summaryrefslogtreecommitdiff
path: root/lib/coq/Prompt_monad.v
blob: ddd40cd090e8301a0443fd6fc61803678686fdf5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
Require Import String.
(*Require Import Sail_impl_base*)
Require Import Sail.Instr_kinds.
Require Import Sail.Values.
Require bbv.Word.
Import ListNotations.
Local Open Scope Z.

Definition register_name := string.
Definition address := list bitU.

Inductive monad regval a e :=
  | Done : a -> monad regval a e
  (* Read a number of bytes from memory, returned in little endian order,
     with or without a tag.  The first nat specifies the address, the second
     the number of bytes. *)
  | Read_mem : read_kind -> nat -> nat -> (list memory_byte -> monad regval a e) -> monad regval a e
  | Read_memt : read_kind -> nat -> nat -> ((list memory_byte * bitU) -> monad regval a e) -> monad regval a e
  (* Tell the system a write is imminent, at the given address and with the
     given size. *)
  | Write_ea : write_kind -> nat -> nat -> monad regval a e -> monad regval a e
  (* Request the result : store-exclusive *)
  | Excl_res : (bool -> monad regval a e) -> monad regval a e
  (* Request to write a memory value of the given size at the given address,
     with or without a tag. *)
  | Write_mem : write_kind -> nat -> nat -> list memory_byte -> (bool -> monad regval a e) -> monad regval a e
  | Write_memt : write_kind -> nat -> nat -> list memory_byte -> bitU -> (bool -> monad regval a e) -> monad regval a e
  (* Tell the system to dynamically recalculate dependency footprint *)
  | Footprint : monad regval a e -> monad regval a e
  (* Request a memory barrier *)
  | Barrier : barrier_kind -> monad regval a e -> monad regval a e
  (* Request to read register, will track dependency when mode.track_values *)
  | Read_reg : register_name -> (regval -> monad regval a e) -> monad regval a e
  (* Request to write register *)
  | Write_reg : register_name -> regval -> monad regval a e -> monad regval a e
  (* Request to choose a Boolean, e.g. to resolve an undefined bit. The string
     argument may be used to provide information to the system about what the
     Boolean is going to be used for. *)
  | Choose : string -> (bool -> monad regval a e) -> monad regval a e
  (* Print debugging or tracing information *)
  | Print : string -> monad regval a e -> monad regval a e
  (*Result of a failed assert with possible error message to report*)
  | Fail : string -> monad regval a e
  (* Exception of type e *)
  | Exception : e -> monad regval a e.

Arguments Done [_ _ _].
Arguments Read_mem [_ _ _].
Arguments Read_memt [_ _ _].
Arguments Write_ea [_ _ _].
Arguments Excl_res [_ _ _].
Arguments Write_mem [_ _ _].
Arguments Write_memt [_ _ _].
Arguments Footprint [_ _ _].
Arguments Barrier [_ _ _].
Arguments Read_reg [_ _ _].
Arguments Write_reg [_ _ _].
Arguments Choose [_ _ _].
Arguments Print [_ _ _].
Arguments Fail [_ _ _].
Arguments Exception [_ _ _].

Inductive event {regval} :=
  | E_read_mem : read_kind -> nat -> nat -> list memory_byte -> event
  | E_read_memt : read_kind -> nat -> nat -> (list memory_byte * bitU) -> event
  | E_write_mem : write_kind -> nat -> nat -> list memory_byte -> bool -> event
  | E_write_memt : write_kind -> nat -> nat -> list memory_byte -> bitU -> bool -> event
  | E_write_ea : write_kind -> nat -> nat -> event
  | E_excl_res : bool -> event
  | E_barrier : barrier_kind -> event
  | E_footprint : event
  | E_read_reg : register_name -> regval -> event
  | E_write_reg : register_name -> regval -> event
  | E_choose : string -> bool -> event
  | E_print : string -> event.
Arguments event : clear implicits.

Definition trace regval := list (event regval).

(*val return : forall rv a e. a -> monad rv a e*)
Definition returnm {rv A E} (a : A) : monad rv A E := Done a.

(*val bind : forall rv a b e. monad rv a e -> (a -> monad rv b e) -> monad rv b e*)
Fixpoint bind {rv A B E} (m : monad rv A E) (f : A -> monad rv B E) := match m with
  | Done a => f a
  | Read_mem rk a sz k =>       Read_mem rk a sz       (fun v => bind (k v) f)
  | Read_memt rk a sz k =>      Read_memt rk a sz      (fun v => bind (k v) f)
  | Write_mem wk a sz v k =>    Write_mem wk a sz v    (fun v => bind (k v) f)
  | Write_memt wk a sz v t k => Write_memt wk a sz v t (fun v => bind (k v) f)
  | Read_reg descr k =>         Read_reg descr         (fun v => bind (k v) f)
  | Excl_res k =>               Excl_res               (fun v => bind (k v) f)
  | Choose descr k =>           Choose descr           (fun v => bind (k v) f)
  | Write_ea wk a sz k =>       Write_ea wk a sz       (bind k f)
  | Footprint k =>              Footprint              (bind k f)
  | Barrier bk k =>             Barrier bk             (bind k f)
  | Write_reg r v k =>          Write_reg r v          (bind k f)
  | Print msg k =>              Print msg              (bind k f)
  | Fail descr =>               Fail descr
  | Exception e =>              Exception e
end.

Notation "m >>= f" := (bind m f) (at level 50, left associativity).
(*val (>>) : forall rv b e. monad rv unit e -> monad rv b e -> monad rv b e*)
Definition bind0 {rv A E} (m : monad rv unit E) (n : monad rv A E) :=
  m >>= fun (_ : unit) => n.
Notation "m >> n" := (bind0 m n) (at level 50, left associativity).

(*val exit : forall rv a e. unit -> monad rv a e*)
Definition exit {rv A E} (_ : unit) : monad rv A E := Fail "exit".

(*val choose_bool : forall 'rv 'e. string -> monad 'rv bool 'e*)
Definition choose_bool {rv E} descr : monad rv bool E := Choose descr returnm.

(*val undefined_bool : forall 'rv 'e. unit -> monad 'rv bool 'e*)
Definition undefined_bool {rv e} (_:unit) : monad rv bool e := choose_bool "undefined_bool".

Definition undefined_unit {rv e} (_:unit) : monad rv unit e := returnm tt.

(*val assert_exp : forall rv e. bool -> string -> monad rv unit e*)
Definition assert_exp {rv E} (exp :bool) msg : monad rv unit E :=
 if exp then Done tt else Fail msg.

Definition assert_exp' {rv E} (exp :bool) msg : monad rv (exp = true) E :=
 if exp return monad rv (exp = true) E then Done eq_refl else Fail msg.
Definition bindH {rv A P E} (m : monad rv P E) (n : monad rv A E) :=
  m >>= fun (H : P) => n.
Notation "m >>> n" := (bindH m n) (at level 50, left associativity).

(*val throw : forall rv a e. e -> monad rv a e*)
Definition throw {rv A E} e : monad rv A E := Exception e.

(*val try_catch : forall rv a e1 e2. monad rv a e1 -> (e1 -> monad rv a e2) -> monad rv a e2*)
Fixpoint try_catch {rv A E1 E2} (m : monad rv A E1) (h : E1 -> monad rv A E2) := match m with
  | Done a =>                   Done a
  | Read_mem rk a sz k =>       Read_mem rk a sz       (fun v => try_catch (k v) h)
  | Read_memt rk a sz k =>      Read_memt rk a sz      (fun v => try_catch (k v) h)
  | Write_mem wk a sz v k =>    Write_mem wk a sz v    (fun v => try_catch (k v) h)
  | Write_memt wk a sz v t k => Write_memt wk a sz v t (fun v => try_catch (k v) h)
  | Read_reg descr k =>         Read_reg descr         (fun v => try_catch (k v) h)
  | Excl_res k =>               Excl_res               (fun v => try_catch (k v) h)
  | Choose descr k =>           Choose descr           (fun v => try_catch (k v) h)
  | Write_ea wk a sz k =>       Write_ea wk a sz       (try_catch k h)
  | Footprint k =>              Footprint              (try_catch k h)
  | Barrier bk k =>             Barrier bk             (try_catch k h)
  | Write_reg r v k =>          Write_reg r v          (try_catch k h)
  | Print msg k =>              Print msg              (try_catch k h)
  | Fail descr =>               Fail descr
  | Exception e =>              h e
end.

(* For early return, we abuse exceptions by throwing and catching
   the return value. The exception type is "either r e", where "inr e"
   represents a proper exception and "inl r" an early return : value "r". *)
Definition monadR rv a r e := monad rv a (sum r e).

(*val early_return : forall rv a r e. r -> monadR rv a r e*)
Definition early_return {rv A R E} (r : R) : monadR rv A R E := throw (inl r).

(*val catch_early_return : forall rv a e. monadR rv a a e -> monad rv a e*)
Definition catch_early_return {rv A E} (m : monadR rv A A E) :=
  try_catch m
    (fun r => match r with
      | inl a => returnm a
      | inr e => throw e
     end).

(* Lift to monad with early return by wrapping exceptions *)
(*val liftR : forall rv a r e. monad rv a e -> monadR rv a r e*)
Definition liftR {rv A R E} (m : monad rv A E) : monadR rv A R E :=
 try_catch m (fun e => throw (inr e)).

(* Catch exceptions in the presence : early returns *)
(*val try_catchR : forall rv a r e1 e2. monadR rv a r e1 -> (e1 -> monadR rv a r e2) ->  monadR rv a r e2*)
Definition try_catchR {rv A R E1 E2} (m : monadR rv A R E1) (h : E1 -> monadR rv A R E2) :=
  try_catch m
    (fun r => match r with
      | inl r => throw (inl r)
      | inr e => h e
     end).

(*val maybe_fail : forall 'rv 'a 'e. string -> maybe 'a -> monad 'rv 'a 'e*)
Definition maybe_fail {rv A E} msg (x : option A) : monad rv A E :=
match x with
  | Some a => returnm a
  | None => Fail msg
end.

(*val read_memt_bytes : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv (list memory_byte * bitU) 'e*)
Definition read_memt_bytes {rv A E} rk (addr : mword A) sz : monad rv (list memory_byte * bitU) E :=
  Read_memt rk (Word.wordToNat (get_word addr)) (Z.to_nat sz) returnm.

(*val read_memt : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv ('b * bitU) 'e*)
Definition read_memt {rv A B E} `{ArithFact (B >=? 0)} rk (addr : mword A) sz : monad rv (mword B * bitU) E :=
  bind
    (read_memt_bytes rk addr sz)
    (fun '(bytes, tag) =>
       match of_bits (bits_of_mem_bytes bytes) with
       | Some v => returnm (v, tag)
       | None => Fail "bits_of_mem_bytes"
       end).

(*val read_mem_bytes : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv (list memory_byte) 'e*)
Definition read_mem_bytes {rv A E} rk (addr : mword A) sz : monad rv (list memory_byte) E :=
  Read_mem rk (Word.wordToNat (get_word addr)) (Z.to_nat sz) returnm.

(*val read_mem : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monad 'rv 'b 'e*)
Definition read_mem {rv A B E} `{ArithFact (B >=? 0)} rk (addrsz : Z) (addr : mword A) sz : monad rv (mword B) E :=
  bind
    (read_mem_bytes rk addr sz)
    (fun bytes =>
       maybe_fail "bits_of_mem_bytes" (of_bits (bits_of_mem_bytes bytes))).

(*val excl_result : forall rv e. unit -> monad rv bool e*)
Definition excl_result {rv e} (_:unit) : monad rv bool e :=
  let k successful := (returnm successful) in
  Excl_res k.

Definition write_mem_ea {rv a E} wk (addrsz : Z) (addr: mword a) sz : monad rv unit E :=
 Write_ea wk (Word.wordToNat (get_word addr)) (Z.to_nat sz) (Done tt).

(*val write_mem : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b =>
  write_kind -> integer -> 'a -> integer -> 'b -> monad 'rv bool 'e*)
Definition write_mem {rv a b E} wk (addrsz : Z) (addr : mword a) sz (v : mword b) : monad rv bool E :=
  match (mem_bytes_of_bits v, Word.wordToNat (get_word addr)) with
    | (Some v, addr) =>
       Write_mem wk addr (Z.to_nat sz) v returnm
    | _ => Fail "write_mem"
  end.

(*val write_memt : forall 'rv 'a 'b 'e. Bitvector 'a, Bitvector 'b =>
  write_kind -> 'a -> integer -> 'b -> bitU -> monad 'rv bool 'e*)
Definition write_memt {rv a b E} wk (addr : mword a) sz (v : mword b) tag : monad rv bool E :=
  match (mem_bytes_of_bits v, Word.wordToNat (get_word addr)) with
    | (Some v, addr) =>
       Write_memt wk addr (Z.to_nat sz) v tag returnm
    | _ => Fail "write_mem"
  end.

Definition read_reg {s rv a e} (reg : register_ref s rv a) : monad rv a e :=
  let k v :=
    match reg.(of_regval) v with
      | Some v => Done v
      | None => Fail "read_reg: unrecognised value"
    end
  in
  Read_reg reg.(name) k.

(* TODO
val read_reg_range : forall 's 'r 'rv 'a 'e. Bitvector 'a => register_ref 's 'rv 'r -> integer -> integer -> monad 'rv 'a 'e
let read_reg_range reg i j =
  read_reg_aux of_bits (external_reg_slice reg (nat_of_int i,nat_of_int j))

let read_reg_bit reg i =
  read_reg_aux (fun v -> v) (external_reg_slice reg (nat_of_int i,nat_of_int i)) >>= fun v ->
  return (extract_only_element v)

let read_reg_field reg regfield =
  read_reg_aux (external_reg_field_whole reg regfield)

let read_reg_bitfield reg regfield =
  read_reg_aux (external_reg_field_whole reg regfield) >>= fun v ->
  return (extract_only_element v)*)

Definition reg_deref {s rv a e} := @read_reg s rv a e.

(*Parameter write_reg : forall {s rv a e}, register_ref s rv a -> a -> monad rv unit e.*)
Definition write_reg {s rv a e} (reg : register_ref s rv a) (v : a) : monad rv unit e :=
 Write_reg reg.(name) (reg.(regval_of) v) (Done tt).

(* TODO
let write_reg reg v =
  write_reg_aux (external_reg_whole reg) v
let write_reg_range reg i j v =
  write_reg_aux (external_reg_slice reg (nat_of_int i,nat_of_int j)) v
let write_reg_pos reg i v =
  let iN = nat_of_int i in
  write_reg_aux (external_reg_slice reg (iN,iN)) [v]
let write_reg_bit = write_reg_pos
let write_reg_field reg regfield v =
  write_reg_aux (external_reg_field_whole reg regfield.field_name) v
let write_reg_field_bit reg regfield bit =
  write_reg_aux (external_reg_field_whole reg regfield.field_name)
                (Vector [bit] 0 (is_inc_of_reg reg))
let write_reg_field_range reg regfield i j v =
  write_reg_aux (external_reg_field_slice reg regfield.field_name (nat_of_int i,nat_of_int j)) v
let write_reg_field_pos reg regfield i v =
  write_reg_field_range reg regfield i i [v]
let write_reg_field_bit = write_reg_field_pos*)

(*val barrier : forall rv e. barrier_kind -> monad rv unit e*)
Definition barrier {rv e} bk : monad rv unit e := Barrier bk (Done tt).

(*val footprint : forall rv e. unit -> monad rv unit e*)
Definition footprint {rv e} (_ : unit) : monad rv unit e := Footprint (Done tt).

(* Event traces *)

Local Open Scope bool_scope.

(*val emitEvent : forall 'regval 'a 'e. Eq 'regval => monad 'regval 'a 'e -> event 'regval -> maybe (monad 'regval 'a 'e)*)
Definition emitEvent {Regval A E} `{forall (x y : Regval), Decidable (x = y)} (m : monad Regval A E) (e : event Regval) : option (monad Regval A E) :=
 match (e, m) with
  | (E_read_mem rk a sz v, Read_mem rk' a' sz' k) =>
     if read_kind_beq rk' rk && Nat.eqb a' a && Nat.eqb sz' sz then Some (k v) else None
  | (E_read_memt rk a sz vt, Read_memt rk' a' sz' k) =>
     if read_kind_beq rk' rk && Nat.eqb a' a && Nat.eqb sz' sz then Some (k vt) else None
  | (E_write_mem wk a sz v r, Write_mem wk' a' sz' v' k) =>
     if write_kind_beq wk' wk && Nat.eqb a' a && Nat.eqb sz' sz && generic_eq v' v then Some (k r) else None
  | (E_write_memt wk a sz v tag r, Write_memt wk' a' sz' v' tag' k) =>
     if write_kind_beq wk' wk && Nat.eqb a' a && Nat.eqb sz' sz && generic_eq v' v && generic_eq tag' tag then Some (k r) else None
  | (E_read_reg r v, Read_reg r' k) =>
     if generic_eq r' r then Some (k v) else None
  | (E_write_reg r v, Write_reg r' v' k) =>
     if generic_eq r' r && generic_eq v' v then Some k else None
  | (E_write_ea wk a sz, Write_ea wk' a' sz' k) =>
     if write_kind_beq wk' wk && Nat.eqb a' a && Nat.eqb sz' sz then Some k else None
  | (E_barrier bk, Barrier bk' k) =>
     if barrier_kind_beq bk' bk then Some k else None
  | (E_print m, Print m' k) =>
     if generic_eq m' m then Some k else None
  | (E_excl_res v, Excl_res k) => Some (k v)
  | (E_choose descr v, Choose descr' k) => if generic_eq descr' descr then Some (k v) else None
  | (E_footprint, Footprint k) => Some k
  | _ => None
end.

Definition option_bind {A B : Type} (a : option A) (f : A -> option B) : option B :=
match a with
| Some x => f x
| None => None
end.

(*val runTrace : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> maybe (monad 'regval 'a 'e)*)
Fixpoint runTrace {Regval A E} `{forall (x y : Regval), Decidable (x = y)} (t : trace Regval) (m : monad Regval A E) : option (monad Regval A E) :=
match t with
  | [] => Some m
  | e :: t' => option_bind (emitEvent m e) (runTrace t')
end.

(*val final : forall 'regval 'a 'e. monad 'regval 'a 'e -> bool*)
Definition final {Regval A E} (m : monad Regval A E) : bool :=
match m with
  | Done _ => true
  | Fail _ => true
  | Exception _ => true
  | _ => false
end.

(*val hasTrace : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> bool*)
Definition hasTrace {Regval A E} `{forall (x y : Regval), Decidable (x = y)} (t : trace Regval) (m : monad Regval A E) : bool :=
match runTrace t m with
  | Some m => final m
  | None => false
end.

(*val hasException : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> bool*)
Definition hasException {Regval A E} `{forall (x y : Regval), Decidable (x = y)} (t : trace Regval) (m : monad Regval A E) :=
match runTrace t m with
  | Some (Exception _) => true
  | _ => false
end.

(*val hasFailure : forall 'regval 'a 'e. Eq 'regval => trace 'regval -> monad 'regval 'a 'e -> bool*)
Definition hasFailure {Regval A E} `{forall (x y : Regval), Decidable (x = y)} (t : trace Regval) (m : monad Regval A E) :=
match runTrace t m with
  | Some (Fail _) => true
  | _ => false
end.