aboutsummaryrefslogtreecommitdiff
path: root/etc
diff options
context:
space:
mode:
authorDavid Aspinall2009-08-31 09:25:00 +0000
committerDavid Aspinall2009-08-31 09:25:00 +0000
commit5840048f426dbc1f4bd8888615fef0acccb5f398 (patch)
treee86a4ddd68df3c3272f28988a27cd6427e8e4fef /etc
parent1168630caafce3762b9141c7f54490d5276ce86f (diff)
Tokenize
Diffstat (limited to 'etc')
-rw-r--r--etc/isar/Fibonacci.thy14
1 files changed, 7 insertions, 7 deletions
diff --git a/etc/isar/Fibonacci.thy b/etc/isar/Fibonacci.thy
index d0e31ad2..382683f9 100644
--- a/etc/isar/Fibonacci.thy
+++ b/etc/isar/Fibonacci.thy
@@ -41,7 +41,7 @@ lemma [simp]: "0 < fib (Suc n)"
text {* Alternative induction rule. *}
theorem fib_induct:
- "P 0 ==> P 1 ==> (!!n. P (n + 1) ==> P n ==> P (n + 2)) ==> P (n::nat)"
+ "P 0 \<Longrightarrow> P 1 \<Longrightarrow> (\<And>n. P (n + 1) \<Longrightarrow> P n \<Longrightarrow> P (n + 2)) \<Longrightarrow> P (n::nat)"
by (induct rule: fib.induct) simp_all
@@ -86,7 +86,7 @@ proof (induct n rule: fib_induct)
finally show "?P (n + 2)" .
qed
-lemma gcd_mult_add: "0 < n ==> gcd (n * k + m) n = gcd m n"
+lemma gcd_mult_add: "0 < n \<Longrightarrow> gcd (n * k + m) n = gcd m n"
proof -
assume "0 < n"
then have "gcd (n * k + m) n = gcd n (m mod n)"
@@ -116,12 +116,12 @@ next
qed
lemma gcd_fib_diff:
- assumes "m <= n"
+ assumes "m \<le> n"
shows "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
proof -
have "gcd (fib m) (fib (n - m)) = gcd (fib m) (fib (n - m + m))"
by (simp add: gcd_fib_add)
- also from `m <= n` have "n - m + m = n" by simp
+ also from `m \<le> n` have "n - m + m = n" by simp
finally show ?thesis .
qed
@@ -130,7 +130,7 @@ lemma gcd_fib_mod:
shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
proof (induct n rule: nat_less_induct)
case (1 n) note hyp = this
- show ?case
+ show ?case
proof -
have "n mod m = (if n < m then n else (n - m) mod m)"
by (rule mod_if)
@@ -138,12 +138,12 @@ proof (induct n rule: nat_less_induct)
proof (cases "n < m")
case True then show ?thesis by simp
next
- case False then have "m <= n" by simp
+ case False then have "m \<le> n" by simp
from `0 < m` and False have "n - m < n" by simp
with hyp have "gcd (fib m) (fib ((n - m) mod m))
= gcd (fib m) (fib (n - m))" by simp
also have "... = gcd (fib m) (fib n)"
- using `m <= n` by (rule gcd_fib_diff)
+ using `m \<le> n` by (rule gcd_fib_diff)
finally have "gcd (fib m) (fib ((n - m) mod m)) =
gcd (fib m) (fib n)" .
with False show ?thesis by simp