aboutsummaryrefslogtreecommitdiff
path: root/hol-light/TacticRecording/examples3.ml
diff options
context:
space:
mode:
Diffstat (limited to 'hol-light/TacticRecording/examples3.ml')
-rw-r--r--hol-light/TacticRecording/examples3.ml4
1 files changed, 2 insertions, 2 deletions
diff --git a/hol-light/TacticRecording/examples3.ml b/hol-light/TacticRecording/examples3.ml
index 62a2ef70..f78ace3f 100644
--- a/hol-light/TacticRecording/examples3.ml
+++ b/hol-light/TacticRecording/examples3.ml
@@ -29,14 +29,14 @@ let LEMMA_1 = prove
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN GEN_TAC THEN
HILABEL "induction"
(INDUCT_TAC THEN
- REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES]) THENL
+ REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; ADD_CLAUSES] THENL
[HILABEL "base case" REAL_ARITH_TAC; ALL_TAC] THEN
HILABEL "step case" (REWRITE_TAC[ARITH_RULE `1 <= SUC n`] THEN
SIMP_TAC[ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; SUB_REFL] THEN
REWRITE_TAC[real_pow; REAL_MUL_RID] THEN
REWRITE_TAC[REAL_ARITH `k * x * x pow n = (k * x pow n) * x`] THEN
ASM_REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC; REAL_ADD_LDISTRIB] THEN
- REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC));;
+ REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_POW_ADD] THEN REAL_ARITH_TAC)));;
let LEMMA_1 = theorem_wrap "LEMMA_1" LEMMA_1;;