package Chisel import Builder._ import scala.math._ object log2Up { def apply(in: Int): Int = if(in == 1) 1 else ceil(log(in)/log(2)).toInt } object log2Ceil { def apply(in: Int): Int = ceil(log(in)/log(2)).toInt } object log2Down { def apply(x : Int): Int = if (x == 1) 1 else floor(log(x)/log(2.0)).toInt } object log2Floor { def apply(x : Int): Int = floor(log(x)/log(2.0)).toInt } object isPow2 { def apply(in: Int): Boolean = in > 0 && ((in & (in-1)) == 0) } object FillInterleaved { def apply(n: Int, in: UInt): UInt = apply(n, in.toBools) def apply(n: Int, in: Seq[Bool]): UInt = Vec(in.map(Fill(n, _))).toBits } /** Returns the number of bits set (i.e value is 1) in the input signal. */ object PopCount { def apply(in: Iterable[Bool]): UInt = { if (in.size == 0) { UInt(0) } else if (in.size == 1) { in.head } else { apply(in.slice(0, in.size/2)) + Cat(UInt(0), apply(in.slice(in.size/2, in.size))) } } def apply(in: Bits): UInt = apply((0 until in.getWidth).map(in(_))) } object RegNext { def apply[T <: Data](next: T): T = Reg[T](next, next, null.asInstanceOf[T]) def apply[T <: Data](next: T, init: T): T = Reg[T](next, next, init) } object RegInit { def apply[T <: Data](init: T): T = Reg[T](init, null.asInstanceOf[T], init) } object RegEnable { def apply[T <: Data](updateData: T, enable: Bool) = { val r = Reg(updateData) when (enable) { r := updateData } r } def apply[T <: Data](updateData: T, resetData: T, enable: Bool) = { val r = RegInit(resetData) when (enable) { r := updateData } r } } /** Builds a Mux tree out of the input signal vector using a one hot encoded select signal. Returns the output of the Mux tree. */ object Mux1H { def apply[T <: Data](sel: Seq[Bool], in: Seq[T]): T = apply(sel zip in) def apply[T <: Data](in: Iterable[(Bool, T)]): T = { if (in.tail.isEmpty) in.head._2 else { val masked = in map {case (s, i) => Mux(s, i.toBits, Bits(0))} in.head._2.fromBits(masked.reduceLeft(_|_)) } } def apply[T <: Data](sel: UInt, in: Seq[T]): T = apply((0 until in.size).map(sel(_)), in) def apply(sel: UInt, in: UInt): Bool = (sel & in).orR } /** Builds a Mux tree under the assumption that multiple select signals can be enabled. Priority is given to the first select signal. Returns the output of the Mux tree. */ object PriorityMux { def apply[T <: Bits](in: Seq[(Bool, T)]): T = { if (in.size == 1) { in.head._2 } else { Mux(in.head._1, in.head._2, apply(in.tail)) } } def apply[T <: Bits](sel: Seq[Bool], in: Seq[T]): T = apply(sel zip in) def apply[T <: Bits](sel: Bits, in: Seq[T]): T = apply((0 until in.size).map(sel(_)), in) } object unless { def apply(c: Bool)(block: => Unit) { when (!c) { block } } } object switch { def apply(c: Bits)(block: => Unit) { switchKeys.push(c) block switchKeys.pop() } } object is { def apply(v: Bits)(block: => Unit): Unit = apply(Seq(v))(block) def apply(v: Bits, vr: Bits*)(block: => Unit): Unit = apply(v :: vr.toList)(block) def apply(v: Iterable[Bits])(block: => Unit): Unit = { val keys = switchKeys if (keys.isEmpty) ChiselError.error("The 'is' keyword may not be used outside of a switch.") else if (!v.isEmpty) when (v.map(_ === keys.top).reduce(_||_)) { block } } } object MuxLookup { def apply[S <: UInt, T <: Bits] (key: S, default: T, mapping: Seq[(S, T)]): T = { var res = default; for ((k, v) <- mapping.reverse) res = Mux(k === key, v, res); res } } object Fill { def apply(n: Int, x: Bool): UInt = n match { case 0 => UInt(width=0) case 1 => x case x if n > 1 => UInt(0,n) - UInt(x) case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.") } def apply(n: Int, y: UInt): UInt = { n match { case 0 => UInt(width=0) case 1 => y case x if n > 1 => val p2 = Array.ofDim[UInt](log2Up(n+1)) p2(0) = y for (i <- 1 until p2.length) p2(i) = Cat(p2(i-1), p2(i-1)) Cat((0 until log2Up(x+1)).filter(i => (x & (1 << i)) != 0).map(p2(_))) case _ => throw new IllegalArgumentException(s"n (=$n) must be nonnegative integer.") } } } object MuxCase { def apply[T <: Bits] (default: T, mapping: Seq[(Bool, T)]): T = { var res = default; for ((t, v) <- mapping.reverse){ res = Mux(t, v, res); } res } } object ListLookup { def apply[T <: Data](addr: UInt, default: List[T], mapping: Array[(BitPat, List[T])]): List[T] = { val map = mapping.map(m => (m._1 === addr, m._2)) default.zipWithIndex map { case (d, i) => map.foldRight(d)((m, n) => Mux(m._1, m._2(i), n)) } } } object Lookup { def apply[T <: Bits](addr: UInt, default: T, mapping: Seq[(BitPat, T)]): T = ListLookup(addr, List(default), mapping.map(m => (m._1, List(m._2))).toArray).head } /** Litte/big bit endian convertion: reverse the order of the bits in a UInt. */ object Reverse { private def doit(in: UInt, length: Int): UInt = { if (length == 1) { in } else if (isPow2(length) && length >= 8 && length <= 64) { // Do it in logarithmic time to speed up C++. Neutral for real HW. var res = in var shift = length >> 1 var mask = UInt((BigInt(1) << length) - 1, length) do { mask = mask ^ (mask(length-shift-1,0) << UInt(shift)) res = ((res >> UInt(shift)) & mask) | (res(length-shift-1,0) << UInt(shift) & ~mask) shift = shift >> 1 } while (shift > 0) res } else { val half = (1 << log2Up(length))/2 Cat(doit(in(half-1,0), half), doit(in(length-1,half), length-half)) } } def apply(in: UInt): UInt = doit(in, in.getWidth) } /** Returns the n-cycle delayed version of the input signal. */ object ShiftRegister { def apply[T <: Data](in: T, n: Int, en: Bool = Bool(true)): T = { // The order of tests reflects the expected use cases. if (n == 1) { RegEnable(in, en) } else if (n != 0) { RegNext(apply(in, n-1, en)) } else { in } } } /** Returns the one hot encoding of the input UInt. */ object UIntToOH { def apply(in: UInt, width: Int = -1): UInt = if (width == -1) UInt(1) << in else (UInt(1) << in(log2Up(width)-1,0))(width-1,0) } class Counter(val n: Int) { val value = if (n == 1) UInt(0) else Reg(init=UInt(0, log2Up(n))) def inc(): Bool = { if (n == 1) Bool(true) else { val wrap = value === UInt(n-1) value := Mux(Bool(!isPow2(n)) && wrap, UInt(0), value + UInt(1)) wrap } } } object Counter { def apply(n: Int): Counter = new Counter(n) def apply(cond: Bool, n: Int): (UInt, Bool) = { val c = new Counter(n) var wrap: Bool = null when (cond) { wrap = c.inc() } (c.value, cond && wrap) } } class ValidIO[+T <: Data](gen2: T) extends Bundle { val valid = Bool(OUTPUT) val bits = gen2.cloneType.asOutput def fire(dummy: Int = 0): Bool = valid override def cloneType: this.type = new ValidIO(gen2).asInstanceOf[this.type] } /** Adds a valid protocol to any interface. The standard used is that the consumer uses the flipped interface. */ object Valid { def apply[T <: Data](gen: T): ValidIO[T] = new ValidIO(gen) } class DecoupledIO[+T <: Data](gen: T) extends Bundle { val ready = Bool(INPUT) val valid = Bool(OUTPUT) val bits = gen.cloneType.asOutput def fire(dummy: Int = 0): Bool = ready && valid override def cloneType: this.type = new DecoupledIO(gen).asInstanceOf[this.type] } /** Adds a ready-valid handshaking protocol to any interface. The standard used is that the consumer uses the flipped interface. */ object Decoupled { def apply[T <: Data](gen: T): DecoupledIO[T] = new DecoupledIO(gen) } class EnqIO[T <: Data](gen: T) extends DecoupledIO(gen) { def enq(dat: T): T = { valid := Bool(true); bits := dat; dat } valid := Bool(false) for (io <- bits.flatten) io := UInt(0) override def cloneType: this.type = { new EnqIO(gen).asInstanceOf[this.type]; } } class DeqIO[T <: Data](gen: T) extends DecoupledIO(gen) { flip() ready := Bool(false) def deq(b: Boolean = false): T = { ready := Bool(true); bits } override def cloneType: this.type = { new DeqIO(gen).asInstanceOf[this.type]; } } class DecoupledIOC[+T <: Data](gen: T) extends Bundle { val ready = Bool(INPUT) val valid = Bool(OUTPUT) val bits = gen.cloneType.asOutput } class QueueIO[T <: Data](gen: T, entries: Int) extends Bundle { val enq = Decoupled(gen.cloneType).flip val deq = Decoupled(gen.cloneType) val count = UInt(OUTPUT, log2Up(entries + 1)) } class Queue[T <: Data](gen: T, val entries: Int, pipe: Boolean = false, flow: Boolean = false, _reset: Bool = null) extends Module(_reset=_reset) { val io = new QueueIO(gen, entries) val ram = Mem(gen, entries) val enq_ptr = Counter(entries) val deq_ptr = Counter(entries) val maybe_full = Reg(init=Bool(false)) val ptr_match = enq_ptr.value === deq_ptr.value val empty = ptr_match && !maybe_full val full = ptr_match && maybe_full val maybe_flow = Bool(flow) && empty val do_flow = maybe_flow && io.deq.ready val do_enq = io.enq.ready && io.enq.valid && !do_flow val do_deq = io.deq.ready && io.deq.valid && !do_flow when (do_enq) { ram(enq_ptr.value) := io.enq.bits enq_ptr.inc() } when (do_deq) { deq_ptr.inc() } when (do_enq != do_deq) { maybe_full := do_enq } io.deq.valid := !empty || Bool(flow) && io.enq.valid io.enq.ready := !full || Bool(pipe) && io.deq.ready io.deq.bits := Mux(maybe_flow, io.enq.bits, ram(deq_ptr.value)) val ptr_diff = enq_ptr.value - deq_ptr.value if (isPow2(entries)) { io.count := Cat(maybe_full && ptr_match, ptr_diff) } else { io.count := Mux(ptr_match, Mux(maybe_full, UInt(entries), UInt(0)), Mux(deq_ptr.value > enq_ptr.value, UInt(entries) + ptr_diff, ptr_diff)) } } /** Generic hardware queue. Required parameter entries controls the depth of the queues. The width of the queue is determined from the inputs. Example usage: val q = new Queue(UInt(), 16) q.io.enq <> producer.io.out consumer.io.in <> q.io.deq */ object Queue { def apply[T <: Data](enq: DecoupledIO[T], entries: Int = 2, pipe: Boolean = false): DecoupledIO[T] = { val q = Module(new Queue(enq.bits.cloneType, entries, pipe)) q.io.enq.valid := enq.valid // not using <> so that override is allowed q.io.enq.bits := enq.bits enq.ready := q.io.enq.ready q.io.deq } } object PriorityEncoderOH { private def encode(in: Seq[Bool]): UInt = { val outs = Vec.tabulate(in.size)(i => UInt(BigInt(1) << i, in.size)) PriorityMux(in :+ Bool(true), outs :+ UInt(0, in.size)) } def apply(in: Seq[Bool]): Vec[Bool] = { val enc = encode(in) Vec.tabulate(in.size)(enc(_)) } def apply(in: Bits): UInt = encode((0 until in.getWidth).map(i => in(i))) } class ArbiterIO[T <: Data](gen: T, n: Int) extends Bundle { val in = Vec(Decoupled(gen), n).flip val out = Decoupled(gen) val chosen = UInt(OUTPUT, log2Up(n)) } object ArbiterCtrl { def apply(request: Seq[Bool]): Seq[Bool] = { Bool(true) +: (1 until request.length).map(i => !request.slice(0, i).foldLeft(Bool(false))(_ || _)) } } abstract class LockingArbiterLike[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends Module { require(isPow2(count)) def grant: Seq[Bool] val io = new ArbiterIO(gen, n) val locked = if(count > 1) Reg(init=Bool(false)) else Bool(false) val lockIdx = if(count > 1) Reg(init=UInt(n-1)) else UInt(n-1) val chosen = Wire(UInt(width = log2Up(n))) for ((g, i) <- grant.zipWithIndex) io.in(i).ready := Mux(locked, lockIdx === UInt(i), g) && io.out.ready io.out.valid := io.in(chosen).valid io.out.bits := io.in(chosen).bits io.chosen := chosen if(count > 1){ val cnt = Reg(init=UInt(0, width = log2Up(count))) val cnt_next = cnt + UInt(1) when(io.out.fire()) { when(needsLock.map(_(io.out.bits)).getOrElse(Bool(true))) { cnt := cnt_next when(!locked) { locked := Bool(true) lockIdx := Vec(io.in.map{ in => in.fire()}).indexWhere{i: Bool => i} } } when(cnt_next === UInt(0)) { locked := Bool(false) } } } } class LockingRRArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) { lazy val last_grant = Reg(init=UInt(0, log2Up(n))) override def grant: Seq[Bool] = { val ctrl = ArbiterCtrl((0 until n).map(i => io.in(i).valid && UInt(i) > last_grant) ++ io.in.map(_.valid)) (0 until n).map(i => ctrl(i) && UInt(i) > last_grant || ctrl(i + n)) } var choose = UInt(n-1) for (i <- n-2 to 0 by -1) choose = Mux(io.in(i).valid, UInt(i), choose) for (i <- n-1 to 1 by -1) choose = Mux(io.in(i).valid && UInt(i) > last_grant, UInt(i), choose) chosen := Mux(locked, lockIdx, choose) when (io.out.fire()) { last_grant := chosen } } class LockingArbiter[T <: Data](gen: T, n: Int, count: Int, needsLock: Option[T => Bool] = None) extends LockingArbiterLike[T](gen, n, count, needsLock) { def grant: Seq[Bool] = ArbiterCtrl(io.in.map(_.valid)) var choose = UInt(n-1) for (i <- n-2 to 0 by -1) { choose = Mux(io.in(i).valid, UInt(i), choose) } chosen := Mux(locked, lockIdx, choose) } /** Hardware module that is used to sequence n producers into 1 consumer. Producers are chosen in round robin order. Example usage: val arb = new RRArbiter(2, UInt()) arb.io.in(0) <> producer0.io.out arb.io.in(1) <> producer1.io.out consumer.io.in <> arb.io.out */ class RRArbiter[T <: Data](gen:T, n: Int) extends LockingRRArbiter[T](gen, n, 1) /** Hardware module that is used to sequence n producers into 1 consumer. Priority is given to lower producer Example usage: val arb = Module(new Arbiter(2, UInt())) arb.io.in(0) <> producer0.io.out arb.io.in(1) <> producer1.io.out consumer.io.in <> arb.io.out */ class Arbiter[T <: Data](gen: T, n: Int) extends LockingArbiter[T](gen, n, 1) /** linear feedback shift register */ object LFSR16 { def apply(increment: Bool = Bool(true)): UInt = { val width = 16 val lfsr = Reg(init=UInt(1, width)) when (increment) { lfsr := Cat(lfsr(0)^lfsr(2)^lfsr(3)^lfsr(5), lfsr(width-1,1)) } lfsr } } /** A hardware module that delays data coming down the pipeline by the number of cycles set by the latency parameter. Functionality is similar to ShiftRegister but this exposes a Pipe interface. Example usage: val pipe = new Pipe(UInt()) pipe.io.enq <> produce.io.out consumer.io.in <> pipe.io.deq */ object Pipe { def apply[T <: Data](enqValid: Bool, enqBits: T, latency: Int): ValidIO[T] = { if (latency == 0) { val out = Wire(Valid(enqBits)) out.valid <> enqValid out.bits <> enqBits out } else { val v = Reg(Bool(), next=enqValid, init=Bool(false)) val b = RegEnable(enqBits, enqValid) apply(v, b, latency-1) } } def apply[T <: Data](enqValid: Bool, enqBits: T): ValidIO[T] = apply(enqValid, enqBits, 1) def apply[T <: Data](enq: ValidIO[T], latency: Int = 1): ValidIO[T] = apply(enq.valid, enq.bits, latency) } class Pipe[T <: Data](gen: T, latency: Int = 1) extends Module { val io = new Bundle { val enq = Valid(gen).flip val deq = Valid(gen) } io.deq <> Pipe(io.enq, latency) }