blob: 2f6f52b84e149545a276009d7797a83f0dcedc06 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
(*Generated by Lem from function.lem.*)
open HolKernel Parse boolLib bossLib;
open lem_boolTheory lem_basic_classesTheory;
val _ = numLib.prefer_num();
val _ = new_theory "lem_function"
(******************************************************************************)
(* A library for common operations on functions *)
(******************************************************************************)
(*open import Bool Basic_classes*)
(*open import {coq} `Program.Basics`*)
(* ----------------------- *)
(* identity function *)
(* ----------------------- *)
(*val id : forall 'a. 'a -> 'a*)
(*let id x= x*)
(* ----------------------- *)
(* constant function *)
(* ----------------------- *)
(*val const : forall 'a 'b. 'a -> 'b -> 'a*)
(* ----------------------- *)
(* function composition *)
(* ----------------------- *)
(*val comb : forall 'a 'b 'c. ('b -> 'c) -> ('a -> 'b) -> ('a -> 'c)*)
(*let comb f g= (fun x -> f (g x))*)
(* ----------------------- *)
(* function application *)
(* ----------------------- *)
(*val $ [apply] : forall 'a 'b. ('a -> 'b) -> ('a -> 'b)*)
(*let $ f= (fun x -> f x)*)
(*val $> [rev_apply] : forall 'a 'b. 'a -> ('a -> 'b) -> 'b*)
(*let $> x f= f x*)
(* ----------------------- *)
(* flipping argument order *)
(* ----------------------- *)
(*val flip : forall 'a 'b 'c. ('a -> 'b -> 'c) -> ('b -> 'a -> 'c)*)
(*let flip f= (fun x y -> f y x)*)
(* currying / uncurrying *)
(*val curry : forall 'a 'b 'c. (('a * 'b) -> 'c) -> 'a -> 'b -> 'c*)
val _ = Define `
((curry:('a#'b -> 'c) -> 'a -> 'b -> 'c) f= (\ a b . f (a, b)))`;
(*val uncurry : forall 'a 'b 'c. ('a -> 'b -> 'c) -> ('a * 'b -> 'c)*)
val _ = Define `
((uncurry:('a -> 'b -> 'c) -> 'a#'b -> 'c) f (a,b)= (f a b))`;
val _ = export_theory()
|