aboutsummaryrefslogtreecommitdiff
path: root/coq/example.v
diff options
context:
space:
mode:
authorDavid Aspinall1999-08-23 17:39:53 +0000
committerDavid Aspinall1999-08-23 17:39:53 +0000
commit8720e6e72d8ca0417bff200a851b31710be6fff4 (patch)
tree7adf45a49bc50cd760996dbb3e6d1c9edefe349e /coq/example.v
parent8790147dedece34b7424ab272e3b6786b8af043b (diff)
Updates suggested by Markus and Patrick for Coq 6.3.
Diffstat (limited to 'coq/example.v')
-rw-r--r--coq/example.v22
1 files changed, 11 insertions, 11 deletions
diff --git a/coq/example.v b/coq/example.v
index d652daab..6101f88d 100644
--- a/coq/example.v
+++ b/coq/example.v
@@ -50,20 +50,20 @@ Proof.
Intro l ; Elim l ; Simpl ; Auto.
Induction 1; Auto.
Qed.
-Hint app_nil_end.
+Hints Resolve app_nil_end.
Lemma app_ass : (l,m,n : list)(app (app l m) n)=(app l (app m n)).
Proof.
Intros l m n ; Elim l ; Simpl ; Auto.
Induction 1; Auto.
Qed.
-Hint app_ass.
+Hints Resolve app_ass.
Lemma ass_app : (l,m,n : list)(app l (app m n))=(app (app l m) n).
Proof.
Auto.
Qed.
-Hint ass_app.
+Hints Resolve ass_app.
(*
Definition tail := [l:list]Case l of
@@ -142,7 +142,7 @@ Proof.
Qed.
End length_order.
-Hint lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons.
+Hints Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons.
Fixpoint In [a:A;l:list] : Prop :=
(Case l of (* nil *) False
@@ -152,13 +152,13 @@ Lemma in_eq : (a:A)(l:list)(In a (cons a l)).
Proof.
Simpl ; Auto.
Qed.
-Hint in_eq.
+Hints Resolve in_eq.
Lemma in_cons : (a,b:A)(l:list)(In b l)->(In b (cons a l)).
Proof.
Simpl ; Auto.
Qed.
-Hint in_cons.
+Hints Resolve in_cons.
Lemma in_app_or : (l,m:list)(a:A)(In a (app l m))->((In a l)\/(In a m)).
Proof.
@@ -211,17 +211,17 @@ Proof.
H2 : (<A>H=a)\/(In a y) *)
Elim H2 ; Auto.
Qed.
-Hint in_or_app.
+Hints Resolve in_or_app.
Definition incl := [l,m:list](a:A)(In a l)->(In a m).
-Hint Unfold incl.
+Hints Unfold incl.
Lemma incl_refl : (l:list)(incl l l).
Proof.
Auto.
Qed.
-Hint incl_refl.
+Hints Resolve incl_refl.
Lemma incl_tl : (a:A)(l,m:list)(incl l m)->(incl l (cons a m)).
Proof.
@@ -268,7 +268,7 @@ Proof.
(* 2 (In a0 l)->(In a0 m) *)
Auto.
Qed.
-Hint incl_cons.
+Hints Resolve incl_cons.
Lemma incl_app : (l,m,n:list)(incl l n)->(incl m n)->(incl (app l m) n).
Proof.
@@ -284,7 +284,7 @@ Proof.
l : list *)
Elim (in_app_or l m a) ; Auto.
Qed.
-Hint incl_app.
+Hints Resolve incl_app.
(* Id: List.v,v 1.4 1996/10/07 07:50:36 ccornes Exp *)