1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
(**************************************************************************)
(* Sail *)
(* *)
(* Copyright (c) 2013-2017 *)
(* Kathyrn Gray *)
(* Shaked Flur *)
(* Stephen Kell *)
(* Gabriel Kerneis *)
(* Robert Norton-Wright *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alasdair Armstrong *)
(* Brian Campbell *)
(* Thomas Bauereiss *)
(* Anthony Fox *)
(* Jon French *)
(* Dominic Mulligan *)
(* Stephen Kell *)
(* Mark Wassell *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the University of Cambridge Computer *)
(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(**************************************************************************)
open Ast_util
open Jib
open Jib_util
module IntSet = Set.Make(struct type t = int let compare = compare end)
module IntMap = Map.Make(struct type t = int let compare = compare end)
(**************************************************************************)
(* 1. Mutable graph type *)
(**************************************************************************)
type 'a array_graph = {
mutable next : int;
mutable nodes : ('a * IntSet.t * IntSet.t) option array;
mutable next_cond : int;
mutable conds : cval IntMap.t
}
let make ~initial_size () = {
next = 0;
nodes = Array.make initial_size None;
next_cond = 1;
conds = IntMap.empty
}
let get_cond graph n =
if n >= 0 then
IntMap.find n graph.conds
else
V_call (Bnot, [IntMap.find (abs n) graph.conds])
let get_vertex graph n = graph.nodes.(n)
let iter_graph f graph =
for n = 0 to graph.next - 1 do
match graph.nodes.(n) with
| Some (x, y, z) -> f x y z
| None -> ()
done
let add_cond cval graph =
let n = graph.next_cond in
graph.conds <- IntMap.add n cval graph.conds;
graph.next_cond <- n + 1;
n
(** Add a vertex to a graph, returning the node index *)
let add_vertex data graph =
let n = graph.next in
if n >= Array.length graph.nodes then
begin
let new_nodes = Array.make (Array.length graph.nodes * 2) None in
Array.blit graph.nodes 0 new_nodes 0 (Array.length graph.nodes);
graph.nodes <- new_nodes
end;
let n = graph.next in
graph.nodes.(n) <- Some (data, IntSet.empty, IntSet.empty);
graph.next <- n + 1;
n
(** Add an edge between two existing vertices. Raises Invalid_argument
if either of the vertices do not exist. *)
let add_edge n m graph =
begin match graph.nodes.(n) with
| Some (data, parents, children) ->
graph.nodes.(n) <- Some (data, parents, IntSet.add m children)
| None ->
raise (Invalid_argument "Parent node does not exist in graph")
end;
match graph.nodes.(m) with
| Some (data, parents, children) ->
graph.nodes.(m) <- Some (data, IntSet.add n parents, children)
| None ->
raise (Invalid_argument "Child node does not exist in graph")
let cardinal graph = graph.next
let reachable roots graph =
let visited = ref IntSet.empty in
let rec reachable' n =
if IntSet.mem n !visited then ()
else
begin
visited := IntSet.add n !visited;
match graph.nodes.(n) with
| Some (_, _, successors) ->
IntSet.iter reachable' successors
| None -> ()
end
in
IntSet.iter reachable' roots; !visited
exception Not_a_DAG of int;;
let topsort graph =
let marked = ref IntSet.empty in
let temp_marked = ref IntSet.empty in
let list = ref [] in
let rec visit node =
if IntSet.mem node !temp_marked then
raise (Not_a_DAG node)
else if IntSet.mem node !marked then
()
else
begin match get_vertex graph node with
| None -> failwith "Node does not exist in topsort"
| Some (_, _, succs) ->
temp_marked := IntSet.add node !temp_marked;
IntSet.iter visit succs;
marked := IntSet.add node !marked;
temp_marked := IntSet.remove node !temp_marked;
list := node :: !list
end
in
let find_unmarked () =
let unmarked = ref (-1) in
let i = ref 0 in
while !unmarked = -1 && !i < Array.length graph.nodes do
begin match get_vertex graph !i with
| None -> ()
| Some _ ->
if not (IntSet.mem !i !marked) then
unmarked := !i
end;
incr i
done;
!unmarked
in
let rec topsort' () =
let unmarked = find_unmarked () in
if unmarked = -1 then
()
else
(visit unmarked; topsort' ())
in
topsort' (); !list
let prune visited graph =
for i = 0 to graph.next - 1 do
match graph.nodes.(i) with
| Some (n, preds, succs) ->
if IntSet.mem i visited then
graph.nodes.(i) <- Some (n, IntSet.inter visited preds, IntSet.inter visited succs)
else
graph.nodes.(i) <- None
| None -> ()
done
(**************************************************************************)
(* 2. Mutable control flow graph *)
(**************************************************************************)
type terminator =
| T_undefined of ctyp
| T_match_failure
| T_end of name
| T_goto of string
| T_jump of int * string
| T_label of string
| T_none
type cf_node =
| CF_label of string
| CF_block of instr list * terminator
| CF_guard of int
| CF_start of ctyp NameMap.t
let to_terminator graph = function
| I_label label -> T_label label
| I_goto label -> T_goto label
| I_jump (cval, label) ->
let n = add_cond cval graph in
T_jump (n, label)
| I_end name -> T_end name
| I_match_failure -> T_match_failure
| I_undefined ctyp -> T_undefined ctyp
| _ -> assert false
(* For now we only generate CFGs for flat lists of instructions *)
let control_flow_graph instrs =
let module StringMap = Map.Make(String) in
let labels = ref StringMap.empty in
let graph = make ~initial_size:512 () in
iter_instr (fun (I_aux (instr, annot)) ->
match instr with
| I_label label ->
labels := StringMap.add label (add_vertex ([], CF_label label) graph) !labels
| _ -> ()
) (iblock instrs);
let cf_split (I_aux (aux, _)) =
match aux with
| I_label _ | I_goto _ | I_jump _ | I_end _ | I_match_failure | I_undefined _ -> true
| _ -> false
in
let rec cfg preds instrs =
let before, after = instr_split_at cf_split instrs in
let terminator, after = match after with
| I_aux (instr, _) :: after -> to_terminator graph instr, after
| [] -> T_none, []
in
let preds = match before, terminator with
| [], (T_none | T_label _) -> preds
| instrs, _ ->
let n = add_vertex ([], CF_block (instrs, terminator)) graph in
List.iter (fun p -> add_edge p n graph) preds;
[n]
in
match terminator with
| T_end _ | T_match_failure | T_undefined _ ->
cfg [] after
| T_goto label ->
List.iter (fun p -> add_edge p (StringMap.find label !labels) graph) preds;
cfg [] after
| T_jump (cond, label) ->
let t = add_vertex ([], CF_guard cond) graph in
let f = add_vertex ([], CF_guard (- cond)) graph in
List.iter (fun p -> add_edge p t graph; add_edge p f graph) preds;
add_edge t (StringMap.find label !labels) graph;
cfg [f] after
| T_label label ->
cfg (StringMap.find label !labels :: preds) after
| T_none -> preds
in
let start = add_vertex ([], CF_start NameMap.empty) graph in
let finish = cfg [start] instrs in
let visited = reachable (IntSet.singleton start) graph in
prune visited graph;
start, finish, graph
(**************************************************************************)
(* 3. Computing dominators *)
(**************************************************************************)
(** Calculate the (immediate) dominators of a graph using the
Lengauer-Tarjan algorithm. This is the slightly less sophisticated
version from Appel's book 'Modern compiler implementation in ML'
which runs in O(n log(n)) time. *)
let immediate_dominators graph root =
let none = -1 in
let vertex = Array.make (cardinal graph) 0 in
let parent = Array.make (cardinal graph) none in
let ancestor = Array.make (cardinal graph) none in
let semi = Array.make (cardinal graph) none in
let idom = Array.make (cardinal graph) none in
let samedom = Array.make (cardinal graph) none in
let best = Array.make (cardinal graph) none in
let dfnum = Array.make (cardinal graph) (-1) in
let bucket = Array.make (cardinal graph) IntSet.empty in
let rec ancestor_with_lowest_semi v =
let a = ancestor.(v) in
if ancestor.(a) <> none then
let b = ancestor_with_lowest_semi a in
ancestor.(v) <- ancestor.(a);
if dfnum.(semi.(b)) < dfnum.(semi.(best.(v))) then
best.(v) <- b
else ();
else ();
if best.(v) <> none then best.(v) else v
in
let link p n =
ancestor.(n) <- p;
best.(n) <- n
in
let count = ref 0 in
let rec dfs p n =
if dfnum.(n) = -1 then
begin
dfnum.(n) <- !count;
vertex.(!count) <- n;
parent.(n) <- p;
incr count;
match graph.nodes.(n) with
| Some (_, _, successors) ->
IntSet.iter (fun w -> dfs n w) successors
| None -> assert false
end
in
dfs none root;
for i = !count - 1 downto 1 do
let n = vertex.(i) in
let p = parent.(n) in
let s = ref p in
begin match graph.nodes.(n) with
| Some (_, predecessors, _) ->
IntSet.iter (fun v ->
let s' =
if dfnum.(v) <= dfnum.(n) then
v
else
semi.(ancestor_with_lowest_semi v)
in
if dfnum.(s') < dfnum.(!s) then s := s'
) predecessors
| None -> assert false
end;
semi.(n) <- !s;
bucket.(!s) <- IntSet.add n bucket.(!s);
link p n;
IntSet.iter (fun v ->
let y = ancestor_with_lowest_semi v in
if semi.(y) = semi.(v) then
idom.(v) <- p
else
samedom.(v) <- y
) bucket.(p);
done;
for i = 1 to !count - 1 do
let n = vertex.(i) in
if samedom.(n) <> none then
idom.(n) <- idom.(samedom.(n))
done;
idom
(** [(dominator_children idoms).(n)] are the nodes whose immediate dominator
(idom) is n. *)
let dominator_children idom =
let none = -1 in
let children = Array.make (Array.length idom) IntSet.empty in
for n = 0 to Array.length idom - 1 do
let p = idom.(n) in
if p <> none then
children.(p) <- IntSet.add n (children.(p))
done;
children
(** [dominate idom n w] is true if n dominates w in the tree of
immediate dominators idom. *)
let rec dominate idom n w =
let none = -1 in
let p = idom.(n) in
if p = none then
false
else if p = w then
true
else
dominate idom p w
let dominance_frontiers graph root idom children =
let df = Array.make (cardinal graph) IntSet.empty in
let rec compute_df n =
let set = ref IntSet.empty in
begin match graph.nodes.(n) with
| Some (content, _, succs) ->
IntSet.iter (fun y ->
if idom.(y) <> n then
set := IntSet.add y !set
) succs
| None -> ()
end;
IntSet.iter (fun c ->
compute_df c;
IntSet.iter (fun w ->
if not (dominate idom n w) then
set := IntSet.add w !set
) (df.(c))
) (children.(n));
df.(n) <- !set
in
compute_df root;
df
(**************************************************************************)
(* 4. Conversion to SSA form *)
(**************************************************************************)
type ssa_elem =
| Phi of Jib.name * Jib.ctyp * Jib.name list
| Pi of Jib.cval list
let place_phi_functions graph df =
let defsites = ref NameCTMap.empty in
let all_vars = ref NameCTSet.empty in
let rec all_decls = function
| I_aux ((I_init (ctyp, id, _) | I_decl (ctyp, id)), _) :: instrs ->
NameCTSet.add (id, ctyp) (all_decls instrs)
| _ :: instrs -> all_decls instrs
| [] -> NameCTSet.empty
in
let orig_A n =
match graph.nodes.(n) with
| Some ((_, CF_block (instrs, _)), _, _) ->
let vars = List.fold_left NameCTSet.union NameCTSet.empty (List.map instr_typed_writes instrs) in
let vars = NameCTSet.diff vars (all_decls instrs) in
all_vars := NameCTSet.union vars !all_vars;
vars
| Some _ -> NameCTSet.empty
| None -> NameCTSet.empty
in
let phi_A = ref NameCTMap.empty in
for n = 0 to graph.next - 1 do
NameCTSet.iter (fun a ->
let ds = match NameCTMap.find_opt a !defsites with Some ds -> ds | None -> IntSet.empty in
defsites := NameCTMap.add a (IntSet.add n ds) !defsites
) (orig_A n)
done;
NameCTSet.iter (fun a ->
let workset = ref (NameCTMap.find a !defsites) in
while not (IntSet.is_empty !workset) do
let n = IntSet.choose !workset in
workset := IntSet.remove n !workset;
IntSet.iter (fun y ->
let phi_A_a = match NameCTMap.find_opt a !phi_A with Some set -> set | None -> IntSet.empty in
if not (IntSet.mem y phi_A_a) then
begin
begin match graph.nodes.(y) with
| Some ((phis, cfnode), preds, succs) ->
graph.nodes.(y) <- Some ((Phi (fst a, snd a, Util.list_init (IntSet.cardinal preds) (fun _ -> fst a)) :: phis, cfnode), preds, succs)
| None -> assert false
end;
phi_A := NameCTMap.add a (IntSet.add y phi_A_a) !phi_A;
if not (NameCTSet.mem a (orig_A y)) then
workset := IntSet.add y !workset
end
) df.(n)
done
) !all_vars
let rename_variables graph root children =
let counts = ref NameMap.empty in
let stacks = ref NameMap.empty in
let phi_zeros = ref NameMap.empty in
let ssa_name i = function
| Name (id, _) -> Name (id, i)
| Global (id, _) -> Global (id, i)
| Have_exception _ -> Have_exception i
| Current_exception _ -> Current_exception i
| Throw_location _ -> Throw_location i
| Return _ -> Return i
in
let get_count id =
match NameMap.find_opt id !counts with Some n -> n | None -> 0
in
let top_stack id =
match NameMap.find_opt id !stacks with Some (x :: _) -> x | Some [] -> 0 | None -> 0
in
let top_stack_phi id ctyp =
match NameMap.find_opt id !stacks with Some (x :: _) -> x | Some [] -> 0 | None -> (phi_zeros := NameMap.add (ssa_name 0 id) ctyp !phi_zeros; 0)
in
let push_stack id n =
stacks := NameMap.add id (n :: match NameMap.find_opt id !stacks with Some s -> s | None -> []) !stacks
in
let rec fold_cval = function
| V_id (id, ctyp) ->
let i = top_stack id in
V_id (ssa_name i id, ctyp)
| V_lit (vl, ctyp) -> V_lit (vl, ctyp)
| V_call (id, fs) -> V_call (id, List.map fold_cval fs)
| V_field (f, field) -> V_field (fold_cval f, field)
| V_tuple_member (f, len, n) -> V_tuple_member (fold_cval f, len, n)
| V_ctor_kind (f, ctor, unifiers, ctyp) -> V_ctor_kind (fold_cval f, ctor, unifiers, ctyp)
| V_ctor_unwrap (ctor, f, unifiers, ctyp) -> V_ctor_unwrap (ctor, fold_cval f, unifiers, ctyp)
| V_struct (fields, ctyp) -> V_struct (List.map (fun (field, cval) -> field, fold_cval cval) fields, ctyp)
| V_poly (f, ctyp) -> V_poly (fold_cval f, ctyp)
in
let rec fold_clexp rmw = function
| CL_id (id, ctyp) when rmw ->
let i = top_stack id in
let j = get_count id + 1 in
counts := NameMap.add id j !counts;
push_stack id j;
CL_rmw (ssa_name i id, ssa_name j id, ctyp)
| CL_id (id, ctyp) ->
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
CL_id (ssa_name i id, ctyp)
| CL_rmw _ -> assert false
| CL_field (clexp, field) -> CL_field (fold_clexp true clexp, field)
| CL_addr clexp -> CL_addr (fold_clexp false clexp)
| CL_tuple (clexp, n) -> CL_tuple (fold_clexp true clexp, n)
| CL_void -> CL_void
in
let ssa_instr (I_aux (aux, annot)) =
let aux = match aux with
| I_funcall (clexp, extern, id, args) ->
let args = List.map fold_cval args in
I_funcall (fold_clexp false clexp, extern, id, args)
| I_copy (clexp, cval) ->
let cval = fold_cval cval in
I_copy (fold_clexp false clexp, cval)
| I_decl (ctyp, id) ->
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
I_decl (ctyp, ssa_name i id)
| I_init (ctyp, id, cval) ->
let cval = fold_cval cval in
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
I_init (ctyp, ssa_name i id, cval)
| instr -> instr
in
I_aux (aux, annot)
in
let ssa_terminator = function
| T_jump (cond, label) ->
begin match IntMap.find_opt cond graph.conds with
| Some cval ->
graph.conds <- IntMap.add cond (fold_cval cval) graph.conds;
T_jump (cond, label)
| None -> assert false
end
| T_end id ->
let i = top_stack id in
T_end (ssa_name i id)
| terminator -> terminator
in
let ssa_cfnode = function
| CF_start inits -> CF_start inits
| CF_block (instrs, terminator) ->
let instrs = List.map ssa_instr instrs in
CF_block (instrs, ssa_terminator terminator)
| CF_label label -> CF_label label
| CF_guard cond -> CF_guard cond
in
let ssa_ssanode = function
| Phi (id, ctyp, args) ->
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
Phi (ssa_name i id, ctyp, args)
| Pi _ -> assert false (* Should not be introduced at this point *)
in
let fix_phi j = function
| Phi (id, ctyp, ids) ->
let fix_arg k a =
if k = j then
let i = top_stack_phi a ctyp in
ssa_name i a
else a
in
Phi (id, ctyp, List.mapi fix_arg ids)
| Pi _ -> assert false (* Should not be introduced at this point *)
in
let rec rename n =
let old_stacks = !stacks in
begin match graph.nodes.(n) with
| Some ((ssa, cfnode), preds, succs) ->
let ssa = List.map ssa_ssanode ssa in
graph.nodes.(n) <- Some ((ssa, ssa_cfnode cfnode), preds, succs);
List.iter (fun succ ->
match graph.nodes.(succ) with
| Some ((ssa, cfnode), preds, succs) ->
(* Suppose n is the j-th predecessor of succ *)
let rec find_j n succ = function
| pred :: preds ->
if pred = succ then n else find_j (n + 1) succ preds
| [] -> assert false
in
let j = find_j 0 n (IntSet.elements preds) in
graph.nodes.(succ) <- Some ((List.map (fix_phi j) ssa, cfnode), preds, succs)
| None -> assert false
) (IntSet.elements succs)
| None -> assert false
end;
IntSet.iter (fun child -> rename child) (children.(n));
stacks := old_stacks
in
rename root;
match graph.nodes.(root) with
| Some ((ssa, CF_start _), preds, succs) ->
graph.nodes.(root) <- Some ((ssa, CF_start !phi_zeros), preds, succs)
| _ -> failwith "root node is not CF_start"
let place_pi_functions graph start idom children =
let get_guard = function
| CF_guard cond ->
begin match IntMap.find_opt (abs cond) graph.conds with
| Some guard when cond > 0 -> [guard]
| Some guard -> [V_call (Bnot, [guard])]
| None -> assert false
end
| _ -> []
in
let get_pi_contents ssanodes =
List.concat (List.map (function Pi guards -> guards | _ -> []) ssanodes)
in
let rec go n =
begin match graph.nodes.(n) with
| Some ((ssa, cfnode), preds, succs) ->
let p = idom.(n) in
if p <> -1 then
begin match graph.nodes.(p) with
| Some ((dom_ssa, _), _, _) ->
let args = get_guard cfnode @ get_pi_contents dom_ssa in
graph.nodes.(n) <- Some ((Pi args :: ssa, cfnode), preds, succs)
| None -> assert false
end
| None -> assert false
end;
IntSet.iter go children.(n)
in
go start
(** Remove p nodes. Assumes the graph is acyclic. *)
let remove_nodes remove_cf graph =
for n = 0 to graph.next - 1 do
match graph.nodes.(n) with
| Some ((_, cfnode), preds, succs) when remove_cf cfnode ->
IntSet.iter (fun pred ->
match graph.nodes.(pred) with
| Some (content, preds', succs') ->
graph.nodes.(pred) <- Some (content, preds', IntSet.remove n (IntSet.union succs succs'))
| None -> assert false
) preds;
IntSet.iter (fun succ ->
match graph.nodes.(succ) with
| Some (content, preds', succs') ->
graph.nodes.(succ) <- Some (content, IntSet.remove n (IntSet.union preds preds'), succs')
| None -> assert false
) succs;
graph.nodes.(n) <- None
| _ -> ()
done
let ssa instrs =
let start, finish, cfg = control_flow_graph instrs in
let idom = immediate_dominators cfg start in
let children = dominator_children idom in
let df = dominance_frontiers cfg start idom children in
place_phi_functions cfg df;
rename_variables cfg start children;
place_pi_functions cfg start idom children;
start, cfg
(* Debugging utilities for outputing Graphviz files. *)
let string_of_ssainstr = function
| Phi (id, ctyp, args) ->
string_of_name id ^ " : " ^ string_of_ctyp ctyp ^ " = φ(" ^ Util.string_of_list ", " string_of_name args ^ ")"
| Pi cvals ->
"π(" ^ Util.string_of_list ", " (fun v -> String.escaped (string_of_cval v)) cvals ^ ")"
let string_of_phis = function
| [] -> ""
| phis -> Util.string_of_list "\\l" string_of_ssainstr phis ^ "\\l"
let string_of_node = function
| (phis, CF_label label) -> string_of_phis phis ^ label
| (phis, CF_block (instrs, terminator)) ->
let string_of_instr instr =
let buf = Buffer.create 128 in
Jib_ir.Flat_ir_formatter.output_instr 0 buf 0 Jib_ir.StringMap.empty instr;
Buffer.contents buf
in
string_of_phis phis ^ Util.string_of_list "\\l" (fun instr -> String.escaped (string_of_instr instr)) instrs
| (phis, CF_start inits) -> string_of_phis phis ^ "START"
| (phis, CF_guard cval) -> string_of_phis phis ^ string_of_int cval
let vertex_color = function
| (_, CF_start _) -> "peachpuff"
| (_, CF_block _) -> "white"
| (_, CF_label _) -> "springgreen"
| (_, CF_guard _) -> "yellow"
let make_dot out_chan graph =
Util.opt_colors := false;
output_string out_chan "digraph DEPS {\n";
let make_node i n =
output_string out_chan (Printf.sprintf " n%i [label=\"%i\\n%s\\l\";shape=box;style=filled;fillcolor=%s];\n" i i (string_of_node n) (vertex_color n))
in
let make_line i s =
output_string out_chan (Printf.sprintf " n%i -> n%i [color=black];\n" i s)
in
for i = 0 to graph.next - 1 do
match graph.nodes.(i) with
| Some (n, _, successors) ->
make_node i n;
IntSet.iter (fun s -> make_line i s) successors
| None -> ()
done;
output_string out_chan "}\n";
Util.opt_colors := true
let make_dominators_dot out_chan idom graph =
Util.opt_colors := false;
output_string out_chan "digraph DOMS {\n";
let make_node i n =
output_string out_chan (Printf.sprintf " n%i [label=\"%i\\n%s\\l\";shape=box;style=filled;fillcolor=%s];\n" i i (string_of_node n) (vertex_color n))
in
let make_line i s =
output_string out_chan (Printf.sprintf " n%i -> n%i [color=black];\n" i s)
in
for i = 0 to Array.length idom - 1 do
match graph.nodes.(i) with
| Some (n, _, _) ->
if idom.(i) = -1 then
make_node i n
else
(make_node i n; make_line i idom.(i))
| None -> ()
done;
output_string out_chan "}\n";
Util.opt_colors := true
|