1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
// SPDX-License-Identifier: Apache-2.0
// Author: Kevin Laeufer <laeufer@cs.berkeley.edu>
package firrtl.backends.experimental.smt
import firrtl._
import firrtl.annotations._
import firrtl.ir.EmptyStmt
import firrtl.options.Dependency
import firrtl.passes.PassException
import firrtl.stage.Forms
import firrtl.stage.TransformManager.TransformDependency
import firrtl.transforms.PropagatePresetAnnotations
import firrtl.renamemap.MutableRenameMap
import scala.collection.mutable
case class GlobalClockAnnotation(target: ReferenceTarget) extends SingleTargetAnnotation[ReferenceTarget] {
override def duplicate(n: ReferenceTarget): Annotation = this.copy(n)
}
/** Converts every input clock into a clock enable input and adds a single global clock.
* - all registers and memory ports will be connected to the new global clock
* - all registers and memory ports will be guarded by the enable signal of their original clock
* - the clock enabled signal can be understood as a clock tick or posedge
* - this transform can be used in order to (formally) verify designs with multiple clocks or asynchronous resets
*/
class StutteringClockTransform extends Transform with DependencyAPIMigration {
override def prerequisites: Seq[TransformDependency] = Forms.LowForm
override def invalidates(a: Transform): Boolean = false
// this pass needs to run *before* converting to a transition system
override def optionalPrerequisiteOf: Seq[TransformDependency] = Seq(Dependency(FirrtlToTransitionSystem))
// since this pass only runs on the main module, inlining needs to happen before
override def optionalPrerequisites: Seq[TransformDependency] = Seq(
Dependency[firrtl.passes.InlineInstances],
Dependency[PropagatePresetAnnotations]
)
override protected def execute(state: CircuitState): CircuitState = {
if (state.circuit.modules.size > 1) {
logger.warn(
"WARN: StutteringClockTransform currently only supports running on a single module.\n" +
s"All submodules of ${state.circuit.main} will be ignored! Please inline all submodules if this is not what you want."
)
}
// get main module
val main = state.circuit.modules.find(_.name == state.circuit.main).get match {
case m: ir.Module => m
case e: ir.ExtModule => unsupportedError(s"Cannot run on extmodule $e")
}
mainName = main.name
val namespace = Namespace(main)
// create a global clock
val globalClocks = state.annotations.collect { case GlobalClockAnnotation(c) => c }
assert(globalClocks.size < 2, "There can only be a single global clock: " + globalClocks.mkString(", "))
val (globalClock, portsWithGlobalClock) = globalClocks.headOption match {
case Some(clock) =>
assert(clock.module == main.name, "GlobalClock needs to be an input of the main module!")
assert(main.ports.exists(_.name == clock.ref), "GlobalClock needs to be an input port!")
assert(main.ports.find(_.name == clock.ref).get.direction == ir.Input, "GlobalClock needs to be an input port!")
(clock.ref, main.ports)
case None =>
val name = namespace.newName("global_clock")
(name, ir.Port(ir.NoInfo, name, ir.Input, ir.ClockType) +: main.ports)
}
// replace all other clocks with enable signals, unless they are the global clock
val clocks = portsWithGlobalClock.filter(p => p.tpe == ir.ClockType && p.name != globalClock).map(_.name)
val clockToEnable = clocks.map { c =>
c -> ir.Reference(namespace.newName(c + "_en"), Utils.BoolType, firrtl.PortKind, firrtl.SourceFlow)
}.toMap
val portsWithEnableSignals = portsWithGlobalClock.map { p =>
if (clockToEnable.contains(p.name)) { p.copy(name = clockToEnable(p.name).name, tpe = Utils.BoolType) }
else { p }
}
// replace async reset with synchronous reset (since everything will we synchronous with the global clock)
// unless it is a preset reset
val asyncResets = portsWithEnableSignals.filter(_.tpe == ir.AsyncResetType).map(_.name)
val isPresetReset = state.annotations.collect { case PresetAnnotation(r) if r.module == main.name => r.ref }.toSet
val resetsToChange = asyncResets.filterNot(isPresetReset).toSet
val portsWithSyncReset = portsWithEnableSignals.map { p =>
if (resetsToChange.contains(p.name)) { p.copy(tpe = Utils.BoolType) }
else { p }
}
val presetRegs = state.annotations.collect {
case PresetRegAnnotation(target) if target.module == mainName => target.ref
}.toSet
// discover clock and reset connections
val scan = scanClocks(main, clockToEnable, resetsToChange)
// rename clocks to clock enable signals
val mRef = CircuitTarget(state.circuit.main).module(main.name)
val renameMap = MutableRenameMap()
scan.clockToEnable.foreach {
case (clk, en) =>
renameMap.record(mRef.ref(clk), mRef.ref(en.name))
}
// make changes
implicit val ctx: Context = new Context(globalClock, scan, presetRegs)
val newMain = main.copy(ports = portsWithSyncReset).mapStmt(onStatement)
val nonMainModules = state.circuit.modules.filterNot(_.name == state.circuit.main)
val newCircuit = state.circuit.copy(modules = nonMainModules :+ newMain)
state.copy(circuit = newCircuit, renames = Some(renameMap))
}
private def onStatement(s: ir.Statement)(implicit ctx: Context): ir.Statement = {
s.foreachExpr(checkExpr)
s match {
// memory field connects
case c @ ir.Connect(_, ir.SubField(ir.SubField(ir.Reference(mem, _, _, _), port, _, _), field, _, _), _)
if ctx.isMem(mem) && ctx.memPortToClockEnable.contains(mem + "." + port) =>
// replace clock with the global clock
if (field == "clk") {
c.copy(expr = ctx.globalClock)
} else if (field == "en") {
val m = ctx.memInfo(mem)
val isWritePort = m.writers.contains(port)
assert(isWritePort || m.readers.contains(port))
// for write ports we guard the write enable with the clock enable signal, similar to registers
if (isWritePort) {
val clockEn = ctx.memPortToClockEnable(mem + "." + port)
val guardedEnable = Utils.and(clockEn, c.expr)
c.copy(expr = guardedEnable)
} else { c }
} else { c }
// register field connects
case c @ ir.Connect(_, r: ir.Reference, next) if ctx.registerToEnable.contains(r.name) =>
val clockEnable = ctx.registerToEnable(r.name)
val guardedNext = Utils.mux(clockEnable, next, r)
val withReset = ctx.registerToAsyncReset.get(r.name) match {
case None => guardedNext
case Some((asyncReset, init)) => Utils.mux(asyncReset, init, guardedNext)
}
c.copy(expr = withReset)
// remove other clock wires and nodes
case ir.Connect(_, loc, expr) if expr.tpe == ir.ClockType && ctx.isRemovedClock(loc.serialize) => EmptyStmt
case ir.DefNode(_, name, value) if value.tpe == ir.ClockType && ctx.isRemovedClock(name) => EmptyStmt
case ir.DefWire(_, name, tpe) if tpe == ir.ClockType && ctx.isRemovedClock(name) => EmptyStmt
// change async reset to synchronous reset
case ir.Connect(info, loc: ir.Reference, expr: ir.Reference)
if expr.tpe == ir.AsyncResetType && ctx.isResetToChange(loc.serialize) =>
ir.Connect(info, loc.copy(tpe = Utils.BoolType), expr.copy(tpe = Utils.BoolType))
case d @ ir.DefNode(_, name, value: ir.Reference)
if value.tpe == ir.AsyncResetType && ctx.isResetToChange(name) =>
d.copy(value = value.copy(tpe = Utils.BoolType))
case d @ ir.DefWire(_, name, tpe) if tpe == ir.AsyncResetType && ctx.isResetToChange(name) =>
d.copy(tpe = Utils.BoolType)
// change memory clock and synchronize reset
case ir.DefRegister(info, name, tpe, _, _, init) if ctx.registerToEnable.contains(name) =>
val newInit = if (ctx.isPresetReg(name)) init else ir.Reference(name, tpe, RegKind, SourceFlow)
ir.DefRegister(info, name, tpe, ctx.globalClock, Utils.False(), newInit)
case other => other.mapStmt(onStatement)
}
}
private def scanClocks(
m: ir.Module,
initialClockToEnable: Map[String, ir.Reference],
resetsToChange: Set[String]
): ScanCtx = {
implicit val ctx: ScanCtx = new ScanCtx(initialClockToEnable, resetsToChange)
m.foreachStmt(scanClocksAndResets)
ctx
}
private def scanClocksAndResets(s: ir.Statement)(implicit ctx: ScanCtx): Unit = {
s.foreachExpr(checkExpr)
s match {
// track clock aliases
case ir.Connect(_, loc, expr) if expr.tpe == ir.ClockType =>
val locName = loc.serialize
ctx.clockToEnable.get(expr.serialize).foreach { clockEn =>
ctx.clockToEnable(locName) = clockEn
// keep track of memory clocks
if (loc.isInstanceOf[ir.SubField]) {
val parts = locName.split('.')
if (ctx.mems.contains(parts.head)) {
assert(parts.length == 3 && parts.last == "clk")
ctx.memPortToClockEnable.append(parts.dropRight(1).mkString(".") -> clockEn)
}
}
}
case ir.DefNode(_, name, value) if value.tpe == ir.ClockType =>
ctx.clockToEnable.get(value.serialize).foreach(c => ctx.clockToEnable(name) = c)
// track reset aliases
case ir.Connect(_, loc, expr) if expr.tpe == ir.AsyncResetType && ctx.resetsToChange(expr.serialize) =>
ctx.resetsToChange.add(loc.serialize)
case ir.DefNode(_, name, value) if value.tpe == ir.AsyncResetType && ctx.resetsToChange(value.serialize) =>
ctx.resetsToChange.add(name)
// modify clocked elements
case ir.DefRegister(_, name, _, clock, reset, init) =>
ctx.clockToEnable.get(clock.serialize).foreach { clockEnable =>
ctx.registerToEnable.append(name -> clockEnable)
}
reset match {
case Utils.False() =>
case other => ctx.registerToAsyncReset.append(name -> (other, init))
}
case m: ir.DefMemory =>
assert(m.readwriters.isEmpty, "Combined read/write ports are not supported!")
assert(m.readLatency == 0 || m.readLatency == 1, "Only read-latency 1 and read latency 0 are supported!")
assert(m.writeLatency == 1, "Only write-latency 1 is supported!")
if (m.readers.nonEmpty && m.readLatency == 1) {
unsupportedError("Registers memory read ports are not properly implemented yet :(")
}
ctx.mems(m.name) = m
case other => other.foreachStmt(scanClocksAndResets)
}
}
// we rely on people not casting clocks or async resets
private def checkExpr(expr: ir.Expression): Unit = expr match {
case ir.DoPrim(PrimOps.AsUInt, Seq(e), _, _) if e.tpe == ir.ClockType =>
unsupportedError(s"Clock casts are not supported: ${expr.serialize}")
case ir.DoPrim(PrimOps.AsSInt, Seq(e), _, _) if e.tpe == ir.ClockType =>
unsupportedError(s"Clock casts are not supported: ${expr.serialize}")
case ir.DoPrim(PrimOps.AsUInt, Seq(e), _, _) if e.tpe == ir.AsyncResetType =>
unsupportedError(s"AsyncReset casts are not supported: ${expr.serialize}")
case ir.DoPrim(PrimOps.AsSInt, Seq(e), _, _) if e.tpe == ir.AsyncResetType =>
unsupportedError(s"AsyncReset casts are not supported: ${expr.serialize}")
case ir.DoPrim(PrimOps.AsAsyncReset, _, _, _) =>
unsupportedError(s"AsyncReset casts are not supported: ${expr.serialize}")
case ir.DoPrim(PrimOps.AsClock, _, _, _) =>
unsupportedError(s"Clock casts are not supported: ${expr.serialize}")
case other => other.foreachExpr(checkExpr)
}
private class ScanCtx(initialClockToEnable: Map[String, ir.Reference], initialResetsToChange: Set[String]) {
// keeps track of which clock signals will be replaced by which clock enable signal
val clockToEnable = mutable.HashMap[String, ir.Reference]() ++ initialClockToEnable
// kepp track of asynchronous resets that need to be changed to bool
val resetsToChange = mutable.HashSet[String]() ++ initialResetsToChange
// registers whose next function needs to be guarded with a clock enable
val registerToEnable = mutable.ArrayBuffer[(String, ir.Reference)]()
// registers with asynchronous reset
val registerToAsyncReset = mutable.ArrayBuffer[(String, (ir.Expression, ir.Expression))]()
// memory enables which need to be guarded with clock enables
val memPortToClockEnable = mutable.ArrayBuffer[(String, ir.Reference)]()
// keep track of memory names
val mems = mutable.HashMap[String, ir.DefMemory]()
}
private class Context(globalClockName: String, scanResults: ScanCtx, val isPresetReg: String => Boolean) {
val globalClock: ir.Reference = ir.Reference(globalClockName, ir.ClockType, firrtl.PortKind, firrtl.SourceFlow)
// keeps track of which clock signals will be replaced by which clock enable signal
val isRemovedClock: String => Boolean = scanResults.clockToEnable.contains
// registers whose next function needs to be guarded with a clock enable
val registerToEnable: Map[String, ir.Reference] = scanResults.registerToEnable.toMap
// registers with asynchronous reset
val registerToAsyncReset: Map[String, (ir.Expression, ir.Expression)] = scanResults.registerToAsyncReset.toMap
// memory enables which need to be guarded with clock enables
val memPortToClockEnable: Map[String, ir.Reference] = scanResults.memPortToClockEnable.toMap
// keep track of memory names
val isMem: String => Boolean = scanResults.mems.contains
val memInfo: String => ir.DefMemory = scanResults.mems
val isResetToChange: String => Boolean = scanResults.resetsToChange.contains
}
private var mainName: String = "" // for debugging
private def unsupportedError(msg: String): Nothing =
throw new UnsupportedFeatureException(s"StutteringClockTransform: [$mainName] $msg")
}
private class UnsupportedFeatureException(s: String) extends PassException(s)
|