1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
(**************************************************************************)
(* Sail *)
(* *)
(* Copyright (c) 2013-2017 *)
(* Kathyrn Gray *)
(* Shaked Flur *)
(* Stephen Kell *)
(* Gabriel Kerneis *)
(* Robert Norton-Wright *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alasdair Armstrong *)
(* Brian Campbell *)
(* Thomas Bauereiss *)
(* Anthony Fox *)
(* Jon French *)
(* Dominic Mulligan *)
(* Stephen Kell *)
(* Mark Wassell *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the University of Cambridge Computer *)
(* Laboratory as part of the Rigorous Engineering of Mainstream Systems *)
(* (REMS) project, funded by EPSRC grant EP/K008528/1. *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(**************************************************************************)
open Ast
open Ast_util
open Type_check
open Rewriter
module StringMap = Map.Make(String);;
(* Flag controls whether any constant folding will occur.
false = no folding, true = perform constant folding. *)
let optimize_constant_fold = ref false
let rec fexp_of_ctor (field, value) =
FE_aux (FE_Fexp (mk_id field, exp_of_value value), no_annot)
(* The interpreter will return a value for each folded expression, so
we must convert that back to expression to re-insert it in the AST
*)
and exp_of_value =
let open Value in
function
| V_int n -> mk_lit_exp (L_num n)
| V_bit Sail_lib.B0 -> mk_lit_exp L_zero
| V_bit Sail_lib.B1 -> mk_lit_exp L_one
| V_bool true -> mk_lit_exp L_true
| V_bool false -> mk_lit_exp L_false
| V_string str -> mk_lit_exp (L_string str)
| V_record ctors ->
mk_exp (E_record (List.map fexp_of_ctor (StringMap.bindings ctors)))
| V_vector vs ->
mk_exp (E_vector (List.map exp_of_value vs))
| V_tuple vs ->
mk_exp (E_tuple (List.map exp_of_value vs))
| V_unit -> mk_lit_exp L_unit
| V_attempted_read str ->
mk_exp (E_id (mk_id str))
| _ -> failwith "No expression for value"
(* We want to avoid evaluating things like print statements at compile
time, so we remove them from this list of primops we can use when
constant folding. *)
let safe_primops =
List.fold_left
(fun m k -> StringMap.remove k m)
!Value.primops
[ "print_endline";
"prerr_endline";
"putchar";
"print";
"prerr";
"print_bits";
"print_int";
"print_string";
"print_real";
"prerr_bits";
"prerr_int";
"prerr_string";
"read_ram";
"write_ram";
"get_time_ns";
"Elf_loader.elf_entry";
"Elf_loader.elf_tohost"
]
(** We can specify a list of identifiers that we want to remove from
the final AST here. This is useful for removing tracing features in
optimized builds, e.g. for booting an OS as fast as possible.
Basically we just do this by mapping
f(x, y, z) -> ()
when f is in the list of identifiers to be mapped to unit. The
advantage of doing it like this is if x, y, and z are
computationally expensive then we remove them also. String
concatentation is very expensive at runtime so this is something we
really want when cutting out tracing features. Obviously it's
important that they don't have any meaningful side effects, and
that f does actually have type unit.
*)
let opt_fold_to_unit = ref []
let fold_to_unit id =
let remove =
!opt_fold_to_unit
|> List.map mk_id
|> List.fold_left (fun m id -> IdSet.add id m) IdSet.empty
in
IdSet.mem id remove
let rec is_constant (E_aux (e_aux, _) as exp) =
match e_aux with
| E_lit _ -> true
| E_vector exps -> List.for_all is_constant exps
| E_record fexps -> List.for_all is_constant_fexp fexps
| E_cast (_, exp) -> is_constant exp
| E_tuple exps -> List.for_all is_constant exps
| E_id id ->
(match Env.lookup_id id (env_of exp) with
| Enum _ -> true
| _ -> false)
| _ -> false
and is_constant_fexp (FE_aux (FE_Fexp (_, exp), _)) = is_constant exp
(* Wrapper around interpreter that repeatedly steps until done. *)
let rec run frame =
match frame with
| Interpreter.Done (state, v) -> v
| Interpreter.Fail _ ->
(* something went wrong, raise exception to abort constant folding *)
assert false
| Interpreter.Step (lazy_str, _, _, _) ->
run (Interpreter.eval_frame frame)
| Interpreter.Break frame ->
run (Interpreter.eval_frame frame)
| Interpreter.Effect_request (out, st, stack, Interpreter.Read_reg (reg, cont)) ->
(* return a dummy value to read_reg requests which we handle above
if an expression finally evals to it, but the interpreter
will fail if it tries to actually use. See value.ml *)
run (cont (Value.V_attempted_read reg) st)
| Interpreter.Effect_request _ ->
assert false (* effectful, raise exception to abort constant folding *)
(** This rewriting pass looks for function applications (E_app)
expressions where every argument is a literal. It passes these
expressions to the OCaml interpreter in interpreter.ml, and
reconstructs the values returned back into expressions which are
then re-typechecked and re-inserted back into the AST.
We don't use the effect system to decide if expressions are safe to
evaluate, because this ignores I/O, and would force us to ignore
functions that maybe throw exceptions internally but as called are
totally safe. Instead any exceptions during evaluation are caught,
and the original expression is kept. Some causes of this could be:
- Function tries to read/write register.
- Calls an unsafe primop.
- Throws an exception that isn't caught.
*)
let initial_state ast env =
Interpreter.initial_state ~registers:false ast env safe_primops
type fixed = {
registers: tannot exp Bindings.t;
fields: tannot exp Bindings.t Bindings.t;
}
let no_fixed = {
registers = Bindings.empty;
fields = Bindings.empty;
}
let rw_exp fixed target ok not_ok istate =
let evaluate e_aux annot =
let initial_monad = Interpreter.return (E_aux (e_aux, annot)) in
try
begin
let v = run (Interpreter.Step (lazy "", istate, initial_monad, [])) in
let exp = exp_of_value v in
try (ok (); Type_check.check_exp (env_of_annot annot) exp (typ_of_annot annot)) with
| Type_error (env, l, err) ->
(* A type error here would be unexpected, so don't ignore it! *)
Reporting.warn "" l
("Type error when folding constants in "
^ string_of_exp (E_aux (e_aux, annot))
^ "\n" ^ Type_error.string_of_type_error err);
not_ok ();
E_aux (e_aux, annot)
end
with
(* Otherwise if anything goes wrong when trying to constant
fold, just continue without optimising. *)
| _ -> E_aux (e_aux, annot)
in
let rw_funcall e_aux annot =
match e_aux with
| E_app (id, args) when fold_to_unit id ->
ok (); E_aux (E_lit (L_aux (L_unit, fst annot)), annot)
| E_id id ->
begin match Bindings.find_opt id fixed.registers with
| Some exp ->
ok (); exp
| None ->
E_aux (e_aux, annot)
end
| E_field (E_aux (E_id id, _), field) ->
begin match Bindings.find_opt id fixed.fields with
| Some fields ->
begin match Bindings.find_opt field fields with
| Some exp ->
ok (); exp
| None ->
E_aux (e_aux, annot)
end
| None ->
E_aux (e_aux, annot)
end
(* Short-circuit boolean operators with constants *)
| E_app (id, [(E_aux (E_lit (L_aux (L_false, _)), _) as false_exp); _]) when string_of_id id = "and_bool" ->
ok (); false_exp
| E_app (id, [(E_aux (E_lit (L_aux (L_true, _)), _) as true_exp); _]) when string_of_id id = "or_bool" ->
ok (); true_exp
| E_app (id, args) when List.for_all is_constant args ->
let env = env_of_annot annot in
(* We want to fold all primitive operations, but avoid folding
non-primitives that are defined in target-specific way. *)
let is_primop =
Env.is_extern id env "interpreter" && StringMap.mem (Env.get_extern id env "interpreter") safe_primops
in
if not (Env.is_extern id env target) || is_primop then
evaluate e_aux annot
else
E_aux (e_aux, annot)
| E_cast (typ, (E_aux (E_lit _, _) as lit)) -> ok (); lit
| E_field (exp, id) when is_constant exp ->
evaluate e_aux annot
| E_if (E_aux (E_lit (L_aux (L_true, _)), _), then_exp, _) -> ok (); then_exp
| E_if (E_aux (E_lit (L_aux (L_false, _)), _), _, else_exp) -> ok (); else_exp
(* We only propagate lets in the simple case where we know that
the id will have the inferred type of the argument. For more
complex let bindings trying to propagate them may result in
type errors due to how type variables are bound by let bindings
*)
| E_let (LB_aux (LB_val (P_aux (P_id id, _), bind), _), exp) when is_constant bind ->
ok ();
subst id bind exp
| _ -> E_aux (e_aux, annot)
in
fold_exp { id_exp_alg with e_aux = (fun (e_aux, annot) -> rw_funcall e_aux annot)}
let rewrite_exp_once target = rw_exp no_fixed target (fun _ -> ()) (fun _ -> ())
let rec rewrite_constant_function_calls' fixed target ast =
let rewrite_count = ref 0 in
let ok () = incr rewrite_count in
let not_ok () = decr rewrite_count in
let istate = initial_state ast Type_check.initial_env in
let rw_defs = {
rewriters_base with
rewrite_exp = (fun _ -> rw_exp fixed target ok not_ok istate)
} in
let ast = rewrite_ast_base rw_defs ast in
(* We keep iterating until we have no more re-writes to do *)
if !rewrite_count > 0
then rewrite_constant_function_calls' fixed target ast
else ast
let rewrite_constant_function_calls fixed target ast =
if !optimize_constant_fold then
rewrite_constant_function_calls' fixed target ast
else
ast
type to_constant =
| Register of id * typ * tannot exp
| Register_field of id * id * typ * tannot exp
let () =
let open Interactive in
let open Printf in
let update_fixed fixed = function
| Register (id, _, exp) ->
{ fixed with registers = Bindings.add id exp fixed.registers }
| Register_field (id, field, _, exp) ->
let prev_fields = match Bindings.find_opt id fixed.fields with Some f -> f | None -> Bindings.empty in
let updated_fields = Bindings.add field exp prev_fields in
{ fixed with fields = Bindings.add id updated_fields fixed.fields }
in
ArgString ("target", fun target -> ArgString ("assignments", fun assignments -> Action (fun () ->
let assignments = Str.split (Str.regexp " +") assignments in
let assignments =
List.map (fun assignment ->
match String.split_on_char '=' assignment with
| [reg; value] ->
begin match String.split_on_char '.' reg with
| [reg; field] ->
let reg = mk_id reg in
let field = mk_id field in
begin match Env.lookup_id reg !env with
| Register (_, _, Typ_aux (Typ_id rec_id, _)) ->
let (_, fields) = Env.get_record rec_id !env in
let typ = match List.find_opt (fun (typ, id) -> Id.compare id field = 0) fields with
| Some (typ, _) -> typ
| None -> failwith (sprintf "Register %s does not have a field %s" (string_of_id reg) (string_of_id field))
in
let exp = Initial_check.exp_of_string value in
let exp = check_exp !env exp typ in
Register_field (reg, field, typ, exp)
| _ ->
failwith (sprintf "Register %s is not defined as a record in the current environment" (string_of_id reg))
end
| _ ->
let reg = mk_id reg in
begin match Env.lookup_id reg !env with
| Register (_, _, typ) ->
let exp = Initial_check.exp_of_string value in
let exp = check_exp !env exp typ in
Register (reg, typ, exp)
| _ ->
failwith (sprintf "Register %s is not defined in the current environment" (string_of_id reg))
end
end
| _ -> failwith (sprintf "Could not parse '%s' as an assignment <register>=<value>" assignment)
) assignments in
let assignments = List.fold_left update_fixed no_fixed assignments in
ast := rewrite_constant_function_calls' assignments target !ast)))
|> register_command
~name:"fix_registers"
~help:"Fix the value of specified registers, specified as a \
list of <register>=<value>. Can also fix a specific \
register field as <register>.<field>=<value>. Note that \
this is not used to set registers normally, but instead \
fixes their value such that the constant folding rewrite \
(which is subsequently invoked by this command) will \
replace register reads with the fixed values. Requires a \
target (c, lem, etc.), as the set of functions that can \
be constant folded can differ on a per-target basis."
|