1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
(**************************************************************************)
(* Sail *)
(* *)
(* Copyright (c) 2013-2017 *)
(* Kathyrn Gray *)
(* Shaked Flur *)
(* Stephen Kell *)
(* Gabriel Kerneis *)
(* Robert Norton-Wright *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alasdair Armstrong *)
(* Brian Campbell *)
(* Thomas Bauereiss *)
(* Anthony Fox *)
(* Jon French *)
(* Dominic Mulligan *)
(* Stephen Kell *)
(* Mark Wassell *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the University of Cambridge Computer *)
(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(**************************************************************************)
open Ast
open Ast_defs
open Ast_util
open Rewriter
type node =
| Register of id
| Function of id
| Letbind of id
| Type of id
| Overload of id
| Constructor of id
let node_id = function
| Register id -> id
| Function id -> id
| Letbind id -> id
| Type id -> id
| Overload id -> id
| Constructor id -> id
let node_kind = function
| Register _ -> 0
| Function _ -> 1
| Letbind _ -> 3
| Type _ -> 4
| Overload _ -> 5
| Constructor _ -> 6
module Node = struct
type t = node
let compare n1 n2 =
let lex_ord c1 c2 = if c1 = 0 then c2 else c1 in
lex_ord (compare (node_kind n1) (node_kind n2)) (Id.compare (node_id n1) (node_id n2))
end
let node_color cuts =
let module NodeSet = Set.Make(Node) in
function
| node when NodeSet.mem node cuts -> "red"
| Register _ -> "lightpink"
| Function _ -> "white"
| Letbind _ -> "yellow"
| Type _ -> "springgreen"
| Overload _ -> "peachpuff"
| Constructor _ -> "lightslateblue"
let node_string n = node_id n |> string_of_id |> String.escaped
let edge_color from_node to_node = "black"
let builtins =
let open Type_check in
IdSet.of_list (List.map fst (Bindings.bindings Env.builtin_typs))
let rec constraint_ids' (NC_aux (aux, _)) =
match aux with
| NC_equal (n1, n2) | NC_bounded_le (n1, n2) | NC_bounded_ge (n1, n2) | NC_bounded_lt (n1, n2) | NC_bounded_gt (n1, n2) | NC_not_equal (n1, n2) ->
IdSet.union (nexp_ids' n1) (nexp_ids' n2)
| NC_or (nc1, nc2) | NC_and (nc1, nc2) ->
IdSet.union (constraint_ids' nc1) (constraint_ids' nc2)
| NC_var _ | NC_true | NC_false | NC_set _ -> IdSet.empty
| NC_app (id, args) ->
IdSet.add id (List.fold_left IdSet.union IdSet.empty (List.map typ_arg_ids' args))
and nexp_ids' (Nexp_aux (aux, _)) =
match aux with
| Nexp_id id -> IdSet.singleton id
| Nexp_app (id, nexps) ->
IdSet.add id (List.fold_left IdSet.union IdSet.empty (List.map nexp_ids' nexps))
| Nexp_var _ | Nexp_constant _ -> IdSet.empty
| Nexp_exp n | Nexp_neg n -> nexp_ids' n
| Nexp_times (n1, n2) | Nexp_sum (n1, n2) | Nexp_minus (n1, n2) ->
IdSet.union (nexp_ids' n1) (nexp_ids' n2)
and typ_ids' (Typ_aux (aux, _)) =
match aux with
| Typ_var _ | Typ_internal_unknown -> IdSet.empty
| Typ_id id -> IdSet.singleton id
| Typ_app (id, args) ->
IdSet.add id (List.fold_left IdSet.union IdSet.empty (List.map typ_arg_ids' args))
| Typ_fn (typs, typ, _) ->
IdSet.union (typ_ids' typ) (List.fold_left IdSet.union IdSet.empty (List.map typ_ids' typs))
| Typ_bidir (typ1, typ2, _) ->
IdSet.union (typ_ids' typ1) (typ_ids' typ2)
| Typ_tup typs ->
List.fold_left IdSet.union IdSet.empty (List.map typ_ids' typs)
| Typ_exist (_, _, typ) -> typ_ids' typ
and typ_arg_ids' (A_aux (aux, _)) =
match aux with
| A_typ typ -> typ_ids' typ
| A_nexp nexp -> nexp_ids' nexp
| A_bool nc -> constraint_ids' nc
| A_order _ -> IdSet.empty
let constraint_ids nc = IdSet.diff (constraint_ids' nc) builtins
let nexp_ids nc = IdSet.diff (constraint_ids' nc) builtins
and typ_ids typ = IdSet.diff (typ_ids' typ) builtins
let typ_arg_ids nc = IdSet.diff (typ_arg_ids' nc) builtins
let add_def_to_graph graph def =
let open Type_check in
let module G = Graph.Make(Node) in
let graph = ref graph in
let scan_pat self p_aux annot =
let env = env_of_annot annot in
begin match p_aux with
| P_app (id, _) ->
graph := G.add_edge self (Constructor id) !graph
| P_typ (typ, _) ->
IdSet.iter (fun id -> graph := G.add_edge self (Type id) !graph) (typ_ids typ)
| _ -> ()
end;
P_aux (p_aux, annot)
in
let rw_pat self = { id_pat_alg with p_aux = (fun (p_aux, annot) -> scan_pat self p_aux annot) } in
let scan_lexp self lexp_aux annot =
let env = env_of_annot annot in
begin match lexp_aux with
| LEXP_cast (typ, id) ->
IdSet.iter (fun id -> graph := G.add_edge self (Type id) !graph) (typ_ids typ);
begin match Env.lookup_id id env with
| Register _ ->
graph := G.add_edge self (Register id) !graph
| Enum _ -> graph := G.add_edge self (Constructor id) !graph
| _ ->
if IdSet.mem id (Env.get_toplevel_lets env) then
graph := G.add_edge self (Letbind id) !graph
else ()
end
| LEXP_memory (id, _) ->
graph := G.add_edge self (Function id) !graph
| LEXP_id id ->
begin match Env.lookup_id id env with
| Register _ ->
graph := G.add_edge self (Register id) !graph
| Enum _ -> graph := G.add_edge self (Constructor id) !graph
| _ ->
if IdSet.mem id (Env.get_toplevel_lets env) then
graph := G.add_edge self (Letbind id) !graph
else ()
end
| _ -> ()
end;
LEXP_aux (lexp_aux, annot)
in
let scan_exp self e_aux annot =
let env = env_of_annot annot in
begin match e_aux with
| E_id id ->
begin match Env.lookup_id id env with
| Register _ -> graph := G.add_edge self (Register id) !graph
| Enum _ -> graph := G.add_edge self (Constructor id) !graph
| _ ->
if IdSet.mem id (Env.get_toplevel_lets env) then
graph := G.add_edge self (Letbind id) !graph
else ()
end
| E_app (id, _) ->
if Env.is_union_constructor id env then
graph := G.add_edge self (Constructor id) !graph
else
graph := G.add_edge self (Function id) !graph
| E_ref id ->
graph := G.add_edge self (Register id) !graph
| E_cast (typ, _) ->
IdSet.iter (fun id -> graph := G.add_edge self (Type id) !graph) (typ_ids typ)
| _ -> ()
end;
E_aux (e_aux, annot)
in
let rw_exp self = { id_exp_alg with e_aux = (fun (e_aux, annot) -> scan_exp self e_aux annot);
lEXP_aux = (fun (l_aux, annot) -> scan_lexp self l_aux annot);
pat_alg = rw_pat self } in
let rewriters self =
{ rewriters_base with
rewrite_exp = (fun _ -> fold_exp (rw_exp self));
rewrite_pat = (fun _ -> fold_pat (rw_pat self));
rewrite_let = (fun _ -> fold_letbind (rw_exp self));
}
in
let scan_quant_item self (QI_aux (aux, _)) =
match aux with
| QI_id _ -> ()
| QI_constraint nc ->
IdSet.iter (fun id -> graph := G.add_edge self (Type id) !graph) (constraint_ids nc)
| QI_constant _ -> ()
in
let scan_typquant self (TypQ_aux (aux, _)) =
match aux with
| TypQ_no_forall -> ()
| TypQ_tq quants -> List.iter (scan_quant_item self) quants
in
let add_type_def_to_graph (TD_aux (aux, (l, _))) =
match aux with
| TD_abbrev (id, typq, arg) ->
graph := G.add_edges (Type id) (List.map (fun id -> Type id) (IdSet.elements (typ_arg_ids arg))) !graph;
scan_typquant (Type id) typq
| TD_record (id, typq, fields, _) ->
let field_nodes =
List.map (fun (typ, _) -> typ_ids typ) fields
|> List.fold_left IdSet.union IdSet.empty
|> IdSet.elements
|> List.map (fun id -> Type id)
in
graph := G.add_edges (Type id) field_nodes !graph;
scan_typquant (Type id) typq
| TD_variant (id, typq, ctors, _) ->
let ctor_nodes =
List.map (fun (Tu_aux (Tu_ty_id (typ, id), _)) -> (typ_ids typ, id)) ctors
|> List.fold_left (fun (ids, ctors) (ids', ctor) -> (IdSet.union ids ids', IdSet.add ctor ctors)) (IdSet.empty, IdSet.empty)
in
IdSet.iter (fun ctor_id -> graph := G.add_edge (Constructor ctor_id) (Type id) !graph) (snd ctor_nodes);
IdSet.iter (fun typ_id -> graph := G.add_edge (Type id) (Type typ_id) !graph) (fst ctor_nodes);
scan_typquant (Type id) typq
| TD_enum (id, ctors, _) ->
List.iter (fun ctor_id -> graph := G.add_edge (Constructor ctor_id) (Type id) !graph) ctors
| TD_bitfield _ ->
Reporting.unreachable l __POS__ "Bitfield should be re-written"
in
begin match def with
| DEF_spec (VS_aux (VS_val_spec (TypSchm_aux (TypSchm_ts (typq, typ), _), id, _, _), _)) ->
graph := G.add_edges (Function id) [] !graph;
IdSet.iter (fun typ_id -> graph := G.add_edge (Function id) (Type typ_id) !graph) (typ_ids typ)
| DEF_fundef fdef ->
let id = id_of_fundef fdef in
graph := G.add_edges (Function id) [] !graph;
ignore (rewrite_fun (rewriters (Function id)) fdef)
| DEF_val (LB_aux (LB_val (pat, exp), _) as lb) ->
let ids = pat_ids pat in
IdSet.iter (fun id -> graph := G.add_edges (Letbind id) [] !graph) ids;
IdSet.iter (fun id -> ignore (rewrite_let (rewriters (Letbind id)) lb)) ids
| DEF_type tdef ->
add_type_def_to_graph tdef
| DEF_reg_dec (DEC_aux (DEC_reg (_, _, typ, id), _)) ->
IdSet.iter (fun typ_id -> graph := G.add_edge (Register id) (Type typ_id) !graph) (typ_ids typ)
| DEF_reg_dec (DEC_aux (DEC_config (id, typ, exp), _)) ->
ignore (rewrite_exp (rewriters (Register id)) exp);
IdSet.iter (fun typ_id -> graph := G.add_edge (Register id) (Type typ_id) !graph) (typ_ids typ)
| _ -> ()
end;
!graph
let rec graph_of_defs defs =
let module G = Graph.Make(Node) in
match defs with
| def :: defs ->
let g = graph_of_defs defs in
add_def_to_graph g def
| [] -> G.empty
let graph_of_ast ast = graph_of_defs ast.defs
let id_of_typedef (TD_aux (aux, _)) =
match aux with
| TD_abbrev (id, _, _) -> id
| TD_record (id, _, _, _) -> id
| TD_variant (id, _, _, _) -> id
| TD_enum (id, _, _) -> id
| TD_bitfield (id, _, _) -> id
let id_of_reg_dec (DEC_aux (aux, _)) =
match aux with
| DEC_reg (_, _, _, id) -> id
| DEC_config (id, _, _) -> id
| _ -> assert false
let filter_ast cuts g ast =
let rec filter_ast' g =
let module NS = Set.Make(Node) in
let module NM = Map.Make(Node) in
function
| DEF_fundef fdef :: defs when NS.mem (Function (id_of_fundef fdef)) cuts -> filter_ast' g defs
| DEF_fundef fdef :: defs when NM.mem (Function (id_of_fundef fdef)) g -> DEF_fundef fdef :: filter_ast' g defs
| DEF_fundef _ :: defs -> filter_ast' g defs
| DEF_reg_dec rdec :: defs when NM.mem (Register (id_of_reg_dec rdec)) g -> DEF_reg_dec rdec :: filter_ast' g defs
| DEF_reg_dec _ :: defs -> filter_ast' g defs
| DEF_spec vs :: defs when NM.mem (Function (id_of_val_spec vs)) g -> DEF_spec vs :: filter_ast' g defs
| DEF_spec _ :: defs -> filter_ast' g defs
| DEF_val (LB_aux (LB_val (pat, exp), _) as lb) :: defs ->
let ids = pat_ids pat |> IdSet.elements in
if List.exists (fun id -> NM.mem (Letbind id) g) ids then
DEF_val lb :: filter_ast' g defs
else
filter_ast' g defs
| DEF_type tdef :: defs when NM.mem (Type (id_of_typedef tdef)) g -> DEF_type tdef :: filter_ast' g defs
| DEF_type _ :: defs -> filter_ast' g defs
| DEF_measure (id,_,_) :: defs when NS.mem (Function id) cuts -> filter_ast' g defs
| (DEF_measure (id,_,_) as def) :: defs when NM.mem (Function id) g -> def :: filter_ast' g defs
| DEF_measure _ :: defs -> filter_ast' g defs
| def :: defs -> def :: filter_ast' g defs
| [] -> []
in
{ ast with defs = filter_ast' g ast.defs }
let dot_of_ast out_chan ast =
let module G = Graph.Make(Node) in
let module NodeSet = Set.Make(Node) in
let g = graph_of_ast ast in
G.make_dot (node_color NodeSet.empty) edge_color node_string out_chan g
let () =
let open Printf in
let open Interactive in
let slice_roots = ref IdSet.empty in
let slice_cuts = ref IdSet.empty in
ArgString ("identifiers", fun arg -> Action (fun () ->
let args = Str.split (Str.regexp " +") arg in
let ids = List.map mk_id args |> IdSet.of_list in
Specialize.add_initial_calls ids;
slice_roots := IdSet.union ids !slice_roots
)) |> register_command ~name:"slice_roots" ~help:"Set the roots for :slice";
ArgString ("identifiers", fun arg -> Action (fun () ->
let args = Str.split (Str.regexp " +") arg in
let ids = List.map mk_id args |> IdSet.of_list in
slice_cuts := IdSet.union ids !slice_cuts
)) |> register_command ~name:"slice_cuts" ~help:"Set the cuts for :slice";
Action (fun () ->
let module NodeSet = Set.Make(Node) in
let module G = Graph.Make(Node) in
let g = graph_of_ast !ast in
let roots = !slice_roots |> IdSet.elements |> List.map (fun id -> Function id) |> NodeSet.of_list in
let cuts = !slice_cuts |> IdSet.elements |> List.map (fun id -> Function id) |> NodeSet.of_list in
let g = G.prune roots cuts g in
ast := filter_ast cuts g !ast
) |> register_command
~name:"slice"
~help:"Slice AST to the definitions which the functions given \
by :slice_roots depend on, up to the functions given \
by :slice_cuts";
Action (fun () ->
let module NodeSet = Set.Make(Node) in
let module NodeMap = Map.Make(Node) in
let module G = Graph.Make(Node) in
let g = graph_of_ast !ast in
let roots = !slice_roots |> IdSet.elements |> List.map (fun id -> Function id) |> NodeSet.of_list in
let keep = function
| (Function id,_) when IdSet.mem id (!slice_roots) -> None
| (Function id,_) -> Some (Function id)
| _ -> None
in
let cuts = NodeMap.bindings g |> Util.map_filter keep |> NodeSet.of_list in
let g = G.prune roots cuts g in
ast := filter_ast cuts g !ast
) |> register_command
~name:"thin_slice"
~help:(sprintf ":thin_slice - Slice AST to the function definitions given with %s" (command "slice_roots"));
ArgString ("format", fun arg -> Action (fun () ->
let format = if arg = "" then "svg" else arg in
let dotfile, out_chan = Filename.open_temp_file "sail_graph_" ".gz" in
let image = Filename.temp_file "sail_graph_" ("." ^ format) in
dot_of_ast out_chan !ast;
close_out out_chan;
let _ = Unix.system (Printf.sprintf "dot -T%s %s -o %s" format dotfile image) in
let _ = Unix.system (Printf.sprintf "xdg-open %s" image) in
()
)) |> register_command
~name:"graph"
~help:"Draw a callgraph using dot in :0 (e.g. svg), and open with xdg-open"
|