aboutsummaryrefslogtreecommitdiff
path: root/src/main/scala/firrtl/transforms/ConstantPropagation.scala
blob: f216a3a3a2776e71b25ba8a2653a176326380827 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
// SPDX-License-Identifier: Apache-2.0

package firrtl
package transforms

import firrtl.{options, _}
import firrtl.annotations._
import firrtl.annotations.TargetToken._
import firrtl.ir._
import firrtl.Utils._
import firrtl.Mappers._
import firrtl.PrimOps._
import firrtl.graph.DiGraph
import firrtl.analyses.InstanceKeyGraph
import firrtl.annotations.TargetToken.Ref
import firrtl.options.{Dependency, RegisteredTransform, ShellOption}
import firrtl.stage.DisableFold

import annotation.tailrec
import collection.mutable

object ConstantPropagation {
  private def litOfType(value: BigInt, t: Type): Literal = t match {
    case UIntType(w) => UIntLiteral(value, w)
    case SIntType(w) => SIntLiteral(value, w)
  }

  private def asUInt(e: Expression, t: Type) = DoPrim(AsUInt, Seq(e), Seq(), t)

  /** Pads e to the width of t */
  def pad(e: Expression, t: Type) = (bitWidth(e.tpe), bitWidth(t)) match {
    case (we, wt) if we < wt =>
      DoPrim(
        Pad,
        Seq(e),
        Seq(wt),
        e.tpe match {
          case UIntType(_) => UIntType(IntWidth(wt))
          case SIntType(_) => SIntType(IntWidth(wt))
          case _           => e.tpe
        }
      )
    case (we, wt) if we == wt => e
    case (we, wt) =>
      throw new RuntimeException(s"Cannot pad from $we-bit to $wt-bit! ${e.serialize}")
  }

  def constPropPad(e: DoPrim): Expression = {
    // we constant prop through casts here in order to allow LegalizeConnects
    // to not mess up async reset checks in CheckResets
    val propCasts = e.args.head match {
      case c @ DoPrim(AsUInt, _, _, _) => constPropCasts(c)
      case c @ DoPrim(AsSInt, _, _, _) => constPropCasts(c)
      case other                       => other
    }
    propCasts match {
      case UIntLiteral(v, IntWidth(w))                     => UIntLiteral(v, IntWidth(e.consts.head.max(w)))
      case SIntLiteral(v, IntWidth(w))                     => SIntLiteral(v, IntWidth(e.consts.head.max(w)))
      case _ if bitWidth(e.args.head.tpe) >= e.consts.head => e.args.head
      case _                                               => e
    }
  }

  def constPropCasts(e: DoPrim): Expression = e.op match {
    case AsUInt =>
      e.args.head match {
        case SIntLiteral(v, IntWidth(w)) => litToUInt(v, w.toInt)
        case arg =>
          arg.tpe match {
            case _: UIntType => arg
            case _ => e
          }
      }
    case AsSInt =>
      e.args.head match {
        case UIntLiteral(v, IntWidth(w)) => litToSInt(v, w.toInt)
        case arg =>
          arg.tpe match {
            case _: SIntType => arg
            case _ => e
          }
      }
    case AsClock =>
      val arg = e.args.head
      arg.tpe match {
        case ClockType => arg
        case _         => e
      }
    case AsAsyncReset =>
      val arg = e.args.head
      arg.tpe match {
        case AsyncResetType => arg
        case _              => e
      }
  }

  private def litToSInt(unsignedValue: BigInt, w: Int): SIntLiteral =
    SIntLiteral(unsignedValue - ((unsignedValue >> (w - 1)) << w), IntWidth(w))
  private def litToUInt(signedValue: BigInt, w: Int): UIntLiteral =
    UIntLiteral(signedValue + (if (signedValue < 0) BigInt(1) << w else 0), IntWidth(w))

  def constPropBitExtract(e: DoPrim) = {
    val arg = e.args.head
    val (hi, lo) = e.op match {
      case Bits => (e.consts.head.toInt, e.consts(1).toInt)
      case Tail => ((bitWidth(arg.tpe) - 1 - e.consts.head).toInt, 0)
      case Head => ((bitWidth(arg.tpe) - 1).toInt, (bitWidth(arg.tpe) - e.consts.head).toInt)
    }

    arg match {
      case lit: Literal =>
        require(hi >= lo)
        UIntLiteral((lit.value >> lo) & ((BigInt(1) << (hi - lo + 1)) - 1), getWidth(e.tpe))
      case x if bitWidth(e.tpe) == bitWidth(x.tpe) =>
        x.tpe match {
          case t: UIntType => x
          case _ => asUInt(x, e.tpe)
        }
      case _ => e
    }
  }

  def foldShiftRight(e: DoPrim) = e.consts.head.toInt match {
    case 0 => e.args.head
    case x =>
      e.args.head match {
        case UIntLiteral(v, IntWidth(w)) => UIntLiteral(v >> x, IntWidth((w - x).max(1)))
        case SIntLiteral(v, IntWidth(w)) => SIntLiteral(v >> x, IntWidth((w - x).max(1)))
        // Handle non-literal arguments where shift is larger than width
        case _ =>
          val amount = e.consts.head.toInt
          val width = bitWidth(e.args.head.tpe)
          lazy val msb = width - 1
          if (amount >= width) {
            e.tpe match {
              // When amount >= x.width, return a zero-width wire
              case UIntType(_) => zero
              // Take sign bit if shift amount is larger than arg width
              case SIntType(_) =>
                val bits = DoPrim(Bits, e.args, Seq(msb, msb), BoolType)
                DoPrim(AsSInt, Seq(bits), Seq.empty, SIntType(IntWidth(1)))
              case t => error(s"Unsupported type $t for Primop Shift Right")
            }
          } else {
            e
          }
      }
  }

  /** ********************************************
    * REGISTER CONSTANT PROPAGATION HELPER TYPES *
    * ********************************************
    */

  // A utility class that is somewhat like an Option but with two variants containing Nothing.
  // for register constant propagation (register or literal).
  private abstract class ConstPropBinding[+T] {
    def resolve[V >: T](that: ConstPropBinding[V]): ConstPropBinding[V] = (this, that) match {
      case (x, y) if (x == y)   => x
      case (x, UnboundConstant) => x
      case (UnboundConstant, y) => y
      case _                    => NonConstant
    }
  }

  // BoundConstant means that it has exactly the one allowable source of that type.
  private case class BoundConstant[T](value: T) extends ConstPropBinding[T]

  // NonConstant indicates multiple distinct sources.
  private case object NonConstant extends ConstPropBinding[Nothing]

  // UnboundConstant means that a node does not yet have a source of the two allowable types
  private case object UnboundConstant extends ConstPropBinding[Nothing]

  // A RegCPEntry tracks whether a given signal could be part of a register constant propagation
  // loop. It contains const prop bindings for a register name and a literal, which represent the
  // fact that a constant propagation loop can include both self-assignments and consistent literals.
  private case class RegCPEntry(r: ConstPropBinding[String], l: ConstPropBinding[Literal]) {
    def resolve(that: RegCPEntry) = RegCPEntry(r.resolve(that.r), l.resolve(that.l))
    def nonConstant: Boolean = r == NonConstant || l == NonConstant
  }

}

class ConstantPropagation extends Transform with RegisteredTransform with DependencyAPIMigration {
  import ConstantPropagation._

  override def prerequisites = firrtl.stage.Forms.LowForm

  override def optionalPrerequisites = Seq(
    // both passes allow constant prop to be more effective!
    Dependency(firrtl.passes.RemoveValidIf),
    Dependency(firrtl.passes.PadWidths)
  )

  override def optionalPrerequisiteOf =
    Seq(
      Dependency(firrtl.passes.memlib.VerilogMemDelays),
      Dependency(firrtl.passes.SplitExpressions),
      Dependency[SystemVerilogEmitter],
      Dependency[VerilogEmitter]
    )

  override def invalidates(a: Transform): Boolean = a match {
    case _ => false
  }

  val options = Seq(
    new ShellOption[Unit](
      longOption = "no-constant-propagation",
      toAnnotationSeq = _ => Seq(NoConstantPropagationAnnotation),
      helpText = "Disable constant propagation elimination"
    )
  )

  sealed trait SimplifyBinaryOp {
    def matchingArgsValue(e: DoPrim, arg: Expression): Expression
    def apply(e: DoPrim): Expression = {
      if (e.args.head == e.args(1)) matchingArgsValue(e, e.args.head) else e
    }
  }

  sealed trait FoldCommutativeOp extends SimplifyBinaryOp {
    def fold(c1:    Literal, c2:     Literal): Expression
    def simplify(e: Expression, lhs: Literal, rhs: Expression): Expression

    override def apply(e: DoPrim): Expression = (e.args.head, e.args(1)) match {
      case (lhs: Literal, rhs: Literal) => fold(lhs, rhs)
      case (lhs: Literal, rhs) => pad(simplify(e, lhs, rhs), e.tpe)
      case (lhs, rhs: Literal) => pad(simplify(e, rhs, lhs), e.tpe)
      case (lhs, rhs) if (lhs == rhs) => matchingArgsValue(e, lhs)
      case _                          => e
    }
  }

  /** Interface for describing a simplification of a reduction primitive op */
  sealed trait SimplifyReductionOp {

    /** The initial value used in the reduction */
    def identityValue: Boolean

    /** The reduction function of the primitive op expressed */
    def reduce: (Boolean, Boolean) => Boolean

    /** Utility to simplify a reduction op of a literal, parameterized by identityValue and reduce methods. This will
      * return the identityValue in the event of reducing a zero-width literal.
      */
    private def simplifyLiteral(a: Literal): Literal = {

      val w: BigInt = getWidth(a) match {
        case IntWidth(b) => b
      }

      val maskedValue = Utils.maskBigInt(a.value, w.toInt)
      val v: Seq[Boolean] = s"%${w}s".format(maskedValue.toString(2)).map(_ == '1')

      (BigInt(0) until w).zip(v).foldLeft(identityValue) {
        case (acc, (_, x)) => reduce(acc, x)
      } match {
        case false => zero
        case true  => one
      }
    }

    /** Reduce a reduction primitive op to a simpler expression if possible
      * @param prim the primitive op to reduce
      * @return a simplified expression or the original primitive op
      */
    def apply(prim: DoPrim): Expression = prim.args.head match {
      case a: Literal => simplifyLiteral(a)
      case _ => prim
    }

  }

  object FoldADD extends FoldCommutativeOp {
    def fold(c1: Literal, c2: Literal) = ((c1, c2): @unchecked) match {
      case (_: UIntLiteral, _: UIntLiteral) => UIntLiteral(c1.value + c2.value, (c1.width.max(c2.width)) + IntWidth(1))
      case (_: SIntLiteral, _: SIntLiteral) => SIntLiteral(c1.value + c2.value, (c1.width.max(c2.width)) + IntWidth(1))
    }
    def simplify(e: Expression, lhs: Literal, rhs: Expression) = lhs match {
      case UIntLiteral(v, w) if v == BigInt(0) => rhs
      case SIntLiteral(v, w) if v == BigInt(0) => rhs
      case _                                   => e
    }
    def matchingArgsValue(e: DoPrim, arg: Expression) = e
  }

  object SimplifySUB extends SimplifyBinaryOp {
    def matchingArgsValue(e: DoPrim, arg: Expression) = litOfType(0, e.tpe)
  }

  object SimplifyDIV extends SimplifyBinaryOp {
    def matchingArgsValue(e: DoPrim, arg: Expression) = litOfType(1, e.tpe)
  }

  object SimplifyREM extends SimplifyBinaryOp {
    def matchingArgsValue(e: DoPrim, arg: Expression) = litOfType(0, e.tpe)
  }

  object FoldAND extends FoldCommutativeOp {
    def fold(c1: Literal, c2: Literal) = {
      val width = (c1.width.max(c2.width)).asInstanceOf[IntWidth]
      UIntLiteral.masked(c1.value & c2.value, width)
    }
    def simplify(e: Expression, lhs: Literal, rhs: Expression) = lhs match {
      case UIntLiteral(v, w) if v == BigInt(0)                                            => UIntLiteral(0, w)
      case SIntLiteral(v, w) if v == BigInt(0)                                            => UIntLiteral(0, w)
      case UIntLiteral(v, IntWidth(w)) if v == (BigInt(1) << bitWidth(rhs.tpe).toInt) - 1 => rhs
      case _                                                                              => e
    }
    def matchingArgsValue(e: DoPrim, arg: Expression) = asUInt(arg, e.tpe)
  }

  object FoldOR extends FoldCommutativeOp {
    def fold(c1: Literal, c2: Literal) = {
      val width = (c1.width.max(c2.width)).asInstanceOf[IntWidth]
      UIntLiteral.masked((c1.value | c2.value), width)
    }
    def simplify(e: Expression, lhs: Literal, rhs: Expression) = lhs match {
      case UIntLiteral(v, _) if v == BigInt(0)                                            => rhs
      case SIntLiteral(v, _) if v == BigInt(0)                                            => asUInt(pad(rhs, e.tpe), e.tpe)
      case UIntLiteral(v, IntWidth(w)) if v == (BigInt(1) << bitWidth(rhs.tpe).toInt) - 1 => lhs
      case _                                                                              => e
    }
    def matchingArgsValue(e: DoPrim, arg: Expression) = asUInt(arg, e.tpe)
  }

  object FoldXOR extends FoldCommutativeOp {
    def fold(c1: Literal, c2: Literal) = {
      val width = (c1.width.max(c2.width)).asInstanceOf[IntWidth]
      UIntLiteral.masked((c1.value ^ c2.value), width)
    }
    def simplify(e: Expression, lhs: Literal, rhs: Expression) = lhs match {
      case UIntLiteral(v, _) if v == BigInt(0) => rhs
      case SIntLiteral(v, _) if v == BigInt(0) => asUInt(pad(rhs, e.tpe), e.tpe)
      case _                                   => e
    }
    def matchingArgsValue(e: DoPrim, arg: Expression) = UIntLiteral(0, getWidth(arg.tpe))
  }

  object FoldEqual extends FoldCommutativeOp {
    def fold(c1:    Literal, c2:     Literal) = UIntLiteral(if (c1.value == c2.value) 1 else 0, IntWidth(1))
    def simplify(e: Expression, lhs: Literal, rhs: Expression) = lhs match {
      case UIntLiteral(v, IntWidth(w)) if v == BigInt(1) && w == BigInt(1) && bitWidth(rhs.tpe) == BigInt(1) => rhs
      case UIntLiteral(v, IntWidth(w)) if v == BigInt(0) && w == BigInt(1) && bitWidth(rhs.tpe) == BigInt(1) =>
        DoPrim(Not, Seq(rhs), Nil, e.tpe)
      case _ => e
    }
    def matchingArgsValue(e: DoPrim, arg: Expression) = UIntLiteral(1)
  }

  object FoldNotEqual extends FoldCommutativeOp {
    def fold(c1:    Literal, c2:     Literal) = UIntLiteral(if (c1.value != c2.value) 1 else 0, IntWidth(1))
    def simplify(e: Expression, lhs: Literal, rhs: Expression) = lhs match {
      case UIntLiteral(v, IntWidth(w)) if v == BigInt(0) && w == BigInt(1) && bitWidth(rhs.tpe) == BigInt(1) => rhs
      case UIntLiteral(v, IntWidth(w)) if v == BigInt(1) && w == BigInt(1) && bitWidth(rhs.tpe) == BigInt(1) =>
        DoPrim(Not, Seq(rhs), Nil, e.tpe)
      case _ => e
    }
    def matchingArgsValue(e: DoPrim, arg: Expression) = UIntLiteral(0)
  }

  private def foldConcat(e: DoPrim) = (e.args.head, e.args(1)) match {
    case (UIntLiteral(xv, IntWidth(xw)), UIntLiteral(yv, IntWidth(yw))) =>
      UIntLiteral(xv << yw.toInt | yv, IntWidth(xw + yw))
    case _ => e
  }

  private def foldShiftLeft(e: DoPrim) = e.consts.head.toInt match {
    case 0 => e.args.head
    case x =>
      e.args.head match {
        case UIntLiteral(v, IntWidth(w)) => UIntLiteral(v << x, IntWidth(w + x))
        case SIntLiteral(v, IntWidth(w)) => SIntLiteral(v << x, IntWidth(w + x))
        case _                           => e
      }
  }

  private def foldDynamicShiftLeft(e: DoPrim) = e.args.last match {
    case UIntLiteral(v, IntWidth(w)) =>
      val shl = DoPrim(Shl, Seq(e.args.head), Seq(v), UnknownType)
      pad(PrimOps.set_primop_type(shl), e.tpe)
    case _ => e
  }

  private def foldDynamicShiftRight(e: DoPrim) = e.args.last match {
    case UIntLiteral(v, IntWidth(w)) =>
      val shr = DoPrim(Shr, Seq(e.args.head), Seq(v), UnknownType)
      pad(PrimOps.set_primop_type(shr), e.tpe)
    case _ => e
  }

  private def foldComparison(e: DoPrim) = {
    def foldIfZeroedArg(x: Expression): Expression = {
      def isUInt(e: Expression): Boolean = e.tpe match {
        case UIntType(_) => true
        case _           => false
      }
      def isZero(e: Expression) = e match {
        case UIntLiteral(value, _) => value == BigInt(0)
        case SIntLiteral(value, _) => value == BigInt(0)
        case _                     => false
      }
      x match {
        case DoPrim(Lt, Seq(a, b), _, _) if isUInt(a) && isZero(b)  => zero
        case DoPrim(Leq, Seq(a, b), _, _) if isZero(a) && isUInt(b) => one
        case DoPrim(Gt, Seq(a, b), _, _) if isZero(a) && isUInt(b)  => zero
        case DoPrim(Geq, Seq(a, b), _, _) if isUInt(a) && isZero(b) => one
        case ex                                                     => ex
      }
    }

    def foldIfOutsideRange(x: Expression): Expression = {
      //Note, only abides by a partial ordering
      case class Range(min: BigInt, max: BigInt) {
        def ===(that: Range) =
          Seq(this.min, this.max, that.min, that.max)
            .sliding(2, 1)
            .map(x => x.head == x(1))
            .reduce(_ && _)
        def >(that:  Range) = this.min > that.max
        def >=(that: Range) = this.min >= that.max
        def <(that:  Range) = this.max < that.min
        def <=(that: Range) = this.max <= that.min
      }
      // Padding increases the width but doesn't increase the range of values
      def trueType(e: Expression): Type = e match {
        case DoPrim(Pad, Seq(a), _, _) => a.tpe
        case other                     => other.tpe
      }
      def range(e: Expression): Range = e match {
        case UIntLiteral(value, _) => Range(value, value)
        case SIntLiteral(value, _) => Range(value, value)
        case _ =>
          trueType(e) match {
            case SIntType(IntWidth(width)) =>
              Range(
                min = BigInt(0) - BigInt(2).pow(width.toInt - 1),
                max = BigInt(2).pow(width.toInt - 1) - BigInt(1)
              )
            case UIntType(IntWidth(width)) =>
              Range(
                min = BigInt(0),
                max = BigInt(2).pow(width.toInt) - BigInt(1)
              )
          }
      }
      // Calculates an expression's range of values
      x match {
        case ex: DoPrim =>
          def r0 = range(ex.args.head)
          def r1 = range(ex.args(1))
          ex.op match {
            // Always true
            case Lt if r0 < r1   => one
            case Leq if r0 <= r1 => one
            case Gt if r0 > r1   => one
            case Geq if r0 >= r1 => one
            // Always false
            case Lt if r0 >= r1 => zero
            case Leq if r0 > r1 => zero
            case Gt if r0 <= r1 => zero
            case Geq if r0 < r1 => zero
            case _              => ex
          }
        case ex => ex
      }
    }

    def foldIfMatchingArgs(x: Expression) = x match {
      case DoPrim(op, Seq(a, b), _, _) if (a == b) =>
        op match {
          case (Lt | Gt)   => zero
          case (Leq | Geq) => one
          case _           => x
        }
      case _ => x
    }
    foldIfZeroedArg(foldIfOutsideRange(foldIfMatchingArgs(e)))
  }

  final object FoldANDR extends SimplifyReductionOp {
    override def identityValue = true
    override def reduce = (a: Boolean, b: Boolean) => a & b
  }

  final object FoldORR extends SimplifyReductionOp {
    override def identityValue = false
    override def reduce = (a: Boolean, b: Boolean) => a | b
  }

  final object FoldXORR extends SimplifyReductionOp {
    override def identityValue = false
    override def reduce = (a: Boolean, b: Boolean) => a ^ b
  }

  private def constPropPrim(e: DoPrim, disabledOps: Set[PrimOp]): Expression = e.op match {
    case a if disabledOps(a)   => e
    case Shl                   => foldShiftLeft(e)
    case Dshl                  => foldDynamicShiftLeft(e)
    case Shr                   => foldShiftRight(e)
    case Dshr                  => foldDynamicShiftRight(e)
    case Cat                   => foldConcat(e)
    case Add                   => FoldADD(e)
    case Sub                   => SimplifySUB(e)
    case Div                   => SimplifyDIV(e)
    case Rem                   => SimplifyREM(e)
    case And                   => FoldAND(e)
    case Or                    => FoldOR(e)
    case Xor                   => FoldXOR(e)
    case Eq                    => FoldEqual(e)
    case Neq                   => FoldNotEqual(e)
    case Andr                  => FoldANDR(e)
    case Orr                   => FoldORR(e)
    case Xorr                  => FoldXORR(e)
    case (Lt | Leq | Gt | Geq) => foldComparison(e)
    case Not =>
      e.args.head match {
        case UIntLiteral(v, IntWidth(w)) => UIntLiteral(v ^ ((BigInt(1) << w.toInt) - 1), IntWidth(w))
        case _                           => e
      }
    case AsUInt | AsSInt | AsClock | AsAsyncReset => constPropCasts(e)
    case Pad                                      => constPropPad(e)
    case (Bits | Head | Tail)                     => constPropBitExtract(e)
    case _                                        => e
  }

  private def constPropMuxCond(m: Mux) = m.cond match {
    case UIntLiteral(c, _) => pad(if (c == BigInt(1)) m.tval else m.fval, m.tpe)
    case _                 => m
  }

  private def constPropMux(m: Mux): Expression = (m.tval, m.fval) match {
    case _ if m.tval == m.fval => m.tval
    case (t: UIntLiteral, f: UIntLiteral)
        if t.value == BigInt(1) && f.value == BigInt(0) && bitWidth(m.tpe) == BigInt(1) =>
      m.cond
    case (t: UIntLiteral, _) if t.value == BigInt(1) && bitWidth(m.tpe) == BigInt(1) =>
      DoPrim(Or, Seq(m.cond, m.fval), Nil, m.tpe)
    case (_, f: UIntLiteral) if f.value == BigInt(0) && bitWidth(m.tpe) == BigInt(1) =>
      DoPrim(And, Seq(m.cond, m.tval), Nil, m.tpe)
    case _ => constPropMuxCond(m)
  }

  private def constPropNodeRef(r: WRef, e: Expression): Expression = {
    def doit(ex: Expression) = ex match {
      case _: UIntLiteral | _: SIntLiteral | _: WRef => ex
      case _ => r
    }
    InfoExpr.map(e)(doit)
  }

  // Is "a" a "better name" than "b"?
  private def betterName(a: String, b: String): Boolean = (a.head != '_') && (b.head == '_')

  def optimize(e: Expression): Expression =
    constPropExpression(
      new NodeMap(),
      Map.empty[Instance, OfModule],
      Map.empty[OfModule, Map[String, Literal]],
      Set.empty
    )(e)
  def optimize(e: Expression, nodeMap: NodeMap): Expression =
    constPropExpression(nodeMap, Map.empty[Instance, OfModule], Map.empty[OfModule, Map[String, Literal]], Set.empty)(e)

  private def constPropExpression(
    nodeMap:         NodeMap,
    instMap:         collection.Map[Instance, OfModule],
    constSubOutputs: Map[OfModule, Map[String, Literal]],
    disabledOps:     Set[PrimOp]
  )(e:               Expression
  ): Expression = {
    val old = e.map(constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps))
    val propagated = old match {
      case p: DoPrim => constPropPrim(p, disabledOps)
      case m: Mux    => constPropMux(m)
      case ref @ WRef(rname, _, _, SourceFlow) if nodeMap.contains(rname) =>
        constPropNodeRef(ref, InfoExpr.unwrap(nodeMap(rname))._2)
      case ref @ WSubField(WRef(inst, _, InstanceKind, _), pname, _, SourceFlow) =>
        val module = instMap(inst.Instance)
        // Check constSubOutputs to see if the submodule is driving a constant
        constSubOutputs.get(module).flatMap(_.get(pname)).getOrElse(ref)
      case x => x
    }
    // We're done when the Expression no longer changes
    if (propagated eq old) propagated
    else constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps)(propagated)
  }

  /** Hacky way of propagating source locators across nodes and connections that have just a
    * reference on the right-hand side
    *
    * @todo generalize source locator propagation across Expressions and delete this method
    * @todo is the `orElse` the way we want to do propagation here?
    */
  private def propagateDirectConnectionInfoOnly(nodeMap: NodeMap, dontTouch: Set[String])(stmt: Statement): Statement =
    stmt match {
      // We check rname because inlining it would cause the original declaration to go away
      case node @ DefNode(info0, name, WRef(rname, _, NodeKind, _)) if !dontTouch(rname) =>
        val (info1, _) = InfoExpr.unwrap(nodeMap(rname))
        node.copy(info = InfoExpr.orElse(info1, info0))
      case con @ Connect(info0, lhs, rref @ WRef(rname, _, NodeKind, _)) if !dontTouch(rname) =>
        val (info1, _) = InfoExpr.unwrap(nodeMap(rname))
        con.copy(info = InfoExpr.orElse(info1, info0))
      case other => other
    }

  /* Constant propagate a Module
   *
   * Two pass process
   * 1. Propagate constants in expressions and forward propagate references
   * 2. Propagate references again for backwards reference (Wires)
   * TODO Replacing all wires with nodes makes the second pass unnecessary
   *   However, preserving decent names DOES require a second pass
   *   Replacing all wires with nodes makes it unnecessary for preserving decent names to trigger an
   *   extra iteration though
   *
   * @param m the Module to run constant propagation on
   * @param dontTouches names of components local to m that should not be propagated across
   * @param instMap map of instance names to Module name
   * @param constInputs map of names of m's input ports to literal driving it (if applicable)
   * @param constSubOutputs Map of Module name to Map of output port name to literal driving it
   * @param disabledOps a Set of any PrimOps that should not be folded
   * @return (Constpropped Module, Map of output port names to literal value,
   *   Map of submodule modulenames to Map of input port names to literal values)
   */
  @tailrec
  private def constPropModule(
    m:               Module,
    dontTouches:     Set[String],
    instMap:         collection.Map[Instance, OfModule],
    constInputs:     Map[String, Literal],
    constSubOutputs: Map[OfModule, Map[String, Literal]],
    disabledOps:     Set[PrimOp]
  ): (Module, Map[String, Literal], Map[OfModule, Map[String, Seq[Literal]]]) = {

    var nPropagated = 0L
    val nodeMap = new NodeMap()
    // For cases where we are trying to constprop a bad name over a good one, we swap their names
    // during the second pass
    val swapMap = mutable.HashMap.empty[String, String]
    // Keep track of any outputs we drive with a constant
    val constOutputs = mutable.HashMap.empty[String, Literal]
    // Keep track of any submodule inputs we drive with a constant
    // (can have more than 1 of the same submodule)
    val constSubInputs = mutable.HashMap.empty[OfModule, mutable.HashMap[String, Seq[Literal]]]
    // AsyncReset registers don't have reset turned into a mux so we must be careful
    val asyncResetRegs = mutable.HashMap.empty[String, DefRegister]

    // Register constant propagation is intrinsically more complicated, as it is not feed-forward.
    // Therefore, we must store some memoized information about how nodes can be canditates for
    // forming part of a register const-prop "self-loop," where a register gets some combination of
    // self-assignments and assignments of the same literal value.
    val nodeRegCPEntries = new mutable.HashMap[String, RegCPEntry]

    // Copy constant mapping for constant inputs (except ones marked dontTouch!)
    nodeMap ++= constInputs.filterNot { case (pname, _) => dontTouches.contains(pname) }

    // Note that on back propagation we *only* worry about swapping names and propagating references
    // to constant wires, we don't need to worry about propagating primops or muxes since we'll do
    // that on the next iteration if necessary
    def backPropExpr(expr: Expression): Expression = {
      val old = expr.map(backPropExpr)
      val propagated = old match {
        // When swapping, we swap both rhs and lhs
        case ref @ WRef(rname, _, _, _) if swapMap.contains(rname) =>
          ref.copy(name = swapMap(rname))
        // Only const prop on the rhs
        case ref @ WRef(rname, _, _, SourceFlow) if nodeMap.contains(rname) =>
          constPropNodeRef(ref, InfoExpr.unwrap(nodeMap(rname))._2)
        case x => x
      }
      if (old ne propagated) {
        nPropagated += 1
      }
      propagated
    }

    def backPropStmt(stmt: Statement): Statement = stmt match {
      case reg: DefRegister if (WrappedExpression.weq(reg.init, WRef(reg))) =>
        // Self-init reset is an idiom for "no reset," and must be handled separately
        swapMap
          .get(reg.name)
          .map(newName => reg.copy(name = newName, init = WRef(reg).copy(name = newName)))
          .getOrElse(reg)
      case s =>
        s.map(backPropExpr) match {
          case decl: IsDeclaration if swapMap.contains(decl.name) =>
            val newName = swapMap(decl.name)
            nPropagated += 1
            decl match {
              case node: DefNode     => node.copy(name = newName)
              case wire: DefWire     => wire.copy(name = newName)
              case reg:  DefRegister => reg.copy(name = newName)
              case other => throwInternalError()
            }
          case other => other.map(backPropStmt)
        }
    }

    // When propagating a reference, check if we want to keep the name that would be deleted
    def propagateRef(lname: String, value: Expression, info: Info): Unit = {
      value match {
        case WRef(rname, _, kind, _) if betterName(lname, rname) && !swapMap.contains(rname) && kind != PortKind =>
          assert(!swapMap.contains(lname)) // <- Shouldn't be possible because lname is either a
          // node declaration or the single connection to a wire or register
          swapMap += lname -> rname
          swapMap += rname -> lname
        case _ =>
      }
      nodeMap(lname) = InfoExpr.wrap(info, value)
    }

    def constPropStmt(s: Statement): Statement = {
      val s0 = s.map(constPropStmt) // Statement recurse
      val s1 = propagateDirectConnectionInfoOnly(nodeMap, dontTouches)(s0) // hacky source locator propagation
      // propagate sub-Expressions
      val stmtx = s1.map(constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps))
      // Record things that should be propagated
      stmtx match {
        case DefNode(info, name, value) if !dontTouches.contains(name) =>
          propagateRef(name, value, info)
        case reg: DefRegister if reg.reset.tpe == AsyncResetType =>
          asyncResetRegs(reg.name) = reg
        case Connect(info, WRef(wname, wtpe, WireKind, _), expr: Literal) if !dontTouches.contains(wname) =>
          val exprx = constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps)(pad(expr, wtpe))
          propagateRef(wname, exprx, info)
        // Record constants driving outputs
        case Connect(_, WRef(pname, ptpe, PortKind, _), lit: Literal) if !dontTouches.contains(pname) =>
          val paddedLit =
            constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps)(pad(lit, ptpe)).asInstanceOf[Literal]
          constOutputs(pname) = paddedLit
        // Const prop registers that are driven by a mux tree containing only instances of one constant or self-assigns
        // This requires that reset has been made explicit
        case Connect(_, lref @ WRef(lname, ltpe, RegKind, _), rhs) if !dontTouches(lname) =>
          /* Checks if an RHS expression e of a register assignment is convertible to a constant assignment.
           * Here, this means that e must be 1) a literal, 2) a self-connect, or 3) a mux tree of
           * cases (1) and (2).  In case (3), it also recursively checks that the two mux cases can
           * be resolved: each side is allowed one candidate register and one candidate literal to
           * appear in their source trees, referring to the potential constant propagation case that
           * they could allow. If the two are compatible (no different bound sources of either of
           * the two types), they can be resolved by combining sources. Otherwise, they propagate
           * NonConstant values.  When encountering a node reference, it expands the node by to its
           * RHS assignment and recurses.
           *
           * @note Some optimization of Mux trees turn 1-bit mux operators into boolean operators. This
           * can stifle register constant propagations, which looks at drivers through value-preserving
           * Muxes and Connects only. By speculatively expanding some 1-bit Or and And operations into
           * muxes, we can obtain the best possible insight on the value of the mux with a simple peephole
           * de-optimization that does not actually appear in the output code.
           *
           * @return a RegCPEntry describing the constant prop-compatible sources driving this expression
           */

          val unbound = RegCPEntry(UnboundConstant, UnboundConstant)
          val selfBound = RegCPEntry(BoundConstant(lname), UnboundConstant)

          def zero = passes.RemoveValidIf.getGroundZero(ltpe)
          def regConstant(e: Expression, baseCase: RegCPEntry): RegCPEntry = e match {
            case lit: Literal => baseCase.resolve(RegCPEntry(UnboundConstant, BoundConstant(lit)))
            case WRef(regName, _, RegKind, _) => baseCase.resolve(RegCPEntry(BoundConstant(regName), UnboundConstant))
            case WRef(nodeName, _, NodeKind, _) if nodeMap.contains(nodeName) =>
              val (_, expr) = InfoExpr.unwrap(nodeMap(nodeName))
              val cached = nodeRegCPEntries.getOrElseUpdate(nodeName, { regConstant(expr, unbound) })
              baseCase.resolve(cached)
            case Mux(_, tval, fval, _) =>
              regConstant(tval, baseCase).resolve(regConstant(fval, baseCase))
            case DoPrim(Or, Seq(a, b), _, BoolType) =>
              val aSel = regConstant(Mux(a, one, b, BoolType), baseCase)
              if (!aSel.nonConstant) aSel else regConstant(Mux(b, one, a, BoolType), baseCase)
            case DoPrim(And, Seq(a, b), _, BoolType) =>
              val aSel = regConstant(Mux(a, b, zero, BoolType), baseCase)
              if (!aSel.nonConstant) aSel else regConstant(Mux(b, a, zero, BoolType), baseCase)
            case _ =>
              RegCPEntry(NonConstant, NonConstant)
          }

          // Updates nodeMap after analyzing the returned value from regConstant
          def updateNodeMapIfConstant(e: Expression): Unit = regConstant(e, selfBound) match {
            case RegCPEntry(UnboundConstant, UnboundConstant)     => nodeMap(lname) = padCPExp(zero)
            case RegCPEntry(BoundConstant(_), UnboundConstant)    => nodeMap(lname) = padCPExp(zero)
            case RegCPEntry(UnboundConstant, BoundConstant(lit))  => nodeMap(lname) = padCPExp(lit)
            case RegCPEntry(BoundConstant(_), BoundConstant(lit)) => nodeMap(lname) = padCPExp(lit)
            case _                                                =>
          }

          def padCPExp(e: Expression) =
            constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps)(pad(e, ltpe))

          asyncResetRegs.get(lname) match {
            // Normal Register
            case None => updateNodeMapIfConstant(rhs)
            // Async Register
            case Some(reg: DefRegister) => updateNodeMapIfConstant(Mux(reg.reset, reg.init, rhs))
          }

        // Mark instance inputs connected to a constant
        case Connect(_, lref @ WSubField(WRef(inst, _, InstanceKind, _), port, ptpe, _), lit: Literal) =>
          val paddedLit =
            constPropExpression(nodeMap, instMap, constSubOutputs, disabledOps)(pad(lit, ptpe)).asInstanceOf[Literal]
          val module = instMap(inst.Instance)
          val portsMap = constSubInputs.getOrElseUpdate(module, mutable.HashMap.empty)
          portsMap(port) = paddedLit +: portsMap.getOrElse(port, List.empty)
        case _ =>
      }
      // Actually transform some statements
      stmtx match {
        // Propagate connections to references
        case Connect(info0, lhs, rref @ WRef(rname, _, NodeKind, _)) if !dontTouches.contains(rname) =>
          val (info1, value) = InfoExpr.unwrap(nodeMap(rname))
          // Is this the right info combination/propagation function?
          // See propagateDirectConnectionInfoOnly
          Connect(InfoExpr.orElse(info1, info0), lhs, value)
        // If an Attach has at least 1 port, any wires are redundant and can be removed
        case Attach(info, exprs) if exprs.exists(kind(_) == PortKind) =>
          Attach(info, exprs.filterNot(kind(_) == WireKind))
        case other => other
      }
    }

    val modx = m.copy(body = backPropStmt(constPropStmt(m.body)))

    // When we call this function again, constOutputs and constSubInputs are reconstructed and
    // strictly a superset of the versions here
    if (nPropagated > 0) constPropModule(modx, dontTouches, instMap, constInputs, constSubOutputs, disabledOps)
    else (modx, constOutputs.toMap, constSubInputs.mapValues(_.toMap).toMap)
  }

  // Unify two maps using f to combine values of duplicate keys
  private def unify[K, V](a: Map[K, V], b: Map[K, V])(f: (V, V) => V): Map[K, V] =
    b.foldLeft(a) {
      case (acc, (k, v)) =>
        acc + (k -> acc.get(k).map(f(_, v)).getOrElse(v))
    }

  private def run(c: Circuit, dontTouchMap: Map[OfModule, Set[String]], disabledOps: Set[PrimOp]): Circuit = {
    val iGraph = InstanceKeyGraph(c)
    val moduleDeps = iGraph.getChildInstanceMap
    val instCount = iGraph.staticInstanceCount

    // DiGraph using Module names as nodes, destination of edge is a parent Module
    val parentGraph: DiGraph[OfModule] = iGraph.graph.reverse.transformNodes(_.OfModule)

    // This outer loop works by applying constant propagation to the modules in a topologically
    // sorted order from leaf to root
    // Modules will register any outputs they drive with a constant in constOutputs which is then
    // checked by later modules in the same iteration (since we iterate from leaf to root)
    // Since Modules can be instantiated multiple times, for inputs we must check that all instances
    // are driven with the same constant value. Then, if we find a Module input where each instance
    // is driven with the same constant (and not seen in a previous iteration), we iterate again
    @tailrec
    def iterate(
      toVisit:     Set[OfModule],
      modules:     Map[OfModule, Module],
      constInputs: Map[OfModule, Map[String, Literal]]
    ): Map[OfModule, DefModule] = {
      if (toVisit.isEmpty) modules
      else {
        // Order from leaf modules to root so that any module driving an output
        // with a constant will be visible to modules that instantiate it
        // TODO Generating order as we execute constant propagation on each module would be faster
        val order = parentGraph.subgraph(toVisit).linearize
        // Execute constant propagation on each module in order
        // Aggreagte Module outputs that are driven constant for use by instaniating Modules
        // Aggregate submodule inputs driven constant for checking later
        val (modulesx, _, constInputsx) =
          order.foldLeft((modules, Map[OfModule, Map[String, Literal]](), Map[OfModule, Map[String, Seq[Literal]]]())) {
            case ((mmap, constOutputs, constInputsAcc), mname) =>
              val dontTouches = dontTouchMap.getOrElse(mname, Set.empty)
              val (mx, mco, mci) = constPropModule(
                modules(mname),
                dontTouches,
                moduleDeps(mname),
                constInputs.getOrElse(mname, Map.empty),
                constOutputs,
                disabledOps
              )
              // Accumulate all Literals used to drive a particular Module port
              val constInputsx = unify(constInputsAcc, mci)((a, b) => unify(a, b)((c, d) => c ++ d))
              (mmap + (mname -> mx), constOutputs + (mname -> mco), constInputsx)
          }
        // Determine which module inputs have all of the same, new constants driving them
        val newProppedInputs = constInputsx.flatMap {
          case (mname, ports) =>
            val portsx = ports.flatMap {
              case (pname, lits) =>
                val newPort = !constInputs.get(mname).map(_.contains(pname)).getOrElse(false)
                val isModule = modules.contains(mname) // ExtModules are not contained in modules
                val allSameConst = lits.size == instCount(mname) && lits.toSet.size == 1
                if (isModule && newPort && allSameConst) Some(pname -> lits.head)
                else None
            }
            if (portsx.nonEmpty) Some(mname -> portsx) else None
        }
        val modsWithConstInputs = newProppedInputs.keySet
        val newToVisit = modsWithConstInputs ++
          modsWithConstInputs.flatMap(parentGraph.reachableFrom)
        // Combine const inputs (there can't be duplicate values in the inner maps)
        val nextConstInputs = unify(constInputs, newProppedInputs)((a, b) => a ++ b)
        iterate(newToVisit.toSet, modulesx, nextConstInputs)
      }
    }

    val modulesx = {
      val nameMap = c.modules.collect { case m: Module => m.OfModule -> m }.toMap
      // We only pass names of Modules, we can't apply const prop to ExtModules
      val mmap = iterate(nameMap.keySet, nameMap, Map.empty)
      c.modules.map(m => mmap.getOrElse(m.OfModule, m))
    }

    Circuit(c.info, modulesx, c.main)
  }

  def execute(state: CircuitState): CircuitState = {
    val dontTouches: Seq[(OfModule, String)] = state.annotations.flatMap {
      case anno: HasDontTouches =>
        anno.dontTouches
          // We treat all ReferenceTargets as if they were local because of limitations of
          // EliminateTargetPaths
          .map(rt => OfModule(rt.encapsulatingModule) -> rt.ref)
      case o => Nil
    }

    // Map from module name to component names
    val dontTouchMap: Map[OfModule, Set[String]] =
      dontTouches.groupBy(_._1).mapValues(_.map(_._2).toSet).toMap

    val disabledOps = state.annotations.collect { case DisableFold(op) => op }.toSet

    if (state.annotations.contains(NoConstantPropagationAnnotation)) {
      logger.info("Skipping Constant Propagation")
      state
    } else {
      state.copy(circuit = run(state.circuit, dontTouchMap, disabledOps))
    }
  }
}