summaryrefslogtreecommitdiff
path: root/src/main-data.c
blob: 46b0f3608b37a817e14e7be854d8f3d7c14f66b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
/**
******************************************************************************
* @file           : main.c
* @brief          : Main program body
******************************************************************************
* @attention
*
* 
******************************************************************************
*/

/* Standard library includes */
#include <stdio.h>

/* Library includes */
#include <pb_encode.h>
#include <pb_decode.h>

/* Project includes */
#include "main.h"
#include "devices.h"
#include "config.h"
#include "dataflow.h"
#include "handshake.pb.h"
#include "data.pb.h"

/* Private Macros */
#define device_MDR s2m_MDR_response
#define GET_IDX_FROM_ADDR(i2c_addr) i2c_addr-1
#define GET_ADDR_FROM_IDX(idx)      idx+1
#define GET_BIT_FROM_IDX(a, b) a[b>>5]&(1<<(b%32))
#define SET_BIT_FROM_IDX(a, b) a[b>>5]|=(1<<(b%32))
#define COUNTOF(__BUFFER__)   (sizeof(__BUFFER__) / sizeof(*(__BUFFER__)))

#define I2C_ADDRESS 0x05
#define BUS_DEVICE_LIMIT 128

/* Macro to toggle between master and slave firmware */
#define MASTER

/* Private globals */
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart1;

device_info_t *device_info[BUS_DEVICE_LIMIT] = {NULL};
subscription_info_t* subs_info[BUS_DEVICE_LIMIT];
uint32_t allocated[4]={0};
uint8_t dev_sts[BUS_DEVICE_LIMIT] = {OFFLINE};
uint8_t data_idx;

_datapoint routing_buffer[ROUTING_BUFSIZE];
/* Index information for each datapoint */
uint8_t    routing_idx_buffer[ROUTING_BUFSIZE];
/* Pointer to tail of both data and idx buffers */
uint32_t   routing_ptr = 0;

/* Function prototypes */
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);

hs_status_t handshake(uint32_t i2c_addr);
dataflow_status_t device_dataflow(uint8_t i2c_addr, uint32_t SOR_code, uint8_t routing_buf_idx);
bool routing(void);
bool todo_hs_or_not_todo_hs(uint8_t i2c_addr);
state_t get_state_from_hs_status(uint16_t device_addr, hs_status_t hs_status);
bool decode_subscriptions_callback(pb_istream_t *istream, const pb_field_t *field, void **args);
bool encode_subscription_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg);
bool encode_datapoint_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg);
bool decode_data_callback(pb_istream_t *istream, const pb_field_t *field, void **args);
bool master_encode_MDR_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg);

/**
 * @brief  The application entry point.
 * @retval int
 */
int main(void)
{ 
    /* MCU Configuration */

    /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
    HAL_Init();

    /* Configure the system clock */
    SystemClock_Config();

    /* Initialize all configured peripherals */
    MX_GPIO_Init();
    MX_I2C1_Init();
    MX_USART1_UART_Init();

#ifdef TESTING_ENABLE
#ifdef MASTER
    uint8_t reset_string[] = "\r\n\n==========MASTER RESET=========\r\n\n";
    HAL_UART_Transmit(&huart1, reset_string, sizeof(reset_string), 100);
#else
    uint8_t reset_string[] = "\r\n\n==========SLAVE RESET=========\r\n\n";
    HAL_UART_Transmit(&huart1, reset_string, sizeof(reset_string), 100);
#endif /* MASTER */
#endif /* TESTING_ENABLE */

#ifdef MASTER
    /* Add MDR */
    
    uint8_t dev_idx = GET_IDX_FROM_ADDR(I2C_ADDRESS);
    subs_info[dev_idx] = malloc(sizeof(subscription_info_t));
    subs_info[dev_idx]->mod_idx = subs_info[dev_idx]->entity_idx =
	subs_info[dev_idx]->class_idx = subs_info[dev_idx]->i2c_idx = 0;
    SET_BIT_FROM_IDX(allocated, dev_idx);

    subs_info[dev_idx]->module_ids[subs_info[dev_idx]->mod_idx++] = 1; //subscribe to self

    
    _MDR module_MDR = s2m_MDR_response_init_default;

    device_info[dev_idx] = malloc(sizeof(device_info_t));
    device_info[dev_idx]->i2c_addr     = I2C_ADDRESS;
    device_info[dev_idx]->device_id    = dev_idx;

    module_MDR.MDR_version  = 1.1;
    module_MDR.module_id    = 1;
    module_MDR.module_class = 1;
    module_MDR.entity_id    = 32;

    device_info[dev_idx]->MDR = module_MDR;
    
    /* dataflow */
    /* while (1) { */
    device_dataflow(0x05, 1, 0);
    HAL_Delay(MASTER_I2C_BUS_INTERVAL);
    routing();
	/* HAL_Delay(500); */
    /* } */
    
#else /* Slave code*/
    {
	while (1) {
	    uint8_t SOR_buf[m2s_SOR_size] = {0}, debug_buf[128];
	    if (HAL_I2C_Slave_Receive(&hi2c1, (uint8_t*)SOR_buf, m2s_SOR_size, 10000) != HAL_OK) {
		sprintf((char*)debug_buf, "Failed to get SOR\r\n");
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }
	    else {
		sprintf((char*)debug_buf, "Got SOR\r\n");
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }
	    m2s_SOR SOR_message;
	    pb_istream_t SOR_istream = pb_istream_from_buffer(SOR_buf, 2);
	    if (!pb_decode(&SOR_istream, m2s_SOR_fields, &SOR_message)) {
		sprintf((char*)debug_buf, "SOR decode error\r\n");
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }
	    else {
		sprintf((char*)debug_buf, "SOR decoded; code: %ld\r\n", SOR_message.SOR_code);
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }

	    if (SOR_message.SOR_code == 1) {
		uint8_t data_buf[128];
		size_t data_enc_size;
		s2m_data data;
		data.datapoints.funcs.encode = encode_datapoint_callback;
		pb_ostream_t data_ostream = pb_ostream_from_buffer(data_buf, sizeof(data_buf));
		if (!pb_encode(&data_ostream, s2m_data_fields, &data)) {
		    sprintf((char*)debug_buf, "Data encoding error\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    Error_Handler();
		}
		data_enc_size = data_ostream.bytes_written;
	    
		s2m_DOC doc = s2m_DOC_init_zero;
		uint8_t doc_buf[s2m_DOC_size];
		doc.DOC_code  = 5;
		doc.tx_length = data_enc_size;
		pb_ostream_t doc_ostream = pb_ostream_from_buffer(doc_buf, 4);

		if (!pb_encode(&doc_ostream, s2m_DOC_fields, &doc)) {
		    sprintf((char*)debug_buf, "DOC encoding error\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    Error_Handler();
		}
	    
		sprintf((char*)debug_buf, "s2m_DOC encoded length: %d\r\n", doc_ostream.bytes_written);
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);

		if (HAL_I2C_Slave_Transmit(&hi2c1, (uint8_t*)doc_buf, 4, 10000) != HAL_OK) {
		    sprintf((char*)debug_buf, "DOC I2C send error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    Error_Handler();
		}
		else {
		    sprintf((char*)debug_buf, "SENT DOC\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		}

		uint8_t CTS_buf[8];
	    
		if (HAL_I2C_Slave_Receive(&hi2c1, (uint8_t*)CTS_buf, 2, 10000) != HAL_OK) {
		    sprintf((char*)debug_buf, "Failed to get CTS: %ld\r\n", HAL_I2C_GetError(&hi2c1));
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    Error_Handler();
		}
		else {
		    sprintf((char*)debug_buf, "Got CTS\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		}

		if (HAL_I2C_Slave_Transmit(&hi2c1, (uint8_t*)data_buf, data_enc_size, 10000) != HAL_OK) {
		    sprintf((char*)debug_buf, "Data I2C send error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    Error_Handler();
		}
		else {
		    sprintf((char*)debug_buf, "SENT DATA\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		}
	    }
	    else if (SOR_message.SOR_code == 2) {
		uint8_t CTS_buf[] = {0x0, 0x1};
		uint8_t len_buf[4], *MDR_buf, *data_buf;
		/* _datapoint datapoints[16]; */
	    
		HAL_I2C_Slave_Transmit(&hi2c1, CTS_buf, 2, 10000);
		sprintf((char*)debug_buf, "Sent CTS\r\n");
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
		
		HAL_I2C_Slave_Receive(&hi2c1, len_buf, 4, 1000);
		
		uint16_t MDR_len = len_buf[1]+(len_buf[0]<<8);
		MDR_buf = malloc(MDR_len);
		uint16_t data_len = len_buf[3]+(len_buf[2]<<8);
		data_buf = malloc(data_len);

		sprintf((char*)debug_buf, "Got lengths. MDR: %d, data: %d\r\n", MDR_len, data_len);
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
		
		HAL_I2C_Slave_Transmit(&hi2c1, CTS_buf, 2, 10000);
		HAL_I2C_Slave_Receive(&hi2c1, MDR_buf, MDR_len, 10000);
		HAL_I2C_Slave_Receive(&hi2c1, data_buf, data_len, 10000);
		
		_datapoint datapoint_message;
		s2m_MDR_response MDR_message;
		pb_istream_t MDR_istream  = pb_istream_from_buffer(MDR_buf, MDR_len);
		pb_istream_t data_istream = pb_istream_from_buffer(data_buf, data_len);
		
		pb_decode(&MDR_istream, s2m_MDR_response_fields, &MDR_message);
		pb_decode(&data_istream, _datapoint_fields, &datapoint_message);

		sprintf((char*)debug_buf, "Got data from %ld, running version %f\r\n\tdata 0: %f\r\n", MDR_message.module_id, MDR_message.MDR_version, datapoint_message.data);
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }
	}
    }
#endif /* MASTER */
    
    while (1)
    {

    }
}

hs_status_t handshake(uint32_t i2c_addr)
{

    /* Handshake variables */

    uint8_t hs_sts = IDLE;
    uint8_t *MDR_req_buf, *MDR_ACK_buf, *MDR_CTS_buf, *MDR_buf;
    uint32_t AF_error_counter = 0;
    uint32_t dev_idx = GET_IDX_FROM_ADDR(i2c_addr);
    uint32_t MDR_len = 0;
    
    m2s_MDR_request MDR_req_message;
    s2m_MDR_req_ACK MDR_ACK;
    m2s_MDR_res_CTS MDR_CTS;
    s2m_MDR_response MDR_res_message;

#if defined(TESTING_ENABLE) || defined(DEBUG_ENABLE)
    uint8_t debug_buf[128];
#endif
#ifdef TESTING_ENABLE
    uint8_t term[] = "\r\n";
    size_t MDR_req_size, MDR_CTS_size;
#endif
    
    while (hs_sts != HS_FAILED && hs_sts != HS_REGISTERED) {
	switch (hs_sts) {
	case (IDLE):
	{
	    MDR_req_buf = malloc(8);	    
	    pb_ostream_t MDR_req_stream = pb_ostream_from_buffer(MDR_req_buf, 2);
	    MDR_req_message.record_type = 7; /* Placeholder for default record type */
	    if(!pb_encode(&MDR_req_stream, m2s_MDR_request_fields, &MDR_req_message)) {
		hs_sts = HS_FAILED;
#ifdef DEBUG_ENABLE
		goto __MDR_REQ_ENC_FAIL;
	    __MDR_REQ_ENC_FAIL_END:
		__asm__("nop");
#endif
	    }
	    else {
#ifdef TESTING_ENABLE
		MDR_req_size = MDR_req_stream.bytes_written;
		goto __HS_IDLE_TESTING;
	    __HS_IDLE_TESTING_END:
		__asm__("nop");
#endif	    
		if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_req_buf,
					    MDR_req_buf_len, 10000) != HAL_OK) {
		    hs_sts = HS_FAILED;
#ifdef DEBUG_ENABLE
		    goto __HS_MDR_REQ_I2C_ERROR;
		__HS_MDR_REQ_I2C_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    hs_sts = HS_MDR_ACK;
		}
		free(MDR_req_buf);
		break;
	    }
	}
	case (HS_MDR_ACK):
	{
	    MDR_ACK_buf = malloc(8);
	    AF_error_counter = 0;
	    while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)MDR_ACK_buf,
					  s2m_MDR_req_ACK_size, 100) != HAL_OK) {
		if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) {
		    hs_sts = HS_FAILED;
		}
		if (++AF_error_counter > 1500) {
		    hs_sts = HS_FAILED;
		}
		if (hs_sts == HS_FAILED) {
#ifdef DEBUG_ENABLE
		    goto __HS_MDR_ACK_I2C_ERROR;
		__HS_MDR_ACK_I2C_ERROR_END:
		    __asm__("nop");
#endif
		    break;
		}
	    }
	    if (hs_sts != HS_FAILED) {
		pb_istream_t MDR_ACK_istream = pb_istream_from_buffer(MDR_ACK_buf, 2);
		if (!pb_decode(&MDR_ACK_istream, s2m_MDR_req_ACK_fields, &MDR_ACK)) {
		    hs_sts = HS_FAILED;
#ifdef DEBUG_ENABLE
		    goto __MDR_ACK_DEC_ERROR;
		__MDR_ACK_DEC_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    MDR_len = MDR_ACK.MDR_res_length;
		    hs_sts = HS_MDR_CTS;
#ifdef TESTING_ENABLE
		    goto __HS_MDR_ACK_TESTING;
		__HS_MDR_ACK_TESTING_END:
		    __asm__("nop");
#endif
		}
		free(MDR_ACK_buf);
	    }
	    break;
	}
	case (HS_MDR_CTS):
	{
	    MDR_CTS_buf = (uint8_t*)malloc(8);
	    pb_ostream_t MDR_CTS_ostream = pb_ostream_from_buffer(MDR_CTS_buf, sizeof(MDR_CTS_buf));
	    MDR_CTS.timeout = 100;
	    if (!pb_encode(&MDR_CTS_ostream, m2s_MDR_res_CTS_fields, &MDR_CTS)) {
		hs_sts = HS_FAILED;
#ifdef DEBUG_ENABLE
		goto __MDR_CTS_ENC_ERROR;
	    __MDR_CTS_ENC_ERROR_END:
		__asm__("nop");
#endif
	    }
	    else {
#ifdef TESTING_ENABLE
		MDR_CTS_size = MDR_CTS_ostream.bytes_written;
		goto __HS_MDR_CTS_TESTING;
	    __HS_MDR_CTS_TESTING_END:
		__asm__("nop");
#endif
		if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr,
					    (uint8_t*)MDR_CTS_buf, 2, 10000) != HAL_OK) {
		    hs_sts = HS_FAILED;
#ifdef DEBUG_ENABLE
		    goto __HS_CTS_I2C_ERROR;
		__HS_CTS_I2C_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    hs_sts = HS_MDR_MDR;
		    free(MDR_CTS_buf);
		}
	    }
	    break;
	}
	case (HS_MDR_MDR):
	{
	    MDR_buf = (uint8_t*)malloc(MDR_len);
	    AF_error_counter = 0;
	    while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr,
					  (uint8_t*)MDR_buf, MDR_len, 1000) != HAL_OK) {
		if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) {
		    hs_sts = HS_FAILED;
#ifdef DEBUG_ENABLE
		    goto __HS_MDR_I2C_ERROR;
		__HS_MDR_I2C_ERROR_END:
		    __asm__("nop");
#endif
		    break;
		}
		else if (++AF_error_counter > 1500) {
		    hs_sts = HS_FAILED;
		    break;
		}
	    }
	    if (hs_sts != HS_FAILED) {
#ifdef TESTING_ENABLE
		goto __HS_MDR_MDR_TESTING;
	    __HS_MDR_MDR_TESTING_END:
		__asm__("nop");
#endif
		MDR_res_message.subscriptions.funcs.decode = decode_subscriptions_callback;
		MDR_res_message.subscriptions.arg = (void*)dev_idx;
		pb_istream_t MDR_res_stream = pb_istream_from_buffer(MDR_buf, MDR_len);
		if (!pb_decode(&MDR_res_stream, s2m_MDR_response_fields, &MDR_res_message)) {
#ifdef DEBUG_ENABLE
		    goto __HS_MDR_DEC_ERROR;
		__HS_MDR_DEC_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
#ifdef TESTING_ENABLE
		    goto __MDR_DEC_TESTING;
		__MDR_DEC_TESTING_END:
		    __asm__("nop");
#endif
		    hs_sts = HS_REGISTERED;
		}	       		
	    }
	    break;
	}
	}

    }

#ifdef TESTING_ENABLE
    {
	goto __TESTING_BLOCK_END;
    __HS_IDLE_TESTING:
	sprintf((char*)debug_buf, "MDR req length: %d\r\n", MDR_req_size);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	uint8_t bufbuf[] = "MDR req buffer: ";
	HAL_UART_Transmit(&huart1, bufbuf, sizeof(bufbuf), 100);
	for(int x=0; x<MDR_req_size; x++) {
	    sprintf((char*)debug_buf+x, "%x", MDR_req_buf[x]);
	}
	HAL_UART_Transmit(&huart1, debug_buf, MDR_req_size, 100);
	HAL_UART_Transmit(&huart1, term, 2, 100);
	memset(debug_buf, 0, 128);
	goto __HS_IDLE_TESTING_END;
    __HS_MDR_ACK_TESTING:
	sprintf((char*)debug_buf, "Got MDR message length: %ld\r\n", MDR_ACK.MDR_res_length);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __HS_MDR_ACK_TESTING_END;
    __HS_MDR_CTS_TESTING:
	sprintf((char*)debug_buf, "CTS size: %d\r\n", MDR_CTS_size);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	uint8_t ctsbuf[] = "\tCTS buffer: ";
	for(int x=0; x<2; x++) {
	    sprintf((char*)debug_buf+x, "%x", MDR_CTS_buf[x]);
	}
	HAL_UART_Transmit(&huart1, ctsbuf, sizeof(ctsbuf), 100);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	HAL_UART_Transmit(&huart1, term, 2, 100);
	memset(debug_buf, 0, 128);
	goto __HS_MDR_CTS_TESTING_END;
    __HS_MDR_MDR_TESTING:
	for (int x=0; x<MDR_len; x++) {
	    sprintf((char*)debug_buf+x, "%x", MDR_buf[x]);
	}
	uint8_t mdrbuf[] = "Got MDR: ";
	HAL_UART_Transmit(&huart1, mdrbuf, sizeof(mdrbuf), 100);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);  
	HAL_UART_Transmit(&huart1, term, 2, 100);
	memset(debug_buf, 0, 128);
	goto __HS_MDR_MDR_TESTING_END;
    __MDR_DEC_TESTING:
	sprintf((char*)debug_buf, "MDR Decode success\r\n\tFirst subscibed module: %d\r\n",
		subs_info[dev_idx]->module_ids[1]);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __MDR_DEC_TESTING_END;
    }
__TESTING_BLOCK_END:
    __asm__("nop");
#endif

#ifdef DEBUG_ENABLE
    {
	goto __DEBUG_BLOCK_END;
    __MDR_REQ_ENC_FAIL:
	sprintf((char*)debug_buf, "MDR reqest encoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __MDR_REQ_ENC_FAIL_END;
    __HS_MDR_REQ_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to send MDR request. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __HS_MDR_REQ_I2C_ERROR_END;
    __HS_MDR_ACK_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to get MDR ACK. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __HS_MDR_ACK_I2C_ERROR_END;
    __MDR_ACK_DEC_ERROR:
	sprintf((char*)debug_buf, "MDR ACK decoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __MDR_ACK_DEC_ERROR_END;
    __MDR_CTS_ENC_ERROR:	
	sprintf((char*)debug_buf, "MDR encoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __MDR_CTS_ENC_ERROR_END;
    __HS_CTS_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to send MDR CTS. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __HS_CTS_I2C_ERROR_END;
    __HS_MDR_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to get MDR. I2C error: %ld\n\tError counter: %ld\r\n", HAL_I2C_GetError(&hi2c1), AF_error_counter);
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __HS_MDR_I2C_ERROR_END;	
    }
__HS_MDR_DEC_ERROR:
    sprintf((char*)debug_buf, "MDR decode error\r\n");
    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
    memset(debug_buf, 0, 128);
    goto __HS_MDR_DEC_ERROR_END;
__DEBUG_BLOCK_END:
    __asm__("nop");
#endif
    
    return hs_sts;
}

dataflow_status_t device_dataflow(uint8_t i2c_addr, uint32_t SOR_code, uint8_t rbuf_data_idx)
{
    uint8_t dev_idx = GET_IDX_FROM_ADDR(i2c_addr);    
    dataflow_status_t df_status = DF_IDLE;
   
    uint8_t *SOR_buf, *DOC_buf, *CTS_buf, *data_buf;
    uint32_t AF_error_counter = 0;
    uint32_t data_len         = 0;
    _datapoint datapoints[16];
    
    m2s_SOR  SOR_message  = m2s_SOR_init_default;
    s2m_DOC  DOC_message  = s2m_DOC_init_zero;
    /* TODO Add default values to the CTS message in proto */
    m2s_CTS  CTS_message  = m2s_CTS_init_default;
    s2m_data data_message = s2m_data_init_zero;
#if defined(TESTING_ENABLE) || defined(DEBUG_ENABLE)
    uint8_t debug_buf[128];
#endif
#ifdef TESTING_ENABLE
    uint8_t term[] = "\r\n";
#endif
    
    while (df_status != DF_SUCCESS && df_status != DF_FAIL) {
	switch (df_status) {
	case (DF_IDLE):
	{
	    HAL_Delay(MASTER_I2C_BUS_INTERVAL);
	    SOR_buf = malloc(sizeof(m2s_SOR));
	    pb_ostream_t SOR_stream = pb_ostream_from_buffer(SOR_buf, sizeof(SOR_buf));
	    SOR_message.SOR_code = SOR_code;
	    if (!pb_encode(&SOR_stream, m2s_SOR_fields, &SOR_message)) {
		df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		goto __DF_SOR_ENC_FAIL;
	    __DF_SOR_ENC_FAIL_END:
		__asm__("nop");
#endif
	    }
	    else {
		if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)SOR_buf,
					    m2s_SOR_size, 1000) != HAL_OK) {
		    df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		    goto __DF_SOR_I2C_ERROR;
		__DF_SOR_I2C_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    if (SOR_code == SLAVE_TX) {
			df_status = DF_RX_DOC;
		    }
		    else if (SOR_code == SLAVE_RX_DATAPOINT) {
			/* TODO */
			df_status = DF_LEN_TX;
		    }
		    else if (SOR_code == SLAVE_RX_COMMAND) {
			/* TODO */
		    }
		}
	    }
	    break;
	}
	case (DF_RX_DOC):
	{
	    DOC_buf = (uint8_t*)malloc(4);
	    AF_error_counter = 0;
	    while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr,
					  (uint8_t*)DOC_buf, 4, 1000) != HAL_OK) {
		if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) {
		    df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		    goto __DF_DOC_I2C_ERROR;
		__DF_DOC_I2C_ERROR_END:
		    __asm__("nop");
#endif
		    break;
		}
		else if (++AF_error_counter > 4000) {
		    df_status = DF_FAIL;
		    break;
		}
	    }
	    if (df_status != DF_FAIL) {
		pb_istream_t DOC_istream = pb_istream_from_buffer(DOC_buf, 4);
		if (!pb_decode(&DOC_istream, s2m_DOC_fields, &DOC_message)) {
		    df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		    goto __DF_DOC_DECODE_ERROR;
		__DF_DOC_DECODE_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    if (DOC_message.DOC_code == DATA) {
			df_status = DF_CTS;
			data_len = DOC_message.tx_length;
		    }
		    else if (DOC_message.DOC_code == CMD_UNICAST) {
			/* TODO */
		    }
		    else if (DOC_message.DOC_code == CMD_MULTICAST) {
			/* TODO */
		    }
		    else if (DOC_message.DOC_code == CMD_BROADCAST) {
			/* TODO */
		    }
		}
	    }
	    break;
	}
	case (DF_CTS):
	{
	    CTS_buf = (uint8_t*)malloc(8);
	    pb_ostream_t CTS_ostream = pb_ostream_from_buffer(CTS_buf, 8);
	    CTS_message.timeout = 100;
	    
	    if (!pb_encode(&CTS_ostream, m2s_CTS_fields, &CTS_message)) {
		df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		goto __DF_CTS_ENC_FAIL;
	    __DF_CTS_ENC_FAIL_END:
		__asm__("nop");
#endif
	    }
	    else {
		HAL_Delay(MASTER_I2C_BUS_INTERVAL);
		if (HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, (uint8_t*)CTS_buf,
					    2, 10000) != HAL_OK) {
		    df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		    goto __DF_CTS_I2C_ERROR;
		__DF_CTS_I2C_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    if (DOC_message.DOC_code == DATA) {
			df_status = DF_RX_DATA;
		    }
		    else {
			/* TODO */
		    }
		}
	    }
	    break;
	}
	case (DF_RX_DATA):
	{
	    data_buf = (uint8_t*)malloc(128);
	    AF_error_counter = 0;
	    while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr,
					  (uint8_t*)data_buf, data_len, 10000) != HAL_OK) {
		if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) {
		    df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		    goto __DF_DATA_I2C_ERROR;
		__DF_DATA_I2C_ERROR_END:
		    __asm__("nop");
#endif
		    break;
		}
		else if (++AF_error_counter > 1500) {
		    df_status = DF_FAIL;
		    break;
		}
	    }
	    if (df_status != DF_FAIL) {
		data_idx = 0;
		data_message.datapoints.funcs.decode = decode_data_callback;
		data_message.datapoints.arg = (void*)datapoints;
		pb_istream_t data_istream = pb_istream_from_buffer(data_buf, data_len);
		if (!pb_decode(&data_istream, s2m_data_fields, &data_message)) {
		    df_status = DF_FAIL;
#ifdef DEBUG_ENABLE
		    goto __DF_DATA_DECODE_ERROR;
		__DF_DATA_DECODE_ERROR_END:
		    __asm__("nop");
#endif
		}
		else {
		    /* This could be done in the callback itself */
		    for (int i = 0; i < data_idx && routing_ptr < ROUTING_BUFSIZE; i++) {
			routing_idx_buffer[routing_ptr] = dev_idx;
			routing_buffer[routing_ptr++]   = datapoints[i];
		    }
		    df_status = DF_SUCCESS;
		}
	    }
	    break;
	}
	case (DF_LEN_TX):
	{
	    /* TODO error checking  */
	    /* Will need to package datapoint and MDR to know their lengths
	       Once cached, will not need to do this */

	    /* Do this after handshake to cache ================================================== */
	    uint8_t MDR_buf[128], data_buf[128], CTS_buf[2];
	    uint8_t src_device_idx = routing_idx_buffer[rbuf_data_idx];
	    s2m_MDR_response data_src_MDR = device_info[src_device_idx]->MDR;
	    pb_ostream_t MDR_ostream = pb_ostream_from_buffer(MDR_buf, sizeof(MDR_buf));
	    data_src_MDR.subscriptions.funcs.encode=master_encode_MDR_callback;
	    pb_encode(&MDR_ostream, s2m_MDR_response_fields, &data_src_MDR);	    
	    uint8_t MDR_len = MDR_ostream.bytes_written;
	    /* =================================================================================== */
	    
	    _datapoint data = routing_buffer[rbuf_data_idx];
	    pb_ostream_t data_ostream = pb_ostream_from_buffer(data_buf, sizeof(data_buf));
	    pb_encode(&data_ostream, _datapoint_fields, &data);
	    uint8_t data_len = data_ostream.bytes_written;

	    uint8_t data_MDR_len_buf[4] = {0, MDR_len, 0, data_len};

	    AF_error_counter = 0;
	    while (HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, CTS_buf, 2, 10000) != HAL_OK) {
		if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) {
		    df_status = DF_FAIL;
		}
		if (++AF_error_counter > 3000) {
		    df_status = DF_FAIL;
		}
		if (df_status == DF_FAIL) {
		    sprintf((char*)debug_buf, "Failed to get LEN CTS\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    break;
		}
	    }

	    HAL_Delay(MASTER_I2C_BUS_INTERVAL);
	    if (df_status != DF_FAIL &&
		HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, data_MDR_len_buf, 4, 10000) == HAL_OK) {
		sprintf((char*)debug_buf, "MDR len: %d data len: %d SENT\r\n", MDR_len, data_len);
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }
	    else {
		sprintf((char*)debug_buf, "Failed to send lengths\r\n");
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);
	    }
	    AF_error_counter = 0;
	    while (df_status != DF_FAIL &&
		   HAL_I2C_Master_Receive(&hi2c1, (uint16_t)i2c_addr, CTS_buf, 2, 10000) != HAL_OK) {
		if (HAL_I2C_GetError(&hi2c1) != HAL_I2C_ERROR_AF) {
		    df_status = DF_FAIL;
		}
		if (++AF_error_counter > 3000) {
		    df_status = DF_FAIL;
		}
		if (df_status == DF_FAIL) {
		    sprintf((char*)debug_buf, "Failed to get TX CTS\r\n");
		    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		    memset(debug_buf, 0, 128);
		    break;
		}
	    }

	    
#ifdef TESTING_ENABLE
	    uint8_t buf_title[64];
	    sprintf((char*)buf_title, "MDR buffer: ");	    
	    HAL_UART_Transmit(&huart1, buf_title, sizeof(buf_title), 100);
	    memset(buf_title, 0, 64);
	    for(int x=0; x<MDR_len; x++)
		sprintf((char*)debug_buf+x, "%x", MDR_buf[x]);
	    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	    HAL_UART_Transmit(&huart1, term, 2, 100);
	    memset(debug_buf, 0, 128);

	    sprintf((char*)buf_title, "Data buffer: ");	    
	    HAL_UART_Transmit(&huart1, buf_title, sizeof(buf_title), 100);
	    memset(buf_title, 0, 64);
	    for(int x=0; x<data_len; x++)
		sprintf((char*)debug_buf+x, "%x", data_buf[x]);
	    HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	    HAL_UART_Transmit(&huart1, term, 2, 100);
	    memset(debug_buf, 0, 128);
#endif
	    
	    if (df_status != DF_FAIL &&
		HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, MDR_buf, MDR_len, 10000) == HAL_OK &&
		HAL_I2C_Master_Transmit(&hi2c1, (uint16_t)i2c_addr, data_buf, data_len, 10000) == HAL_OK) {
		sprintf((char*)debug_buf, "Data and MDR SENT\r\n");
		HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
		memset(debug_buf, 0, 128);

		df_status = DF_SUCCESS;
	    }
	    break;
	}
	case DF_SUCCESS:
	case DF_FAIL:
	    break;	    
	}
    }
    
#ifdef TESTING_ENABLE
    {
	goto __DF_TESTING_BLOCK_END;
    __DF_TESTING_BLOCK_END:
	__asm__("nop");
    }
#endif

#ifdef DEBUG_ENABLE
    {
	goto __DF_DEBUG_BLOCK_END;
    __DF_SOR_ENC_FAIL:
	sprintf((char*)debug_buf, "SOR encoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_SOR_ENC_FAIL_END;
    __DF_SOR_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to send SOR request. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_SOR_I2C_ERROR_END;
    __DF_DOC_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to receive DOC. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_DOC_I2C_ERROR_END;
    __DF_DOC_DECODE_ERROR:
	sprintf((char*)debug_buf, "DOC decoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_DOC_DECODE_ERROR_END;
    __DF_CTS_ENC_FAIL:
	sprintf((char*)debug_buf, "CTS encoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_CTS_ENC_FAIL_END;
    __DF_CTS_I2C_ERROR:
	sprintf((char*)debug_buf, "CTS I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_CTS_I2C_ERROR_END;
    __DF_DATA_I2C_ERROR:
	sprintf((char*)debug_buf, "Unable to receive data. I2C error: %ld\r\n", HAL_I2C_GetError(&hi2c1));
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_DATA_I2C_ERROR_END;
    __DF_DATA_DECODE_ERROR:
	sprintf((char*)debug_buf, "Data decoding error\r\n");
	HAL_UART_Transmit(&huart1, debug_buf, sizeof(debug_buf), 100);
	memset(debug_buf, 0, 128);
	goto __DF_DATA_DECODE_ERROR_END;
    __DF_DEBUG_BLOCK_END:
	__asm__("nop");
    }
#endif

    return df_status;
}

bool routing(void)
{
    /* This table holds information on where to send each datapoint in the routing buffer  */
    uint32_t routing_table[ROUTING_BUFSIZE][4] = {{0, 0}};
    
    /* Build table with routing information */
    for (uint8_t rbuf_data_idx = 0; rbuf_data_idx < routing_ptr; rbuf_data_idx++) {
	uint8_t module_idx = routing_idx_buffer[rbuf_data_idx];
	for (uint8_t dev_idx = 0; dev_idx < BUS_DEVICE_LIMIT; dev_idx++) {
	    if (!(GET_BIT_FROM_IDX(allocated, dev_idx)&&1)) { // No module at this index
	        continue;
	    }
	    bool alloc = false;
	    for (uint8_t dev_sub_idx = 0; dev_sub_idx < subs_info[dev_idx]->mod_idx && !alloc; dev_sub_idx++) {
		if (subs_info[dev_idx]->module_ids[dev_sub_idx] == device_info[module_idx]->MDR.module_id) {
		    SET_BIT_FROM_IDX(routing_table[rbuf_data_idx], module_idx);
		    alloc = true;
		}
	    }
	    /* TODO entity ID, I2C addr and class routing, should go in the if condition above */
	}
    }

    for (uint8_t rbuf_data_idx = 0; rbuf_data_idx < routing_ptr; rbuf_data_idx++) {
	for (uint8_t device_idx = 0; device_idx < BUS_DEVICE_LIMIT; device_idx++) {
	    if (GET_BIT_FROM_IDX(allocated, device_idx) &&
		GET_BIT_FROM_IDX(routing_table[rbuf_data_idx], device_idx)) {
		device_dataflow(GET_ADDR_FROM_IDX(device_idx), SLAVE_RX_DATAPOINT, rbuf_data_idx);
	    }
	}
    }

    /* Reset the routing pointer, since all data in buffer should have been routed */    
    routing_ptr = 0;
    return true;
}

bool decode_subscriptions_callback(pb_istream_t *istream, const pb_field_t *field, void **args)
{
    _subscriptions subs;
    int *subs_idx = (int*)args;

    /* Check is storage is allocated; if not, allocate it */
    if ((GET_BIT_FROM_IDX(allocated, *subs_idx)) == 0) {
	subs_info[*subs_idx] = (subscription_info_t*)malloc(sizeof(subscription_info_t));
	SET_BIT_FROM_IDX(allocated, *subs_idx);
	subs_info[*subs_idx]->mod_idx = subs_info[*subs_idx]->entity_idx =
	    subs_info[*subs_idx]->class_idx = subs_info[*subs_idx]->i2c_idx = 0;
    }
    
    if(!pb_decode(istream, _subscriptions_fields, &subs))
    	return false;

    /* Parse all fields if they're included */
    if (subs.has_module_id)
	subs_info[*subs_idx]->module_ids[subs_info[*subs_idx]->mod_idx++] =
	    subs.module_id;
    if (subs.has_entity_id)
	subs_info[*subs_idx]->entity_ids[subs_info[*subs_idx]->entity_idx++] =
	    subs.entity_id;
    if (subs.has_module_class)
	subs_info[*subs_idx]->module_class[subs_info[*subs_idx]->class_idx++] =
	    subs.module_class;
    if (subs.has_i2c_address)
	subs_info[*subs_idx]->i2c_address[subs_info[*subs_idx]->i2c_idx++] =
	    subs.i2c_address;
    return true;
}

bool todo_hs_or_not_todo_hs(uint8_t i2c_addr)
{
    uint8_t device_idx = GET_IDX_FROM_ADDR(i2c_addr);
    state_t device_curr_state = dev_sts[device_idx];
    bool do_hs = false;
    switch(device_curr_state) {
    case NO_HS:
    case CONNECTED:
    case FAILED:
    case OFFLINE:	
	do_hs = true;
	break;
    case REGISTERED:
    case NO_DATA:
	do_hs = false;
	break;	
    }
    return do_hs;
}

state_t get_state_from_hs_status(uint16_t device_addr, hs_status_t hs_status)
{
    state_t device_state = OFFLINE;
    switch(hs_status) {
    case IDLE:
    case HS_FAILED:
	device_state = OFFLINE;
	break;
    case HS_MDR_ACK:
    case HS_MDR_CTS:
    case HS_MDR_MDR:
	device_state = FAILED;
	break;
    case HS_REGISTERED:
	device_state = REGISTERED;
	break;    
    }
    return device_state;
}

bool master_encode_MDR_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg)
{
    if (!pb_encode_tag_for_field(ostream, field)) {
	return false;
    }
    return true;
}

bool encode_subscription_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg)
{
    if(ostream!=NULL && field->tag == s2m_MDR_response_subscriptions_tag) {
	for (int x=0; x<2; x++) {
	    _subscriptions subs;
	    subs.module_id = x+10*x;
	    subs.i2c_address = x+1;
	    subs.has_entity_id=false;
	    subs.has_module_class=false;
	    subs.has_module_id=true;
	    subs.has_i2c_address=true;
	    if(!pb_encode_tag_for_field(ostream, field)){
		printf("ERR1\n");
		return false;
	    }
	    if(!pb_encode_submessage(ostream, _subscriptions_fields, &subs)){
		printf("ERR2\n");
		return false;
	    }
	}
    }
    else{
	return false;
    }
    return true;
}

bool encode_datapoint_callback(pb_ostream_t *ostream, const pb_field_t *field, void * const *arg)
{
    if (ostream != NULL && field->tag == s2m_data_datapoints_tag) {
	for (int i = 0; i < 4; i++) {
	    _datapoint datapoint = _datapoint_init_zero;
	    datapoint.entity_id  = 1;
	    datapoint.data = 20.70+((float)i/100);
	    if (!pb_encode_tag_for_field(ostream, field))
		return false;
	    if (!pb_encode_submessage(ostream, _datapoint_fields, &datapoint))
		return false;
	}
    }
    else
	return false;
    return true;
}

bool decode_data_callback(pb_istream_t *istream, const pb_field_t *field, void **args)
{
    _datapoint loc_datapoint = _datapoint_init_zero;
    _datapoint *datapoint = *args;

    if (!pb_decode(istream, _datapoint_fields, &loc_datapoint))
	return false;

    datapoint[data_idx].data = datapoint[data_idx].entity_id = 0;
    
    datapoint[data_idx].entity_id = loc_datapoint.entity_id;
    datapoint[data_idx].data      = loc_datapoint.data;
    
    if (loc_datapoint.has_channel_id) {
    	datapoint[data_idx].has_channel_id = true;
    	datapoint[data_idx].channel_id     = loc_datapoint.channel_id;
    }
    if (loc_datapoint.has_unit_id) {
    	datapoint[data_idx].has_unit_id = true;
    	datapoint[data_idx].unit_id     = loc_datapoint.unit_id;
    }
    if (loc_datapoint.has_timestamp) {
    	datapoint[data_idx].has_timestamp = true;
    	datapoint[data_idx].timestamp    = loc_datapoint.timestamp;
    }

    data_idx++;
    return true;
}

/**
 * @brief System Clock Configuration
 * @retval None
 */
void SystemClock_Config(void)
{
    RCC_OscInitTypeDef RCC_OscInitStruct = {0};
    RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

    /** Configure the main internal regulator output voltage 
     */
    __HAL_RCC_PWR_CLK_ENABLE();
    __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
    /** Initializes the CPU, AHB and APB busses clocks 
     */
    RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
    RCC_OscInitStruct.HSIState = RCC_HSI_ON;
    RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
    RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
    if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
    {
	Error_Handler();
    }
    /** Initializes the CPU, AHB and APB busses clocks 
     */
    RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
	|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
    RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
    RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
    RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
    RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

    if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
    {
	Error_Handler();
    }
}

/**
 * @brief I2C1 Initialization Function
 * @param None
 * @retval None
 */
static void MX_I2C1_Init(void)
{
    hi2c1.Instance = I2C1;
    hi2c1.Init.ClockSpeed = 100000;
    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
    hi2c1.Init.OwnAddress1 = I2C_ADDRESS;
    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    hi2c1.Init.OwnAddress2 = 0xFF;
    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
    if (HAL_I2C_Init(&hi2c1) != HAL_OK)
    {
	Error_Handler();
    }

}

/**
 * @brief USART1 Initialization Function
 * @param None
 * @retval None
 */
static void MX_USART1_UART_Init(void)
{
    huart1.Instance = USART1;
    huart1.Init.BaudRate = 9600;
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    huart1.Init.StopBits = UART_STOPBITS_1;
    huart1.Init.Parity = UART_PARITY_NONE;
    huart1.Init.Mode = UART_MODE_TX_RX;
    huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart1.Init.OverSampling = UART_OVERSAMPLING_16;
    if (HAL_UART_Init(&huart1) != HAL_OK)
    {
	Error_Handler();
    }

}

/**
 * @brief GPIO Initialization Function
 * @param None
 * @retval None
 */
static void MX_GPIO_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct = {0};

    /* GPIO Ports Clock Enable */
    __HAL_RCC_GPIOC_CLK_ENABLE();
    __HAL_RCC_GPIOH_CLK_ENABLE();
    __HAL_RCC_GPIOA_CLK_ENABLE();
    __HAL_RCC_GPIOB_CLK_ENABLE();

    /*Configure GPIO pin Output Level */
    HAL_GPIO_WritePin(led_GPIO_Port, led_Pin, GPIO_PIN_RESET);

    /*Configure GPIO pin : led_Pin */
    GPIO_InitStruct.Pin = led_Pin;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(led_GPIO_Port, &GPIO_InitStruct);

}

/**
 * @brief  This function is executed in case of error occurrence.
 * @retval None
 */
void Error_Handler(void)
{
    /* USER CODE BEGIN Error_Handler_Debug */
    /* User can add his own implementation to report the HAL error return state */
    while (1) {
	HAL_GPIO_TogglePin(led_GPIO_Port, led_Pin);
	HAL_Delay(1000);
    }
    /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
 * @brief  Reports the name of the source file and the source line number
 *         where the assert_param error has occurred.
 * @param  file: pointer to the source file name
 * @param  line: assert_param error line source number
 * @retval None
 */
void assert_failed(uint8_t *file, uint32_t line)
{ 
    /* USER CODE BEGIN 6 */
    /* User can add his own implementation to report the file name and line number,
       tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
    /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */