diff options
| author | David Aspinall | 1999-08-23 17:39:53 +0000 |
|---|---|---|
| committer | David Aspinall | 1999-08-23 17:39:53 +0000 |
| commit | 8720e6e72d8ca0417bff200a851b31710be6fff4 (patch) | |
| tree | 7adf45a49bc50cd760996dbb3e6d1c9edefe349e /coq/example.v | |
| parent | 8790147dedece34b7424ab272e3b6786b8af043b (diff) | |
Updates suggested by Markus and Patrick for Coq 6.3.
Diffstat (limited to 'coq/example.v')
| -rw-r--r-- | coq/example.v | 22 |
1 files changed, 11 insertions, 11 deletions
diff --git a/coq/example.v b/coq/example.v index d652daab..6101f88d 100644 --- a/coq/example.v +++ b/coq/example.v @@ -50,20 +50,20 @@ Proof. Intro l ; Elim l ; Simpl ; Auto. Induction 1; Auto. Qed. -Hint app_nil_end. +Hints Resolve app_nil_end. Lemma app_ass : (l,m,n : list)(app (app l m) n)=(app l (app m n)). Proof. Intros l m n ; Elim l ; Simpl ; Auto. Induction 1; Auto. Qed. -Hint app_ass. +Hints Resolve app_ass. Lemma ass_app : (l,m,n : list)(app l (app m n))=(app (app l m) n). Proof. Auto. Qed. -Hint ass_app. +Hints Resolve ass_app. (* Definition tail := [l:list]Case l of @@ -142,7 +142,7 @@ Proof. Qed. End length_order. -Hint lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons. +Hints Resolve lel_refl lel_cons_cons lel_cons lel_nil lel_nil nil_cons. Fixpoint In [a:A;l:list] : Prop := (Case l of (* nil *) False @@ -152,13 +152,13 @@ Lemma in_eq : (a:A)(l:list)(In a (cons a l)). Proof. Simpl ; Auto. Qed. -Hint in_eq. +Hints Resolve in_eq. Lemma in_cons : (a,b:A)(l:list)(In b l)->(In b (cons a l)). Proof. Simpl ; Auto. Qed. -Hint in_cons. +Hints Resolve in_cons. Lemma in_app_or : (l,m:list)(a:A)(In a (app l m))->((In a l)\/(In a m)). Proof. @@ -211,17 +211,17 @@ Proof. H2 : (<A>H=a)\/(In a y) *) Elim H2 ; Auto. Qed. -Hint in_or_app. +Hints Resolve in_or_app. Definition incl := [l,m:list](a:A)(In a l)->(In a m). -Hint Unfold incl. +Hints Unfold incl. Lemma incl_refl : (l:list)(incl l l). Proof. Auto. Qed. -Hint incl_refl. +Hints Resolve incl_refl. Lemma incl_tl : (a:A)(l,m:list)(incl l m)->(incl l (cons a m)). Proof. @@ -268,7 +268,7 @@ Proof. (* 2 (In a0 l)->(In a0 m) *) Auto. Qed. -Hint incl_cons. +Hints Resolve incl_cons. Lemma incl_app : (l,m,n:list)(incl l n)->(incl m n)->(incl (app l m) n). Proof. @@ -284,7 +284,7 @@ Proof. l : list *) Elim (in_app_or l m a) ; Auto. Qed. -Hint incl_app. +Hints Resolve incl_app. (* Id: List.v,v 1.4 1996/10/07 07:50:36 ccornes Exp *) |
