r
  }
  def apply[T <: Data](updateData: T, resetData: T, enable: Bool) = {
    val r = RegInit(resetData)
    when (enable) { r := updateData }
    r
  }
}

/** Builds a Mux tree out of the input signal vector using a one hot encoded
  select signal. Returns the output of the Mux tree.
  */
object Mux1H
{
  def apply[T <: Data](sel: Seq[Bool], in: Seq[T]): T =
    apply(sel zip in)
  def apply[T <: Data](in: Iterable[(Bool, T)]): T = {
    if (in.tail.isEmpty) in.head._2
    else {
      val masked = in map {case (s, i) => Mux(s, i.toBits, Bits(0))}
      in.head._2.fromBits(masked.reduceLeft(_|_))
    }
  }
  def apply[T <: Data](sel: UInt, in: Seq[T]): T =
    apply((0 until in.size).map(sel(_)), in)
  def apply(sel: UInt, in: UInt): Bool = (sel & in).orR
}

/** Builds a Mux tree under the assumption that multiple select signals
  can be enabled. Priority is given to the first select signal.

  Returns the output of the Mux tree.
  */
object PriorityMux
{
  def apply[T <: Bits](in: Seq[(Bool, T)]): T = {
    if (in.size == 1) {
      in.head._2
    } else {
      Mux(in.head._1, in.head._2, apply(in.tail))
    }
  }
  def apply[T <: Bits](sel: Seq[Bool], in: Seq[T]): T = apply(sel zip in)
  def apply[T <: Bits](sel: Bits, in: Seq[T]): T = apply((0 until in.size).map(sel(_)), in)
}

object unless {
  def apply(c: Bool)(block: => Unit) {
    when (!c) { block }
  }
}

object switch {
  def apply(c: Bits)(block: => Unit) {
    switchKeys.push(c)
    block
    switchKeys.pop()
  }
}

object is {
  def apply(v: Bits)(block: => Unit): Unit =
    apply(Seq(v))(block)
  def apply(v: Bits, vr: Bits*)(block: => Unit): Unit =
    apply(v :: vr.toList)(block)
  def apply(v: Iterable[Bits])(block: => Unit): Unit = {
    val keys = switchKeys
    if (keys.isEmpty) ChiselError.error("The 'is' keyword may not be used outside of a switch.")
    else if (!v.isEmpty) when (v.map(_ === keys.top).reduce(_||_)) { block }
  }
}

object MuxLookup {
  def apply[S <: UInt, T <: Bits] (key: S, default: T, mapping: Seq[(S, T)]): T = {
    var res = default;
    for ((k, v) <- mapping.reverse)
      res = Mux(k === key, v, res);
    res
  }

}

object Fill {
  def apply(n: Int, x: Bool): UInt = n match {
    case 0 => UInt(width=0)
    case 1 => x
    case x if n > 1 => UInt(0,n) - UInt(x)
    case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.")
  }
  def apply(n: Int, y: UInt): UInt = {
    n match {
      case 0 => UInt(width=0)
      case 1 => y
      case x if n > 1 =>
        val p2 = Array.ofDim[UInt](log2Up(n+1))
        p2(0) = y
        for (i <- 1 until p2.length)
          p2(i) = Cat(p2(i-1), p2(i-1))
        Cat((0 until log2Up(x+1)).filter(i => (x & (1 << i)) != 0).map(p2(_)))
      case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.")
    }
  }
}

object MuxCase {
  def apply[T <: Bits] (default: T, mapping: Seq[(Bool, T)]): T = {
    var res = default;
    for ((t, v) <- mapping.reverse){
      res = Mux(t, v, res);
    }
    res
  }
}

object ListLookup {
  def apply[T <: Data](addr: UInt, default: List[T], mapping: Array[(BitPat, List[T])]): List[T] = {
    val map = mapping.map(m => (m._1 === addr, m._2))
    default.zipWithIndex map { case (d, i) =>
      map.foldRight(d)((m, n) => Mux(m._1, m._2(i), n))
    }
  }
}

object Lookup {
  def apply[T <: Bits](addr: UInt, default: T, mapping: Seq[(BitPat, T)]): T =
    ListLookup(addr, List(default), mapping.map(m => (m._1, List(m._2))).toArray).head
}

/** Litte/big bit endian convertion: reverse the order of the bits in a UInt.
*/
object Reverse
{
  private def doit(in: UInt, length: Int): UInt = {
    if (length == 1) {
      in
    } else if (isPow2(length) && length >= 8 && length <= 64) {
      // Do it in logarithmic time to speed up C++.  Neutral for real HW.
      var res = in
      var shift = length >> 1
      var mask = UInt((BigInt(1) << length) - 1, length)
      do {
        mask = mask ^ (mask(length-shift-1,0) << UInt(shift))
        res = ((res >> UInt(shift)) & mask) | (res(length-shift-1,0) << UInt(shift) & ~mask)
        shift = shift >> 1
      } while (shift > 0)
      res
    } else {
      val half = (1 << log2Up(length))/2
      Cat(doit(in(half-1,0), half), doit(in(length-1,half), length-half))
    }
  }
  def apply(in: UInt): UInt = doit(in, in.getWidth)
}

/** Returns the n-cycle delayed version of the input signal.
  */
object ShiftRegister
{
  def apply[T <: Data](in: T, n: Int, en: Bool = Bool(true)): T =
  {
    // The order of tests reflects the expected use cases.
    if (n == 1) {
      RegEnable(in, en)
    } else if (n != 0) {
      RegNext(apply(in, n-1, en))
    } else {
      in
    }
  }
}

/** Returns the one hot encoding of the input UInt.
  */
object UIntToOH
{
  def apply(in: UInt, width: Int = -1): UInt =
    if (width == -1) UInt(1) << in
    else (UInt(1) << in(log2Up(width)-1,0))(width-1,0)
}

class Counter(val n: Int) {
  val value = if (n == 1) UInt(0) else Reg(init=UInt(0, log2Up(n)))
  def inc(): Bool = {
    if (n == 1) Bool(true)
    else {
      val wrap = value === UInt(n-1)
      value := Mux(Bool(!isPow2(n)) && wrap, UInt(0), value + UInt(1))
      wrap
    }
  }
}

object Counter
{
  def apply(n: Int): Counter = new Counter(n)
  def apply(cond: Bool, n: Int): (UInt, Bool) = {
    val c = new Counter(n)
    var wrap: Bool = null
    when (cond) { wrap = c.inc() }
    (c.value, cond && wrap)
  }
}

class ValidIO[+T <: Data](gen2: T) extends Bundle
{
  val valid = Bool(OUTPUT)
  val bits = gen2.cloneType.asOutput
  def fire(dummy: Int = 0): Bool = valid
  override def cloneType: this.type = new ValidIO(gen2).asInstanceOf[this.type]
}

/** Adds a valid protocol to any interface. The standard used is
  that the consumer uses the flipped interface.
*/
object Valid {
  def apply[T <: Data](gen: T): ValidIO[T] = new ValidIO(gen)
}

class DecoupledIO[+T <: Data](gen: T) extends Bundle
{
  val ready = Bool(INPUT)
  val valid = Bool(OUTPUT)
  val bits  = gen.cloneType.asOutput
  def fire(dummy: Int = 0): Bool = ready && valid
  override def cloneType: this.type = new DecoupledIO(gen).asInstanceOf[this.type]
}

/** Adds a ready-valid handshaking protocol to any interface.
  The standard used is that the consumer uses the flipped
  interface.
  */
object Decoupled {
  def apply[T <: Data](gen: T): DecoupledIO[T] = new DecoupledIO(gen)
}

class EnqIO[T <: Data](gen: T) extends DecoupledIO(gen)
{
  def enq(dat: T): T = { valid := Bool(true); bits := dat; dat }
  valid := Bool(false)
  for (io <- bits.flatten)
    io := UInt(0)
  override def cloneType: this.type = { new EnqIO(gen).asInstanceOf[this.type]; }
}

class DeqIO[T <: Data](gen: T) extends DecoupledIO(gen)
{
  flip()
  ready := Bool(false)
  def deq(b: Boolean = false): T = { ready := Bool(true); bits }
  override def cloneType: this.type = { new DeqIO(gen).asInstanceOf[this.type]; }
}


class DecoupledIOC[+T <: Data](gen: T) extends Bundle
{
  val ready = Bool(INPUT)
  val valid = Bool(OUTPUT)
  val bits  = gen.cloneType.asOutput
}

class QueueIO[T <: Data](gen: T, entries: Int) extends Bundle
{
  val enq   = Decoupled(gen.cloneType).flip
  val deq   = Decoupled(gen.cloneType)
  val count = UInt(OUTPUT, log2Up(entries + 1))
}

class Queue[T <: Data](gen: T, val entries: Int, pipe: Boolean = false, flow: Boolean = false, _reset: Bool = null) extends Module(_reset=_reset)
{
  val io = new QueueIO(gen, entries)

  val ram = Mem(gen, entries)
  val enq_ptr = Counter(entries)
  val deq_ptr = Counter(entries)
  val maybe_full = Reg(init=Bool(false))

  val ptr_match = enq_ptr.value === deq_ptr.value
  val empty = ptr_match && !maybe_full
  val full = ptr_match && maybe_full
  val maybe_flow = Bool(flow) && empty
  val do_flow = maybe_flow && io.deq.ready

  val do_enq = io.enq.ready && io.enq.valid && !do_flow
  val do_deq = io.deq.ready && io.deq.valid && !do_flow
  when (do_enq) {
    ram(enq_ptr.value) := io.enq.bits
    enq_ptr.inc()
  }
  when (do_deq) {
    deq_ptr.inc()
  }
  when (do_enq != do_deq) {
    maybe_full := do_enq
  }

  io.deq.valid := !empty || Bool(flow) && io.enq.valid
  io.enq.ready := !full || Bool(pipe) && io.deq.ready
  io.deq.bits := Mux(maybe_flow, io.enq.bits, ram(deq_ptr.value))

  val ptr_diff = enq_ptr.value - deq_ptr.value
  if (isPow2(entries)) {
    io.count := Cat(maybe_full && ptr_match, ptr_diff)
  } else {
    io.count := Mux(ptr_match, Mux(maybe_full, UInt(entries), UInt(0)), Mux(deq_ptr.value > enq_ptr.value, UInt(entries) + ptr_diff, ptr_diff))
  }
}

/** Generic hardware queue. Required parameter entries controls
  the depth of the queues. The width of the queue is determined
  from the inputs.

  Example usage:
    val q = new Queue(UInt(), 16)
    q.io.enq <> producer.io.out
    consumer.io.in <> q.io.deq
  */
object Queue
{
  def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false): DecoupledIO[T]  = {
    val q = Module(new Queue(enq.bits.cloneType, entries, pipe))
    q.io.enq.valid := enq.valid // not using <> so that override is allowed
    q.io.enq.bits := enq.bits
    enq.ready := q.io.enq.ready
    q.io.deq
  }
}

object PriorityEncoderOH
{
  private def encode(in: Seq[Bool]): UInt = {
    val outs = Vec.tabulate(in.size)(i => UInt(BigInt(1) << i, in.size))
    PriorityMux(in :+ Bool(true), outs :+ UInt(0, in.size))
  }
  def apply(in: Seq[Bool]): Vec[Bool] = {
    val enc = encode(in)
    Vec.tabulate(in.size)(enc(_))
  }
  def apply(in: Bits): UInt = encode((0 until in.getWidth).map(i => in(i)))
}

class ArbiterIO[T <: Data](gen: T, n: Int) extends Bundle {
  val in  = Vec(Decoupled(gen), n).flip
  val out = Decoupled(gen)
  val chosen = UInt(OUTPUT, log2Up(n))
}

object ArbiterCtrl
{
  def apply(request: Seq[Bool]): Seq[Bool] = {
    Bool(true) +: (1 until request.length).map(i => !request.slice(0, i).foldLeft(Bool(false))(_ || _))
  }
}

abstract class LockingArbiterLike[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends Module {
  require(isPow2(count))
  def grant: Seq[Bool]
  val io = new ArbiterIO(gen, n)
  val locked  = if(count > 1) Reg(init=Bool(false)) else Bool(false)
  val lockIdx = if(count > 1) Reg(init=UInt(n-1)) else UInt(n-1)
  val chosen = Wire(UInt(width = log2Up(n)))

  for ((g, i) <- grant.zipWithIndex)
    io.in(i).ready := Mux(locked, lockIdx === UInt(i), g) && io.out.ready
  io.out.valid := io.in(chosen).valid
  io.out.bits := io.in(chosen).bits
  io.chosen := chosen

  if(count > 1){
    val cnt = Reg(init=UInt(0, width = log2Up(count)))
    val cnt_next = cnt + UInt(1)
    when(io.out.fire()) {
      when(needsLock.map(_(io.out.bits)).getOrElse(Bool(true))) {
        cnt := cnt_next
        when(!locked) {
          locked := Bool(true)
          lockIdx := Vec(io.in.map{ in => in.fire()}).indexWhere{i: Bool => i}
        }
      }
      when(cnt_next === UInt(0)) {
        locked := Bool(false)
      }
    }
  }
}

class LockingRRArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) {
  lazy val last_grant = Reg(init=UInt(0, log2Up(n)))
  override def grant: Seq[Bool] = {
    val ctrl = ArbiterCtrl((0 until n).map(i => io.in(i).valid && UInt(i) > last_grant) ++ io.in.map(_.valid))
    (0 until n).map(i => ctrl(i) && UInt(i) > last_grant || ctrl(i + n))
  }

  var choose = UInt(n-1)
  for (i <- n-2 to 0 by -1)
    choose = Mux(io.in(i).valid, UInt(i), choose)
  for (i <- n-1 to 1 by -1)
    choose = Mux(io.in(i).valid && UInt(i) > last_grant, UInt(i), choose)
  chosen := Mux(locked, lockIdx, choose)

  when (io.out.fire()) { last_grant := chosen }
}

class LockingArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) {
  def grant: Seq[Bool] = ArbiterCtrl(io.in.map(_.valid))

  var choose = UInt(n-1)
  for (i <- n-2 to 0 by -1) {
    choose = Mux(io.in(i).valid, UInt(i), choose)
  }
  chosen := Mux(locked, lockIdx, choose)
}

/** Hardware module that is used to sequence n producers into 1 consumer.
  Producers are chosen in round robin order.

  Example usage:
    val arb = new RRArbiter(2, UInt())
    arb.io.in(0) <> producer0.io.out
    arb.io.in(1) <> producer1.io.out
    consumer.io.in <> arb.io.out
  */
class RRArbiter[T <: Data](gen:T, n: Int) extends LockingRRArbiter[T](gen, n, 1)

/** Hardware module that is used to sequence n producers into 1 consumer.
 Priority is given to lower producer

 Example usage:
   val arb = Module(new Arbiter(2, UInt()))
   arb.io.in(0) <> producer0.io.out
   arb.io.in(1) <> producer1.io.out
   consumer.io.in <> arb.io.out
 */
class Arbiter[T <: Data](gen: T, n: Int) extends LockingArbiter[T](gen, n, 1)

/** linear feedback shift register
  */
object LFSR16
{
  def apply(increment: Bool = Bool(true)): UInt =
  {
    val width = 16
    val lfsr = Reg(init=UInt(1, width))
    when (increment) { lfsr := Cat(lfsr(0)^lfsr(2)^lfsr(3)^lfsr(5), lfsr(width-1,1)) }
    lfsr
  }
}

/** A hardware module that delays data coming down the pipeline
  by the number of cycles set by the latency parameter. Functionality
  is similar to ShiftRegister but this exposes a Pipe interface.

  Example usage:
    val pipe = new Pipe(UInt())
    pipe.io.enq <> produce.io.out
    consumer.io.in <> pipe.io.deq
  */
object Pipe
{
  def apply[T <: Data](enqValid: Bool, enqBits: T, latency: Int): ValidIO[T] = {
    if (latency == 0) {
      val out = Wire(Valid(enqBits))
      out.valid <> enqValid
      out.bits <> enqBits
      out
    } else {
      val v = Reg(Bool(), next=enqValid, init=Bool(false))
      val b = RegEnable(enqBits, enqValid)
      apply(v, b, latency-1)
    }
  }
  def apply[T <: Data](enqValid: Bool, enqBits: T): ValidIO[T] = apply(enqValid, enqBits, 1)
  def apply[T <: Data](enq: ValidIO[T], latency: Int = 1): ValidIO[T] = apply(enq.valid, enq.bits, latency)
}

class Pipe[T <: Data](gen: T, latency: Int = 1) extends Module
{
  val io = new Bundle {
    val enq = Valid(gen).flip
    val deq = Valid(gen)
  }

  io.deq <> Pipe(io.enq, latency)
}