1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
// SPDX-License-Identifier: Apache-2.0
package firrtl.transforms
import firrtl._
import firrtl.ir._
import firrtl.Mappers._
import firrtl.traversals.Foreachers._
import firrtl.annotations.{ReferenceTarget, TargetToken}
import firrtl.Utils.{throwInternalError, toTarget}
import firrtl.options.Dependency
import firrtl.passes.{InferTypes, Pass, PassException}
import firrtl.graph.MutableDiGraph
import scala.collection.mutable
import scala.util.Try
object InferResets {
final class InferResetsException private (msg: String) extends PassException(msg)
object InferResetsException {
private[InferResets] def apply(path: Seq[Node]): InferResetsException = {
val ps = path.collect { case Var(t) => t.serialize }.mkString("\n - ", "\n - ", "")
val msg = s"Reset-typed components connected to both AsyncReset and UInt<1>. Offending path:$ps"
new InferResetsException(msg)
}
}
/** Type hierarchy to represent the type of the thing driving a [[ResetType]] */
private sealed trait ResetDriver
// When a [[ResetType]] is driven by another ResetType, we track the target so that we can infer
// the same type as the driver
private case class TargetDriver(target: ReferenceTarget) extends ResetDriver {
override def toString: String = s"TargetDriver(${target.serialize})"
}
// When a [[ResetType]] is driven by something of type Bool or AsyncResetType, we keep track of it
// as a constraint on the type we should infer to be
// We keep the target around (lazily) so that we can report errors
private case class TypeDriver(tpe: Type, target: () => ReferenceTarget) extends ResetDriver {
override def toString: String = s"TypeDriver(${tpe.serialize}, () => ?)"
}
// When a [[ResetType]] is invalidated, we record the InvalidDrive
// If there are no types but invalid drivers, we default to BoolType
private case object InvalidDriver extends ResetDriver {
def defaultType: Type = Utils.BoolType
}
// Private type hierarchy used as DiGraph nodes for type inference
private sealed trait Node
private case class Var(target: ReferenceTarget) extends Node {
override def toString = target.serialize
}
private case class Typ(tpe: Type) extends Node {
override def toString = tpe.serialize
}
// Type hierarchy representing the path to a leaf type in an aggregate type structure
// Used by this [[InferResets]] to pinpoint instances of [[ResetType]] and their inferred type
private sealed trait TypeTree
private case class BundleTree(fields: Map[String, TypeTree]) extends TypeTree
private case class VectorTree(subType: TypeTree) extends TypeTree
// TODO ensure is only AsyncResetType or BoolType
private case class GroundTree(tpe: Type) extends TypeTree
private object TypeTree {
// Given groups of [[TargetToken]]s and Types corresponding to them, construct a [[TypeTree]]
// that allows us to lookup the type of each leaf node in the aggregate structure
// TODO make return Try[TypeTree]
def fromTokens(tokens: (Seq[TargetToken], Type)*): TypeTree = tokens match {
case Seq((Seq(), tpe)) => GroundTree(tpe)
// VectorTree
case (TargetToken.Index(_) +: _, _) +: _ =>
// Vectors must all have the same type, so we only process Index 0
// If the subtype is an aggregate, there can be multiple of each index
val ts = tokens.collect { case (TargetToken.Index(0) +: tail, tpe) => (tail, tpe) }
VectorTree(fromTokens(ts: _*))
// BundleTree
case (TargetToken.Field(_) +: _, _) +: _ =>
val fields =
tokens.groupBy { case (TargetToken.Field(n) +: t, _) => n }.mapValues { ts =>
fromTokens(ts.map { case (_ +: t, tpe) => (t, tpe) }: _*)
}.toMap
BundleTree(fields)
}
}
}
/** Infers the concrete type of [[firrtl.ir.ResetType ResetType]]s by their connections
*
* There are 3 cases
* 1. An abstract reset driven by and/or driving only asynchronous resets will be inferred as
* asynchronous reset
* 1. An abstract reset driven by and/or driving both asynchronous and synchronous resets will
* error
* 1. Otherwise, the reset is inferred as synchronous (i.e. the abstract reset is only invalidated
* or is driven by or drives only synchronous resets)
* @note This is a global inference because ports can be of type [[firrtl.ir.ResetType ResetType]]
* @note This transform should be run before [[DedupModules]] so that similar Modules from
* generator languages like Chisel can infer differently
*/
// TODO should we error if a DefMemory is of type AsyncReset? In CheckTypes?
class InferResets extends Transform with DependencyAPIMigration {
override def prerequisites =
Seq(
Dependency(passes.ResolveKinds),
Dependency(passes.InferTypes),
Dependency(passes.ResolveFlows),
Dependency[passes.InferWidths]
) ++ stage.Forms.MinimalHighForm
override def invalidates(a: Transform): Boolean = a match {
case _: checks.CheckResets | passes.CheckTypes => true
case _ => false
}
import InferResets._
// Collect all drivers for circuit elements of type ResetType
private def analyze(c: Circuit): Map[ReferenceTarget, List[ResetDriver]] = {
type DriverMap = mutable.HashMap[ReferenceTarget, mutable.ListBuffer[ResetDriver]]
def onMod(types: DriverMap)(mod: DefModule): DriverMap = {
val instMap = mutable.Map[String, String]()
// We need to convert submodule port targets into targets on the Module port itself
def makeTarget(expr: Expression): ReferenceTarget = {
val target = toTarget(c.main, mod.name)(expr)
Utils.kind(expr) match {
case InstanceKind =>
val mod = instMap(target.ref)
val port = target.component.head match {
case TargetToken.Field(name) => name
case bad => Utils.throwInternalError(s"Unexpected token $bad")
}
target.copy(module = mod, ref = port, component = target.component.tail)
case _ => target
}
}
def onStmt(map: DriverMap)(stmt: Statement): Unit = {
// Mark driver of a ResetType leaf
def markResetDriver(lhs: Expression, rhs: Expression): Unit = {
val con = Utils.flow(lhs) match {
case SinkFlow if lhs.tpe == ResetType => Some((lhs, rhs))
case SourceFlow if rhs.tpe == ResetType => Some((rhs, lhs))
// If sink is not ResetType, do nothing
case _ => None
}
con.foreach {
case (loc, exp) =>
val driver = exp.tpe match {
case ResetType => TargetDriver(makeTarget(exp))
case tpe => TypeDriver(tpe, () => makeTarget(exp))
}
map.getOrElseUpdate(makeTarget(loc), mutable.ListBuffer()) += driver
}
}
stmt match {
// TODO
// - Each connect duplicates a bunch of code from ExpandConnects, could be cleaner
// - The full create_exps duplication is inefficient, there has to be a better way
case Connect(_, lhs, rhs) =>
val locs = Utils.create_exps(lhs)
val exps = Utils.create_exps(rhs)
for ((loc, exp) <- locs.zip(exps)) {
markResetDriver(loc, exp)
}
case PartialConnect(_, lhs, rhs) =>
val points = Utils.get_valid_points(lhs.tpe, rhs.tpe, Default, Default)
val locs = Utils.create_exps(lhs)
val exps = Utils.create_exps(rhs)
for ((i, j) <- points) {
markResetDriver(locs(i), exps(j))
}
case IsInvalid(_, lhs) =>
val exprs = Utils.create_exps(lhs)
for (expr <- exprs) {
// Ignore leaves that are not of type ResetType
// Unlike in markResetDriver, flow is irrelevant for invalidation
if (expr.tpe == ResetType) {
val target = makeTarget(expr)
map.getOrElseUpdate(target, mutable.ListBuffer()) += InvalidDriver
}
}
case WDefInstance(_, inst, module, _) =>
instMap += (inst -> module)
case Conditionally(_, _, con, alt) =>
val conMap = new DriverMap
val altMap = new DriverMap
onStmt(conMap)(con)
onStmt(altMap)(alt)
for (key <- conMap.keys ++ altMap.keys) {
val ds = map.getOrElseUpdate(key, mutable.ListBuffer())
conMap.get(key).foreach(ds ++= _)
altMap.get(key).foreach(ds ++= _)
}
case other => other.foreach(onStmt(map))
}
}
mod.foreach(onStmt(types))
types
}
val res = new DriverMap
c.modules.foreach(m => onMod(res)(m))
res.mapValues(_.toList).toMap
}
/** Determine the type driving a given ResetType
*
* This is implemented as a graph traversal. Every type constraint is a forwards and backwards
* edge between the two components (where one of the components can be Bool or AsyncReset). Then,
* types are inferred by determining all of the nodes that are reachable from Bool and AsyncReset
* respectively. As an optimization, we actually only need to check reachability from one, since
* nodes that are not reachable from the one are either reachable from the other or reachable
* from neither. If unreachable, then the component must only be connected to invalidated
* components of type Reset, thus we can arbitrarily choose which reset to infer it to. As an
* optimization, we have edges from components back to Bool and AsyncReset which allows us to
* check if any node is erroneously constrained to be both by simply checking if Bool is
* reachable from AsyncReset.
*/
private def resolve(map: Map[ReferenceTarget, List[ResetDriver]]): Try[Map[ReferenceTarget, Type]] = {
val graph = new MutableDiGraph[Node]
val asyncNode = Typ(AsyncResetType)
val syncNode = Typ(Utils.BoolType)
for ((target, drivers) <- map) {
val v = Var(target)
drivers.foreach {
case TargetDriver(t) =>
val u = Var(t)
graph.addPairWithEdge(v, u)
graph.addPairWithEdge(u, v)
case TypeDriver(tpe, _) =>
// Use nodes we already made, saves memory
val u = tpe match {
case AsyncResetType => asyncNode
case Utils.BoolType => syncNode
case other => throwInternalError(s"Shouldn't have $other here")
}
graph.addPairWithEdge(u, v)
// This backwards edge allows us to check for nodes that infer to both at the same time we
// do the actual inference, the check is simply if syncNode is reachable from asyncNode
graph.addPairWithEdge(v, u)
case InvalidDriver =>
graph.addVertex(v) // Must be in the graph or won't be inferred
}
}
val async = graph.reachableFrom(asyncNode)
val sync = graph.getVertices -- async
Try {
(async, sync) match {
case (a, _) if a.contains(syncNode) => throw InferResetsException(graph.path(asyncNode, syncNode))
case (a, s) =>
(a.view.collect { case Var(t) => t -> asyncNode.tpe } ++
s.view.collect { case Var(t) => t -> syncNode.tpe }).toMap
}
}
}
private def fixupType(tpe: Type, tree: TypeTree): Type = (tpe, tree) match {
case (BundleType(fields), BundleTree(map)) =>
val fieldsx =
fields.map(f =>
map.get(f.name) match {
case Some(t) => f.copy(tpe = fixupType(f.tpe, t))
case None => f
}
)
BundleType(fieldsx)
case (VectorType(vtpe, size), VectorTree(t)) =>
VectorType(fixupType(vtpe, t), size)
case (_, GroundTree(t)) => t
case x => throw new Exception(s"Error! Unexpected pair $x")
}
// Assumes all ReferenceTargets are in the same module
private def makeDeclMap(map: Map[ReferenceTarget, Type]): Map[String, TypeTree] =
map
.groupBy(_._1.ref)
.mapValues { ts =>
TypeTree.fromTokens(ts.toSeq.map { case (target, tpe) => (target.component, tpe) }: _*)
}
.toMap
private def implPort(map: Map[String, TypeTree])(port: Port): Port =
map
.get(port.name)
.map(tree => port.copy(tpe = fixupType(port.tpe, tree)))
.getOrElse(port)
private def implStmt(map: Map[String, TypeTree])(stmt: Statement): Statement =
stmt.map(implStmt(map)) match {
case decl: IsDeclaration if map.contains(decl.name) =>
val tree = map(decl.name)
decl match {
case reg: DefRegister => reg.copy(tpe = fixupType(reg.tpe, tree))
case wire: DefWire => wire.copy(tpe = fixupType(wire.tpe, tree))
// TODO Can this really happen?
case mem: DefMemory => mem.copy(dataType = fixupType(mem.dataType, tree))
case other => other
}
case other => other
}
private def implement(c: Circuit, map: Map[ReferenceTarget, Type]): Circuit = {
val modMaps = map.groupBy(_._1.module)
def onMod(mod: DefModule): DefModule = {
modMaps
.get(mod.name)
.map { tmap =>
val declMap = makeDeclMap(tmap)
mod.map(implPort(declMap)).map(implStmt(declMap))
}
.getOrElse(mod)
}
c.map(onMod)
}
private def fixupPasses: Seq[Pass] = Seq(
InferTypes
)
def execute(state: CircuitState): CircuitState = {
val c = state.circuit
val analysis = analyze(c)
val inferred = resolve(analysis)
val result = inferred.map(m => implement(c, m)).get
val fixedup = fixupPasses.foldLeft(result)((c, p) => p.run(c))
state.copy(circuit = fixedup)
}
}
|