summaryrefslogtreecommitdiff
path: root/No5.v
blob: c9b2376d280415c76dda10fe016639ff436b5def (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
Require Import Unicode.Utf8.

Module No1.
Import Unicode.Utf8.
  (*We first give the axioms of Principia
for the propositional calculus in *1.*)

Axiom MP1_1 :   P Q : Prop,
  (P  Q)  P  Q. (*Modus ponens*)

  (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*)

Axiom Taut1_2 :  P : Prop, 
  P  P P. (*Tautology*)

Axiom Add1_3 :  P Q : Prop, 
  Q  P  Q. (*Addition*)

Axiom Perm1_4 :  P Q : Prop, 
  P  Q  Q  P. (*Permutation*)

Axiom Assoc1_5 :  P Q R : Prop, 
  P  (Q  R)  Q  (P  R).

Axiom Sum1_6:  P Q R : Prop, 
  (Q  R)  (P  Q  P  R). (*These are all the propositional axioms of Principia Mathematica.*)

Axiom Impl1_01 :  P Q : Prop, 
  (P  Q) = (~P  Q). (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. So we will use this axiom to switch between disjunction and implication.*)

End No1.

Module No2.
Import No1.

(*We proceed to the deductions of of Principia.*)

Theorem Abs2_01 :  P : Prop,
  (P  ~P)  ~P.
Proof. intros P.
  specialize Taut1_2 with (~P).
  replace (~P  ~P) with (P  ~P).
  apply MP1_1.
  apply Impl1_01.
Qed.

Theorem n2_02 :  P Q : Prop, 
  Q  (P  Q).
Proof. intros P Q.
  specialize Add1_3 with (~P) Q.
  replace (~P  Q) with (P  Q).
  apply (MP1_1 Q (P  Q)).
  apply Impl1_01.
Qed.

Theorem n2_03 :  P Q : Prop,
  (P  ~Q)  (Q  ~P).
Proof. intros P Q.
  specialize Perm1_4 with (~P) (~Q).
  replace (~P  ~Q) with (P  ~Q). 
  replace (~Q  ~P) with (Q  ~P).
  apply (MP1_1 (P  ~Q) (Q  ~P)).
  apply Impl1_01.
  apply Impl1_01.
Qed.

Theorem Comm2_04 :  P Q R : Prop,
  (P  (Q  R))  (Q  (P  R)).
Proof. intros P Q R.
  specialize Assoc1_5 with (~P) (~Q) R.
  replace (~Q  R) with (Q  R).
  replace (~P  (Q  R)) with (P  (Q  R)).
  replace (~P  R) with (P  R).
  replace (~Q  (P  R)) with (Q  (P  R)).
  apply (MP1_1 (P  Q  R) (Q  P  R)).
  apply Impl1_01. 
  apply Impl1_01.
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem Syll2_05 :  P Q R : Prop,
  (Q  R)  ((P   Q)  (P  R)).
Proof. intros P Q R.
  specialize Sum1_6 with (~P) Q R.
  replace (~P  Q) with (P  Q). 
  replace (~P  R) with (P  R).
  apply (MP1_1 (Q  R) ((P  Q)  (P  R))).
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem Syll2_06 :  P Q R : Prop,
  (P  Q)  ((Q  R)  (P  R)).
Proof. intros P Q R. 
  specialize Comm2_04 with (Q  R) (P  Q) (P  R). 
  intros Comm2_04.
  specialize Syll2_05 with P Q R. 
  intros Syll2_05.
  specialize MP1_1 with ((Q  R)  (P  Q)  P  R) ((P  Q)  ((Q  R)  (P  R))). 
  intros MP1_1.
  apply MP1_1.
  apply Comm2_04.
  apply Syll2_05.
Qed.

Theorem n2_07 :  P : Prop,
  P  (P  P).
Proof. intros P.
  specialize Add1_3 with P P.
  apply MP1_1.
Qed.

Theorem n2_08 :  P : Prop,
  P  P.
Proof. intros P.
  specialize Syll2_05 with P (P  P) P. 
  intros Syll2_05.
  specialize Taut1_2 with P. 
  intros Taut1_2.
  specialize MP1_1 with ((P  P)  P) (P  P). 
  intros MP1_1.
  apply Syll2_05.
  apply Taut1_2.
  apply n2_07.
Qed.

Theorem n2_1 :  P : Prop,
  (~P)  P.
Proof. intros P.
  specialize n2_08 with P. 
  replace (~P  P) with (P  P).
  apply MP1_1.
  apply Impl1_01.
Qed.

Theorem n2_11 :  P : Prop,
  P  ~P.
Proof. intros P.
  specialize Perm1_4 with (~P) P. 
  intros Perm1_4.
  specialize n2_1 with P. 
  intros Abs2_01.
  apply Perm1_4.
  apply n2_1.
Qed.

Theorem n2_12 :  P : Prop,
  P  ~~P.
Proof. intros P.
  specialize n2_11 with (~P). 
  intros n2_11.
  rewrite Impl1_01. 
  assumption.
Qed.

Theorem n2_13 :  P : Prop,
  P  ~~~P.
Proof. intros P.
  specialize Sum1_6 with P (~P) (~~~P). 
  intros Sum1_6.
  specialize n2_12 with (~P). 
  intros n2_12.
  apply Sum1_6.
  apply n2_12.
  apply n2_11.
Qed.

Theorem n2_14 :  P : Prop,
  ~~P  P.
Proof. intros P.
  specialize Perm1_4 with P (~~~P). 
  intros Perm1_4.
  specialize n2_13 with P. 
  intros n2_13.
  rewrite Impl1_01.
  apply Perm1_4.
  apply n2_13.
Qed.

Theorem Trans2_15 :  P Q : Prop,
  (~P  Q)  (~Q  P).
Proof. intros P Q.
  specialize Syll2_05 with (~P) Q (~~Q). 
  intros Syll2_05a.
  specialize n2_12 with Q. 
  intros n2_12.
  specialize n2_03 with (~P) (~Q). 
  intros n2_03.
  specialize Syll2_05 with (~Q) (~~P) P. 
  intros Syll2_05b.
  specialize Syll2_05 with (~P  Q) (~P  ~~Q) (~Q  ~~P). 
  intros Syll2_05c.
  specialize Syll2_05 with (~P  Q) (~Q  ~~P) (~Q  P). 
  intros Syll2_05d.
  apply Syll2_05d.
  apply Syll2_05b.
  apply n2_14.
  apply Syll2_05c.
  apply n2_03.
  apply Syll2_05a.
  apply n2_12.
Qed.

Ltac Syll H1 H2 S :=
  let S := fresh S in match goal with 
    | [ H1 : ?P  ?Q, H2 : ?Q  ?R |- _ ] =>
       assert (S : P  R) by (intros p; apply (H2 (H1 p)))
end. 

Ltac MP H1 H2 :=
  match goal with 
    | [ H1 : ?P  ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
end.

Theorem Trans2_16 :  P Q : Prop,
  (P  Q)  (~Q  ~P).
Proof. intros P Q.
  specialize n2_12 with Q. 
  intros n2_12a.
  specialize Syll2_05 with P Q (~~Q). 
  intros Syll2_05a.
  specialize n2_03 with P (~Q). 
  intros n2_03a.
  MP n2_12a Syll2_05a.
  Syll Syll2_05a n2_03a S.
  apply S.
Qed.

Theorem Trans2_17 :  P Q : Prop,
  (~Q  ~P)  (P  Q).
Proof. intros P Q.
  specialize n2_03 with (~Q) P. 
  intros n2_03a.
  specialize n2_14 with Q. 
  intros n2_14a.
  specialize Syll2_05 with P (~~Q) Q. 
  intros Syll2_05a.
  MP n2_14a Syll2_05a.
  Syll n2_03a Syll2_05a S.
  apply S.
Qed.

Theorem n2_18 :  P : Prop,
  (~P  P)  P.
Proof. intros P.
  specialize n2_12 with P.
  intro n2_12a.
  specialize Syll2_05 with (~P) P (~~P). 
  intro Syll2_05a.
  MP Syll2_05a n2_12.
  specialize Abs2_01 with (~P). 
  intros Abs2_01a.
  Syll Syll2_05a Abs2_01a Sa.
  specialize n2_14 with P. 
  intros n2_14a.
  Syll H n2_14a Sb.
  apply Sb.
Qed.

Theorem n2_2 :  P Q : Prop,
  P  (P  Q).
Proof. intros P Q.
  specialize Add1_3 with Q P. 
  intros Add1_3a.
  specialize Perm1_4 with Q P. 
  intros Perm1_4a.
  Syll Add1_3a Perm1_4a S.
  apply S.
Qed.

Theorem n2_21 :  P Q : Prop,
  ~P  (P  Q).
Proof. intros P Q.
  specialize n2_2 with (~P) Q. 
  intros n2_2a.
  specialize Impl1_01 with P Q. 
  intros Impl1_01a.
  replace (~PQ) with (PQ) in n2_2a.
  apply n2_2a.
Qed.

Theorem n2_24 :  P Q : Prop,
  P  (~P  Q).
Proof. intros P Q.
  specialize n2_21 with P Q. 
  intros n2_21a.
  specialize Comm2_04 with (~P) P Q. 
  intros Comm2_04a.
  apply Comm2_04a.
  apply n2_21a.
Qed.

Theorem n2_25 :  P Q : Prop,
  P  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_1 with (P  Q).
  intros n2_1a.
  specialize Assoc1_5 with (~(PQ)) P Q. 
  intros Assoc1_5a.
  MP Assoc1_5a n2_1a.
  replace (~(PQ)∨Q) with (PQQ) in Assoc1_5a.
  apply Assoc1_5a.
  apply Impl1_01.
Qed.

Theorem n2_26 :  P Q : Prop,
  ~P  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_25 with (~P) Q. 
  intros n2_25a.
  replace (~PQ) with (PQ) in n2_25a.
  apply n2_25a.
  apply Impl1_01.
Qed.

Theorem n2_27 :  P Q : Prop,
  P  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_26 with P Q. 
  intros n2_26a.
  replace (~P∨((PQ)→Q)) with (P→(PQ)→Q) in n2_26a.
  apply n2_26a.
  apply Impl1_01.
Qed.

Theorem n2_3 :  P Q R : Prop,
  (P  (Q  R))  (P  (R  Q)).
Proof. intros P Q R.
  specialize Perm1_4 with Q R. 
  intros Perm1_4a.
  specialize Sum1_6 with P (QR) (RQ). 
  intros Sum1_6a.
  MP Sum1_6a Perm1_4a.
  apply Sum1_6a.
Qed.

Theorem n2_31 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  R).
Proof. intros P Q R.
  specialize n2_3 with P Q R. 
  intros n2_3a.
  specialize Assoc1_5 with P R Q. 
  intros Assoc1_5a.
  specialize Perm1_4 with R (PQ). 
  intros Perm1_4a.
  Syll Assoc1_5a Perm1_4a Sa.
  Syll n2_3a Sa Sb.
  apply Sb.
Qed.

Theorem n2_32 :  P Q R : Prop,
  ((P  Q)  R)  (P  (Q  R)).
Proof. intros P Q R.
  specialize Perm1_4 with (PQ) R. 
  intros Perm1_4a.
  specialize Assoc1_5 with R P Q. 
  intros Assoc1_5a.
  specialize n2_3 with P R Q. 
  intros n2_3a.
  specialize Syll2_06 with ((PQ)∨R) (RPQ) (PRQ). 
  intros Syll2_06a.
  MP Syll2_06a Perm1_4a.
  MP Syll2_06a Assoc1_5a.
  specialize Syll2_06 with ((PQ)∨R) (PRQ) (PQR). 
  intros Syll2_06b.
  MP Syll2_06b Syll2_06a.
  MP Syll2_06b n2_3a.
  apply Syll2_06b.
Qed.

Axiom n2_33 :  P Q R : Prop,
  (PQR)=((PQ)∨R). (*This definition makes the default left association. The default in Coq is right association, so this will need to be applied to underwrite some inferences.*)

Theorem n2_36 :  P Q R : Prop,
  (Q  R)  ((P  Q)  (R  P)).
Proof. intros P Q R.
  specialize Perm1_4 with P R. 
  intros Perm1_4a.
  specialize Syll2_05 with (PQ) (PR) (RP). 
  intros Syll2_05a.
  MP Syll2_05a Perm1_4a.
  specialize Sum1_6 with P Q R. 
  intros Sum1_6a.
  Syll Sum1_6a Syll2_05a S.
  apply S.
Qed.

Theorem n2_37 :  P Q R : Prop,
  (Q  R)  ((Q  P)  (P  R)).
Proof. intros P Q R.
  specialize Perm1_4 with Q P. 
  intros Perm1_4a.
  specialize Syll2_06 with (QP) (PQ) (PR). 
  intros Syll2_06a.
  MP Syll2_05a Perm1_4a.
  specialize Sum1_6 with P Q R. 
  intros Sum1_6a.
  Syll Sum1_6a Syll2_05a S.
  apply S.
Qed.

Theorem n2_38 :  P Q R : Prop,
  (Q  R)  ((Q  P)  (R  P)).
Proof. intros P Q R.
  specialize Perm1_4 with P R. 
  intros Perm1_4a.
  specialize Syll2_05 with (QP) (PR) (RP). 
  intros Syll2_05a.
  MP Syll2_05a Perm1_4a.
  specialize Perm1_4 with Q P. 
  intros Perm1_4b.
  specialize Syll2_06 with (QP) (PQ) (PR). 
  intros Syll2_06a.
  MP Syll2_06a Perm1_4b.
  Syll Syll2_06a Syll2_05a H.
  specialize Sum1_6 with P Q R. 
  intros Sum1_6a.
  Syll Sum1_6a H S.
  apply S.
Qed.

Theorem n2_4 :  P Q : Prop,
  (P  (P  Q))  (P  Q).
Proof. intros P Q.
  specialize n2_31 with P P Q. 
  intros n2_31a.
  specialize Taut1_2 with P. 
  intros Taut1_2a.
  specialize n2_38 with Q (PP) P. 
  intros n2_38a.
  MP n2_38a Taut1_2a.
  Syll n2_31a n2_38a S.
  apply S.
Qed.

Theorem n2_41 :  P Q : Prop,
  (Q  (P  Q))  (P  Q).
Proof. intros P Q.
  specialize Assoc1_5 with Q P Q. 
  intros Assoc1_5a.
  specialize Taut1_2 with Q. 
  intros Taut1_2a.
  specialize Sum1_6 with P (QQ) Q. 
  intros Sum1_6a.
  MP Sum1_6a Taut1_2a.
  Syll Assoc1_5a Sum1_6a S.
  apply S.
Qed.

Theorem n2_42 :  P Q : Prop,
  (~P  (P  Q))  (P  Q).
Proof. intros P Q.
  specialize n2_4 with (~P) Q. 
  intros n2_4a.
  replace (~PQ) with (PQ) in n2_4a.
  apply n2_4a. apply Impl1_01.
Qed.

Theorem n2_43 :  P Q : Prop,
  (P  (P  Q))  (P  Q).
Proof. intros P Q.
  specialize n2_42 with P Q. 
  intros n2_42a.
  replace (~P  (PQ)) with (P→(PQ)) in n2_42a.
  apply n2_42a. 
  apply Impl1_01.
Qed.

Theorem n2_45 :  P Q : Prop,
  ~(P  Q)  ~P.
Proof. intros P Q.
  specialize n2_2 with P Q. 
  intros n2_2a.
  specialize Trans2_16 with P (PQ). 
  intros Trans2_16a.
  MP n2_2 Trans2_16a.
  apply Trans2_16a.
Qed.

Theorem n2_46 :  P Q : Prop,
  ~(P  Q)  ~Q.
Proof. intros P Q.
  specialize Add1_3 with P Q. 
  intros Add1_3a.
  specialize Trans2_16 with Q (PQ). 
  intros Trans2_16a.
  MP Add1_3a Trans2_16a.
  apply Trans2_16a.
Qed.

Theorem n2_47 :  P Q : Prop,
  ~(P  Q)  (~P  Q).
Proof. intros P Q.
  specialize n2_45 with P Q. 
  intros n2_45a.
  specialize n2_2 with (~P) Q. 
  intros n2_2a.
  Syll n2_45a n2_2a S.
  apply S.
Qed.

Theorem n2_48 :  P Q : Prop,
  ~(P  Q)  (P  ~Q).
Proof. intros P Q.
  specialize n2_46 with P Q. 
  intros n2_46a.
  specialize Add1_3 with P (~Q). 
  intros Add1_3a.
  Syll n2_46a Add1_3a S.
  apply S.
Qed.

Theorem n2_49 :  P Q : Prop,
  ~(P  Q)  (~P  ~Q).
Proof. intros P Q.
  specialize n2_45 with P Q. 
  intros n2_45a.
  specialize n2_2 with (~P) (~Q). 
  intros n2_2a.
  Syll n2_45a n2_2a S.
  apply S.
Qed.

Theorem n2_5 :  P Q : Prop,
  ~(P  Q)  (~P  Q).
Proof. intros P Q.
  specialize n2_47 with (~P) Q. 
  intros n2_47a.
  replace (~PQ) with (PQ) in n2_47a.
  replace (~~PQ) with (~PQ) in n2_47a.
  apply n2_47a.
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem n2_51 :  P Q : Prop,
  ~(P  Q)  (P  ~Q).
Proof. intros P Q.
  specialize n2_48 with (~P) Q. 
  intros n2_48a.
  replace (~PQ) with (PQ) in n2_48a.
  replace (~P∨~Q) with (P→~Q) in n2_48a.
  apply n2_48a.
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem n2_52 :  P Q : Prop,
  ~(P  Q)  (~P  ~Q).
Proof. intros P Q.
  specialize n2_49 with (~P) Q. 
  intros n2_49a.
  replace (~PQ) with (PQ) in n2_49a.
  replace (~~P∨~Q) with (~P→~Q) in n2_49a.
  apply n2_49a.
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem n2_521 :  P Q : Prop,
  ~(PQ)→(QP).
Proof. intros P Q.
  specialize n2_52 with P Q. 
  intros n2_52a.
  specialize Trans2_17 with Q P. 
  intros Trans2_17a.
  Syll n2_52a Trans2_17a S.
  apply S.
Qed.

Theorem n2_53 :  P Q : Prop,
  (P  Q)  (~P  Q).
Proof. intros P Q.
  specialize n2_12 with P. 
  intros n2_12a.
  specialize n2_38 with Q P (~~P). 
  intros n2_38a.
  MP n2_38a n2_12a.
  replace (~~PQ) with (~PQ) in n2_38a.
  apply n2_38a. 
  apply Impl1_01.
Qed.

Theorem n2_54 :  P Q : Prop,
  (~P  Q)  (P  Q).
Proof. intros P Q.
  specialize n2_14 with P. 
  intros n2_14a.
  specialize n2_38 with Q (~~P) P. 
  intros n2_38a.
  MP n2_38a n2_12a.
  replace (~~PQ) with (~PQ) in n2_38a.
  apply n2_38a. 
  apply Impl1_01.
Qed.

Theorem n2_55 :  P Q : Prop,
  ~P  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_53 with P Q.
  intros n2_53a.
  specialize Comm2_04 with (PQ) (~P) Q. 
  intros Comm2_04a.
  MP n2_53a Comm2_04a.
  apply Comm2_04a.
Qed.

Theorem n2_56 :  P Q : Prop,
  ~Q  ((P  Q)  P).
Proof. intros P Q.
  specialize n2_55 with Q P. 
  intros n2_55a.
  specialize Perm1_4 with P Q. 
  intros Perm1_4a.
  specialize Syll2_06 with (PQ) (QP) P. 
  intros Syll2_06a.
  MP Syll2_06a Perm1_4a.
  Syll n2_55a Syll2_06a Sa.
  apply Sa.
  Qed.

Theorem n2_6 :  P Q : Prop,
  (~PQ)  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_38 with Q (~P) Q. 
  intros n2_38a.
  specialize Taut1_2 with Q. 
  intros Taut1_2a.
  specialize Syll2_05 with (~PQ) (QQ) Q. 
  intros Syll2_05a.
  MP Syll2_05a Taut1_2a.
  Syll n2_38a Syll2_05a S.
  replace (~PQ) with (PQ) in S.
  apply S.
  apply Impl1_01.
Qed.

Theorem n2_61 :  P Q : Prop,
  (P  Q)  ((~P  Q)  Q).
Proof. intros P Q.
  specialize n2_6 with P Q. 
  intros n2_6a.
  specialize Comm2_04 with (~PQ) (PQ) Q. 
  intros Comm2_04a.
  MP Comm2_04a n2_6a.
  apply Comm2_04a.
Qed.

Theorem n2_62 :  P Q : Prop,
  (P  Q)  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_53 with P Q. 
  intros n2_53a.
  specialize n2_6 with P Q. 
  intros n2_6a.
  Syll n2_53a n2_6a S.
  apply S.
Qed.

Theorem n2_621 :  P Q : Prop,
  (P  Q)  ((P  Q)  Q).
Proof. intros P Q.
  specialize n2_62 with P Q. 
  intros n2_62a.
  specialize Comm2_04 with (P  Q) (PQ) Q. 
  intros Comm2_04a.
  MP Comm2_04a n2_62a. 
  apply Comm2_04a.
Qed.

Theorem n2_63 :  P Q : Prop,
  (P  Q)  ((~P  Q)  Q).
Proof. intros P Q.
  specialize n2_62 with P Q. 
  intros n2_62a.
  replace (~PQ) with (PQ).
  apply n2_62a.
  apply Impl1_01.
Qed.

Theorem n2_64 :  P Q : Prop,
  (P  Q)  ((P  ~Q)  P).
Proof. intros P Q.
  specialize n2_63 with Q P. 
  intros n2_63a.
  specialize Perm1_4 with P Q. 
  intros Perm1_4a.
  Syll n2_63a Perm1_4a Ha.
  specialize Syll2_06 with (P∨~Q) (~QP) P.
  intros Syll2_06a.
  specialize Perm1_4 with P (~Q).
  intros Perm1_4b.
  MP Syll2_05a Perm1_4b.
  Syll Syll2_05a Ha S.
  apply S.
Qed.

Theorem n2_65 :  P Q : Prop,
  (P  Q)  ((P  ~Q)  ~P).
Proof. intros P Q.
  specialize n2_64 with (~P) Q. 
  intros n2_64a.
  replace (~PQ) with (PQ) in n2_64a.
  replace (~P∨~Q) with (P→~Q) in n2_64a.
  apply n2_64a.
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem n2_67 :  P Q : Prop,
  ((P  Q)  Q)  (P  Q).
Proof. intros P Q.
  specialize n2_54 with P Q. 
  intros n2_54a.
  specialize Syll2_06 with (~PQ) (PQ) Q. 
  intros Syll2_06a.
  MP Syll2_06a n2_54a.
  specialize n2_24 with  P Q. 
  intros n2_24.
  specialize Syll2_06 with P (~PQ) Q. 
  intros Syll2_06b.
  MP Syll2_06b n2_24a.
  Syll Syll2_06b Syll2_06a S.
  apply S.
Qed.

Theorem n2_68 :  P Q : Prop,
  ((P  Q)  Q)  (P  Q).
Proof. intros P Q.
  specialize n2_67 with (~P) Q. 
  intros n2_67a.
  replace (~PQ) with (PQ) in n2_67a.
  specialize n2_54 with P Q. 
  intros n2_54a.
  Syll n2_67a n2_54a S.
  apply S.
  apply Impl1_01.
Qed.

Theorem n2_69 :  P Q : Prop,
  ((P  Q)  Q)  ((Q  P)  P).
Proof. intros P Q.
  specialize n2_68 with P Q. 
  intros n2_68a.
  specialize Perm1_4 with P Q. 
  intros Perm1_4a.
  Syll n2_68a Perm1_4a Sa.
  specialize n2_62 with Q P. 
  intros n2_62a.
  Syll Sa n2_62a Sb.
  apply Sb.
Qed.

Theorem n2_73 :  P Q R : Prop,
  (P  Q)  (((P  Q)  R)  (Q  R)).
Proof. intros P Q R.
  specialize n2_621 with P Q. 
  intros n2_621a.
  specialize n2_38 with R (PQ) Q. 
  intros n2_38a.
  Syll n2_621a n2_38a S.
  apply S.
Qed.

Theorem n2_74 :  P Q R : Prop,
  (Q  P)  ((P  Q)  R)  (P  R).
Proof. intros P Q R.
  specialize n2_73 with Q P R. 
  intros n2_73a.
  specialize Assoc1_5 with P Q R. 
  intros Assoc1_5a.
  specialize n2_31 with Q P R. 
  intros n2_31a. (*not cited explicitly!*)
  Syll Assoc1_5a n2_31a Sa. 
  specialize n2_32 with P Q R. 
  intros n2_32a. (*not cited explicitly!*)
  Syll n2_32a Sa Sb.
  specialize Syll2_06 with ((PQ)∨R) ((QP)∨R) (PR). 
  intros Syll2_06a.
  MP Syll2_06a Sb.
  Syll n2_73a Syll2_05a H.
  apply H.
Qed.

Theorem n2_75 :  P Q R : Prop,
  (P  Q)  ((P  (Q  R))  (P  R)).
Proof. intros P Q R.
  specialize n2_74 with P (~Q) R. 
  intros n2_74a.
  specialize n2_53 with Q P. 
  intros n2_53a.
  Syll n2_53a n2_74a Sa.
  specialize n2_31 with P (~Q) R. 
  intros n2_31a.
  specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R)  (PR). 
  intros Syll2_06a.
  MP Syll2_06a n2_31a.
  Syll Sa Syll2_06a Sb.
  specialize Perm1_4 with P Q. 
  intros Perm1_4a. (*not cited!*)
  Syll Perm1_4a Sb Sc.
  replace (~QR) with (QR) in Sc.
  apply Sc.
  apply Impl1_01.
Qed.

Theorem n2_76 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  (P  R)).
Proof. intros P Q R.
  specialize n2_75 with P Q R. 
  intros n2_75a.
  specialize Comm2_04 with (PQ) (P∨(QR)) (PR). 
  intros Comm2_04a.
  apply Comm2_04a.
  apply n2_75a. 
Qed.

Theorem n2_77 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  (P  R)).
Proof. intros P Q R.
  specialize n2_76 with (~P) Q R. 
  intros n2_76a.
  replace (~P∨(QR)) with (PQR) in n2_76a.
  replace (~PQ) with (PQ) in n2_76a.
  replace (~PR) with (PR) in n2_76a.
  apply n2_76a.
  apply Impl1_01. 
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem n2_8 :  Q R S : Prop,
  (Q  R)  ((~R  S)  (Q  S)).
Proof. intros Q R S.
  specialize n2_53 with R Q. 
  intros n2_53a.
  specialize Perm1_4 with Q R. 
  intros Perm1_4a.
  Syll Perm1_4a n2_53a Ha.
  specialize n2_38 with S (~R) Q. 
  intros n2_38a.
  Syll H n2_38a Hb.
  apply Hb.
Qed.

Theorem n2_81 :  P Q R S : Prop,
  (Q  (R  S))  ((P  Q)  ((P  R)  (P  S))).
Proof. intros P Q R S.
  specialize Sum1_6 with P Q (RS). 
  intros Sum1_6a.
  specialize n2_76 with P R S. 
  intros n2_76a.
  specialize Syll2_05 with (PQ) (P∨(RS)) ((PR)→(PS)). 
  intros Syll2_05a.
  MP Syll2_05a n2_76a.
  Syll Sum1_6a Syll2_05a H.
  apply H.
Qed.

Theorem n2_82 :  P Q R S : Prop,
  (P  Q  R)→((P  ~R  S)→(P  Q  S)).
Proof. intros P Q R S.
  specialize n2_8 with Q R S. 
  intros n2_8a.
  specialize n2_81 with P (QR) (~RS) (QS). 
  intros n2_81a.
  MP n2_81a n2_8a.
  apply n2_81a.
Qed.

Theorem n2_83 :  P Q R S : Prop,
  (P→(QR))→((P→(RS))→(P→(QS))).
Proof. intros P Q R S.
  specialize n2_82 with (~P) (~Q) R S. 
  intros n2_82a.
  replace (~QR) with (QR) in n2_82a.
  replace (~P∨(QR)) with (PQR) in n2_82a.
  replace (~RS) with (RS) in n2_82a.
  replace (~P∨(RS)) with (PRS) in n2_82a.
  replace (~QS) with (QS) in n2_82a.
  replace (~QS) with (QS) in n2_82a.
  replace (~P∨(QS)) with (PQS) in n2_82a.
  apply n2_82a.
  apply Impl1_01.
  apply Impl1_01.
  apply Impl1_01.
  apply Impl1_01.
  apply Impl1_01.
  apply Impl1_01.
  apply Impl1_01.
Qed.

Theorem n2_85 :  P Q R : Prop,
  ((P  Q)  (P  R))  (P  (Q  R)).
Proof. intros P Q R.
  specialize Add1_3 with P Q. 
  intros Add1_3a.
  specialize Syll2_06 with Q (PQ) R. 
  intros Syll2_06a.
  MP Syll2_06a Add1_3a.
  specialize n2_55 with P R. 
  intros n2_55a.
  specialize Syll2_05 with (PQ) (PR) R. 
  intros Syll2_05a.
  Syll n2_55a Syll2_05a Ha.
  specialize n2_83 with (~P) ((PQ)→(PR)) ((PQ)→R) (QR). 
  intros n2_83a.
  MP n2_83a Ha.
  specialize Comm2_04 with (~P) (PQPR) (QR). 
  intros Comm2_04a.
  Syll Ha Comm2_04a Hb.
  specialize n2_54 with P (QR). 
  intros n2_54a.
  specialize n2_02 with (~P) ((PQR)→(QR)). 
  intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*)
  MP Syll2_06a n2_02a.
  MP Hb n2_02a.
  Syll Hb n2_54a Hc.
  apply Hc.
Qed.

Theorem n2_86 :  P Q R : Prop,
  ((P  Q)  (P  R))  (P  (Q   R)).
Proof. intros P Q R.
  specialize n2_85 with (~P) Q R. 
  intros n2_85a.
  replace (~PQ) with (PQ) in n2_85a.
  replace (~PR) with (PR) in n2_85a.
  replace (~P∨(QR)) with (PQR) in n2_85a.
  apply n2_85a.
  apply Impl1_01. 
  apply Impl1_01. 
  apply Impl1_01.
Qed.

End No2.

Module No3.

Import No1.
Import No2.
 
Axiom Prod3_01 :  P Q : Prop, 
  (P  Q) = ~(~P  ~Q).

Axiom Abb3_02 :  P Q R : Prop, 
  (PQR)=(PQ)∧(QR).

Theorem Conj3_03 :  P Q : Prop, P  Q  (PQ). (*3.03 is a derived rule permitting an inference from the theoremhood of P and that of Q to that of P and Q.*)
Proof. intros P Q.
  specialize n2_11 with (~P∨~Q). intros n2_11a.
  specialize n2_32 with (~P) (~Q) (~(~P  ~Q)). intros n2_32a.
  MP n2_32a n2_11a.
  replace (~(~P∨~Q)) with (PQ) in n2_32a.
  replace (~Q  (PQ)) with (Q→(PQ)) in n2_32a.
  replace (~P  (Q  (PQ))) with (PQ→(PQ)) in n2_32a.
  apply n2_32a.
  apply Impl1_01.
  apply Impl1_01.
  apply Prod3_01.
Qed.

Theorem n3_1 :  P Q : Prop,
  (P  Q)  ~(~P  ~Q).
Proof. intros P Q.
  replace (~(~P∨~Q)) with (PQ).
  specialize n2_08 with (PQ). 
  intros n2_08a.
  apply n2_08a.
  apply Prod3_01.
Qed.

Theorem n3_11 :  P Q : Prop,
  ~(~P  ~Q)  (P  Q).
Proof. intros P Q.
  replace (~(~P∨~Q)) with (PQ).
  specialize n2_08 with (PQ). 
  intros n2_08a.
  apply n2_08a.
  apply Prod3_01.
Qed.

Theorem n3_12 :  P Q : Prop,
  (~P  ~Q)  (P  Q).
Proof. intros P Q.
  specialize n2_11 with (~P∨~Q). 
  intros n2_11a.
  replace (~(~P∨~Q)) with (PQ) in n2_11a.
  apply n2_11a.
  apply Prod3_01.
Qed.

Theorem n3_13 :  P Q : Prop,
  ~(P  Q)  (~P  ~Q).
Proof. intros P Q.
  specialize n3_11 with P Q. 
  intros n3_11a.
  specialize Trans2_15 with (~P∨~Q) (PQ). 
  intros Trans2_15a.
  MP Trans2_16a n3_11a.
  apply Trans2_15a.
Qed.

Theorem n3_14 :  P Q : Prop,
  (~P  ~Q)  ~(P  Q).
Proof. intros P Q.
  specialize n3_1 with P Q. 
  intros n3_1a.
  specialize Trans2_16 with (PQ) (~(~P∨~Q)). 
  intros Trans2_16a.
  MP Trans2_16a n3_1a.
  specialize n2_12 with (~P∨~Q). 
  intros n2_12a.
  Syll n2_12a Trans2_16a S.
  apply S.
Qed.

Theorem n3_2 :  P Q : Prop,
  P  Q  (P  Q).
Proof. intros P Q.
  specialize n3_12 with P Q. 
  intros n3_12a.
  specialize n2_32 with (~P) (~Q) (PQ). 
  intros n2_32a.
  MP n3_32a n3_12a.
  replace (~Q  P  Q) with (QPQ) in n2_32a.
  replace (~P  (Q  P  Q)) with (PQPQ) in n2_32a.
  apply n2_32a.
  apply Impl1_01. 
  apply Impl1_01.
Qed.

Theorem n3_21 :  P Q : Prop,
  Q  P  (P  Q).
Proof. intros P Q.
  specialize n3_2 with P Q.
  intros n3_2a.
  specialize Comm2_04 with P Q (PQ). 
  intros Comm2_04a.
  MP Comm2_04a n3_2a.
  apply Comm2_04a.
Qed.

Theorem n3_22 :  P Q : Prop,
  (P  Q)  (Q  P).
Proof. intros P Q.
  specialize n3_13 with Q P. 
  intros n3_13a.
  specialize Perm1_4 with (~Q) (~P). 
  intros Perm1_4a.
  Syll n3_13a Perm1_4a Ha.
  specialize n3_14 with P Q. 
  intros n3_14a.
  Syll Ha n3_14a Hb.
  specialize Trans2_17 with (PQ) (Q  P). 
  intros Trans2_17a.
  MP Trans2_17a Hb.
  apply Trans2_17a.
Qed.

Theorem n3_24 :  P : Prop,
  ~(P  ~P).
Proof. intros P.
  specialize n2_11 with (~P). 
  intros n2_11a.
  specialize n3_14 with P (~P). 
  intros n3_14a.
  MP n3_14a n2_11a.
  apply n3_14a.
Qed.

Theorem Simp3_26 :  P Q : Prop,
  (P  Q)  P.
Proof. intros P Q.
  specialize n2_02 with Q P. 
  intros n2_02a.
  replace (P→(QP)) with (~P∨(QP)) in n2_02a.
  replace (QP) with (~QP) in n2_02a.
  specialize n2_31 with (~P) (~Q) P. 
  intros n2_31a.
  MP n2_31a n2_02a.
  specialize n2_53 with (~P∨~Q) P. 
  intros n2_53a.
  MP n2_53a n2_02a.
  replace (~(~P∨~Q)) with (PQ) in n2_53a.
  apply n2_53a.
  apply Prod3_01.
  replace (~QP) with (QP).
  reflexivity.
  apply Impl1_01.
  replace (~P∨(QP)) with (PQP).
  reflexivity.
  apply Impl1_01.
Qed.

Theorem Simp3_27 :  P Q : Prop,
  (P  Q)  Q.
Proof. intros P Q.
  specialize n3_22 with P Q. 
  intros n3_22a.
  specialize Simp3_26 with Q P. 
  intros Simp3_26a.
  Syll n3_22a Simp3_26a S.
  apply S.
Qed.

Theorem Exp3_3 :  P Q R : Prop,
  ((P  Q)  R)  (P  (Q  R)).
Proof. intros P Q R.
  specialize Trans2_15 with (~P∨~Q) R. 
  intros Trans2_15a.
  replace (~R→(~P∨~Q)) with (~R→(P→~Q)) in Trans2_15a.
  specialize Comm2_04 with (~R) P (~Q). 
  intros Comm2_04a.
  Syll Trans2_15a Comm2_04a Sa.
  specialize Trans2_17 with Q R. 
  intros Trans2_17a.
  specialize  Syll2_05 with P (~R→~Q) (QR). 
  intros Syll2_05a.
  MP Syll2_05a Trans2_17a.
  Syll Sa Syll2_05a Sb.
  replace (~(~P∨~Q)) with (PQ) in Sb.
  apply Sb.
  apply Prod3_01.
  replace (~P∨~Q) with (P→~Q).
  reflexivity.
  apply Impl1_01.
Qed.

Theorem Imp3_31 :  P Q R : Prop,
  (P  (Q  R))  (P  Q)  R.
Proof. intros P Q R.
  specialize n2_31 with (~P) (~Q) R. 
  intros n2_31a.
  specialize n2_53 with (~P∨~Q) R. 
  intros n2_53a.
  Syll n2_31a n2_53a S.
  replace (~QR) with (QR) in S.
  replace (~P∨(QR)) with (PQR) in S.
  replace (~(~P∨~Q)) with (PQ) in S.
  apply S.
  apply Prod3_01.
  apply Impl1_01.
  apply Impl1_01.
Qed.

Theorem Syll3_33 :  P Q R : Prop,
  ((P  Q)  (Q  R))  (P  R).
Proof. intros P Q R.
  specialize Syll2_06 with P Q R. 
  intros Syll2_06a.
  specialize Imp3_31 with (PQ) (QR) (PR). 
  intros Imp3_31a.
  MP Imp3_31a Syll2_06a.
  apply Imp3_31a.
Qed.

Theorem Syll3_34 :  P Q R : Prop,
  ((Q  R)  (P  Q))  (P  R).
Proof. intros P Q R.
  specialize Syll2_05 with P Q R. 
  intros Syll2_05a.
  specialize Imp3_31 with (QR) (PQ) (PR).
  intros Imp3_31a.
  MP Imp3_31a Syll2_05a.
  apply Imp3_31a.
Qed.

Theorem Ass3_35 :  P Q : Prop,
  (P  (P  Q))  Q.
Proof. intros P Q.
  specialize n2_27 with P Q. 
  intros n2_27a.
  specialize Imp3_31 with P (PQ) Q. 
  intros Imp3_31a.
  MP Imp3_31a n2_27a.
  apply Imp3_31a.
Qed.

Theorem n3_37 :  P Q R : Prop,
  (P  Q  R)  (P  ~R  ~Q).
Proof. intros P Q R.
  specialize Trans2_16 with Q R. 
  intros Trans2_16a.
  specialize Syll2_05 with P (QR) (~R→~Q). 
  intros Syll2_05a.
  MP Syll2_05a Trans2_16a.
  specialize Exp3_3 with P Q R. 
  intros Exp3_3a.
  Syll Exp3_3a Syll2_05a Sa.
  specialize Imp3_31 with P (~R) (~Q). 
  intros Imp3_31a.
  Syll Sa Imp3_31a Sb.
  apply Sb.
Qed.

Theorem n3_4 :  P Q : Prop,
  (P  Q)  P  Q.
Proof. intros P Q.
  specialize n2_51 with P Q. 
  intros n2_51a.
  specialize Trans2_15 with (PQ) (P→~Q). 
  intros Trans2_15a.
  MP Trans2_15a n2_51a.
  replace (P→~Q) with (~P∨~Q) in Trans2_15a.
  replace (~(~P∨~Q)) with (PQ) in Trans2_15a.
  apply Trans2_15a.
  apply Prod3_01.
  replace (~P∨~Q) with (P→~Q).
  reflexivity.
  apply Impl1_01.
Qed.

Theorem n3_41 :  P Q R : Prop,
  (P  R)  (P  Q  R).
Proof. intros P Q R.
  specialize Simp3_26 with P Q. 
  intros Simp3_26a.
  specialize Syll2_06 with (PQ) P R. 
  intros Syll2_06a.
  MP Simp3_26a Syll2_06a.
  apply Syll2_06a.
Qed.

Theorem n3_42 :  P Q R : Prop,
  (Q  R)  (P  Q  R).
Proof. intros P Q R.
  specialize Simp3_27 with P Q. 
  intros Simp3_27a.
  specialize Syll2_06 with (PQ) Q R. 
  intros Syll2_06a.
  MP Syll2_05a Simp3_27a.
  apply Syll2_06a.
Qed.

Theorem Comp3_43 :  P Q R : Prop,
  (P  Q)  (P  R)  (P  Q  R).
Proof. intros P Q R.
  specialize n3_2 with Q R. 
  intros n3_2a.
  specialize Syll2_05 with P Q (RQR). 
  intros Syll2_05a.
  MP Syll2_05a n3_2a.
  specialize n2_77 with P R (QR). 
  intros n2_77a.
  Syll Syll2_05a n2_77a Sa.
  specialize Imp3_31 with (PQ) (PR) (PQR). 
  intros Imp3_31a.
  MP Sa Imp3_31a.
  apply Imp3_31a.
Qed.

Theorem n3_44 :  P Q R : Prop,
  (Q  P)  (R  P)  (Q  R  P).
Proof. intros P Q R.
  specialize Syll3_33 with (~Q) R P. 
  intros Syll3_33a.
  specialize n2_6 with Q P. 
  intros n2_6a.
  Syll Syll3_33a n2_6a Sa.
  specialize Exp3_3 with (~QR) (RP) ((QP)→P). 
  intros Exp3_3a.
  MP Exp3_3a Sa.
  specialize Comm2_04 with (RP) (QP) P. 
  intros Comm2_04a.
  Syll Exp3_3a Comm2_04a Sb.
  specialize Imp3_31 with (QP) (RP) P. 
  intros Imp3_31a.
  Syll Sb Imp3_31a Sc.
  specialize Comm2_04 with (~QR) ((QP)∧(RP)) P. 
  intros Comm2_04b.
  MP Comm2_04b Sc.
  specialize n2_53 with Q R. 
  intros n2_53a.
  specialize Syll2_06 with (QR) (~QR) P. 
  intros Syll2_06a.
  MP Syll2_06a n2_53a.
  Syll Comm2_04b Syll2_06a Sd.
  apply Sd.
Qed.

Theorem Fact3_45 :  P Q R : Prop,
  (P  Q)  (P  R)  (Q  R).
Proof. intros P Q R.
  specialize Syll2_06 with P Q (~R). 
  intros Syll2_06a.
  specialize Trans2_16 with (Q→~R) (P→~R). 
  intros Trans2_16a.
  Syll Syll2_06a Trans2_16a S.
  replace (P→~R) with (~P∨~R) in S.
  replace (Q→~R) with (~Q∨~R) in S.
  replace (~(~P∨~R)) with (PR) in S.
  replace (~(~Q∨~R)) with (QR) in S.
  apply S.
  apply Prod3_01.
  apply Prod3_01.
  replace (~Q∨~R) with (Q→~R).
  reflexivity.
  apply Impl1_01.
  replace (~P∨~R) with (P→~R).
  reflexivity.
  apply Impl1_01.
Qed.

Theorem n3_47 :  P Q R S : Prop,
  ((P  R)  (Q  S))  (P  Q)  R  S.
Proof. intros P Q R S.
  specialize Simp3_26 with (PR) (QS). 
  intros Simp3_26a.
  specialize Fact3_45 with P R Q. 
  intros Fact3_45a.
  Syll Simp3_26a Fact3_45a Sa.
  specialize n3_22 with R Q. 
  intros n3_22a.
  specialize Syll2_05 with (PQ) (RQ) (QR). 
  intros Syll2_05a.
  MP Syll2_05a n3_22a.
  Syll Sa Syll2_05a Sb.
  specialize Simp3_27 with (PR) (QS).
  intros Simp3_27a.
  specialize Fact3_45 with Q S R. 
  intros Fact3_45b.
  Syll Simp3_27a Fact3_45b Sc.
  specialize n3_22 with S R. 
  intros n3_22b.
  specialize Syll2_05 with (QR) (SR) (RS). 
  intros Syll2_05b.
  MP Syll2_05b n3_22b.
  Syll Sc Syll2_05b Sd.
  specialize n2_83 with ((PR)∧(QS)) (PQ) (QR) (RS).
  intros n2_83a.
  MP n2_83a Sb.
  MP n2_83 Sd.
  apply n2_83a.
Qed.

Theorem n3_48 :  P Q R S : Prop,
  ((P  R)  (Q  S))  (P  Q)  R  S.
Proof. intros P Q R S.
  specialize Simp3_26 with (PR) (QS). 
  intros Simp3_26a.
  specialize Sum1_6 with Q P R. 
  intros Sum1_6a.
  Syll Simp3_26a Sum1_6a Sa.
  specialize Perm1_4 with P Q. 
  intros Perm1_4a.
  specialize Syll2_06 with (PQ) (QP) (QR). 
  intros Syll2_06a.
  MP Syll2_06a Perm1_4a.
  Syll Sa Syll2_06a Sb.
  specialize Simp3_27 with (PR) (QS). 
  intros Simp3_27a.
  specialize Sum1_6 with R Q S. 
  intros Sum1_6b.
  Syll Simp3_27a Sum1_6b Sc.
  specialize Perm1_4 with Q R. 
  intros Perm1_4b.
  specialize Syll2_06 with (QR) (RQ) (RS). 
  intros Syll2_06b.
  MP Syll2_06b Perm1_4b.
  Syll Sc Syll2_06a Sd.
  specialize n2_83 with ((PR)∧(QS)) (PQ) (QR) (RS). 
  intros n2_83a.
  MP n2_83a Sb.
  MP n2_83a Sd.
  apply n2_83a. 
Qed.

End No3.

Module No4.

Import No1.
Import No2.
Import No3.

Axiom Equiv4_01 :  P Q : Prop, 
  (PQ)=((PQ)  (QP)). (*n4_02 defines P iff Q iff R as P iff Q AND Q iff R.*)

Axiom EqBi :  P Q : Prop, 
  (P=Q)  (PQ).

Ltac Equiv H1 :=
  match goal with 
    | [ H1 : (?P→?Q)  (?Q→?P) |- _ ] => 
      replace ((PQ)  (QP)) with (PQ) in H1
end. 

Ltac Conj H1 H2 :=
  match goal with 
    | [ H1 : ?P, H2 : ?Q |- _ ] => 
      assert (P  Q)
end. 

Theorem Trans4_1 :  P Q : Prop,
  (P  Q)  (~Q  ~P).
Proof. intros P Q.
  specialize Trans2_16 with P Q. 
  intros Trans2_16a.
  specialize Trans2_17 with P Q. 
  intros Trans2_17a.
  Conj Trans2_16a Trans2_17a.
  split. 
  apply Trans2_16a. 
  apply Trans2_17a.
  Equiv H. 
  apply H. 
  apply Equiv4_01.
Qed.

Theorem Trans4_11 :  P Q : Prop,
  (P  Q)  (~P  ~Q).
Proof. intros P Q.
  specialize Trans2_16 with P Q. 
  intros Trans2_16a.
  specialize Trans2_16 with Q P. 
  intros Trans2_16b.
  Conj Trans2_16a Trans2_16b.
  split.
  apply Trans2_16a.
  apply Trans2_16b.
  specialize n3_47 with (PQ) (QP) (~Q→~P) (~P→~Q). 
  intros n3_47a.
  MP n3_47 H.
  specialize n3_22 with (~Q  ~P) (~P  ~Q). 
  intros n3_22a.
  Syll n3_47a n3_22a Sa.
  replace ((P  Q)  (Q  P)) with (PQ) in Sa.
  replace ((~P  ~Q)  (~Q  ~P)) with (~P↔~Q) in Sa.
  clear Trans2_16a. clear H. clear Trans2_16b. clear n3_22a. clear n3_47a.
  specialize Trans2_17 with Q P. 
  intros Trans2_17a.
  specialize Trans2_17 with P Q. 
  intros Trans2_17b.
  Conj Trans2_17a Trans2_17b.
  split. 
  apply Trans2_17a. 
  apply Trans2_17b.
  specialize n3_47 with (~P→~Q) (~Q→~P) (QP) (PQ).
  intros n3_47a.
  MP n3_47a H.
  specialize n3_22 with (QP) (PQ).
  intros n3_22a.
  Syll n3_47a n3_22a Sb.
  clear Trans2_17a. clear Trans2_17b. clear H. clear n3_47a. clear n3_22a.
  replace ((P  Q)  (Q  P)) with (PQ) in Sb.
  replace ((~P  ~Q)  (~Q  ~P)) with (~P↔~Q) in Sb.
  Conj Sa Sb.
  split.
  apply Sa.
  apply Sb.
  Equiv H.
  apply H.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
Qed.

Theorem n4_12 :  P Q : Prop,
  (P  ~Q)  (Q  ~P).
  Proof. intros P Q.
    specialize n2_03 with P Q. 
    intros n2_03a.
    specialize Trans2_15 with Q P. 
    intros Trans2_15a.
    Conj n2_03a Trans2_15a.
    split.
    apply n2_03a.
    apply Trans2_15a.
    specialize n3_47 with (P→~Q) (~QP) (Q→~P) (~PQ).
    intros n3_47a.
    MP n3_47a H.
    specialize n2_03 with Q P. 
    intros n2_03b.
    specialize Trans2_15 with P Q. 
    intros Trans2_15b.
    Conj n2_03b Trans2_15b.
    split.
    apply n2_03b.
    apply Trans2_15b.
    specialize n3_47 with (Q→~P) (~PQ) (P→~Q) (~QP).
    intros n3_47b.
    MP n3_47b H0.
    clear n2_03a. clear Trans2_15a. clear H. clear n2_03b. clear Trans2_15b. clear H0.
    replace ((P  ~Q)  (~Q  P)) with (P↔~Q) in n3_47a.
    replace ((Q  ~P)  (~P  Q)) with (Q↔~P) in n3_47a.
    replace ((P  ~Q)  (~Q  P)) with (P↔~Q) in n3_47b.
    replace ((Q  ~P)  (~P  Q)) with (Q↔~P) in n3_47b.
    Conj n3_47a n3_47b.
    split.
    apply n3_47a.
    apply n3_47b.
    Equiv H.
    apply H.
    apply Equiv4_01.
    apply Equiv4_01.
    apply Equiv4_01.
    apply Equiv4_01.
    apply Equiv4_01.
  Qed.

Theorem n4_13 :  P : Prop,
  P  ~~P.
  Proof. intros P.
  specialize n2_12 with P. 
  intros n2_12a.
  specialize n2_14 with P. 
  intros n2_14a.
  Conj n2_12a n2_14a.
  split. 
  apply n2_12a. 
  apply n2_14a.
  Equiv H. 
  apply H. 
  apply Equiv4_01.
  Qed.

Theorem n4_14 :  P Q R : Prop,
  ((P  Q)  R)  ((P  ~R)  ~Q).
Proof. intros P Q R.
specialize n3_37 with P Q R. 
intros n3_37a.
specialize n3_37 with P (~R) (~Q).
intros n3_37b.
Conj n3_37a n3_37b.
split. apply n3_37a. 
apply n3_37b.
specialize n4_13 with Q. 
intros n4_13a.
specialize n4_13 with R. 
intros n4_13b.
replace (~~Q) with Q in H.
replace (~~R) with R in H.
Equiv H. 
apply H.
apply Equiv4_01.
apply EqBi. 
apply n4_13b.
apply EqBi. 
apply n4_13a.
Qed.

Theorem n4_15 :  P Q R : Prop,
  ((P  Q)  ~R)  ((Q  R)  ~P).
  Proof. intros P Q R.
  specialize n4_14 with Q P (~R). 
  intros n4_14a.
  specialize n3_22 with Q P. 
  intros n3_22a.
  specialize Syll2_06 with (QP) (PQ) (~R). 
  intros Syll2_06a.
  MP Syll2_06a n3_22a.
  specialize n4_13 with R. 
  intros n4_13a.
  replace (~~R) with R in n4_14a.
  rewrite Equiv4_01 in n4_14a.
  specialize Simp3_26 with ((Q  P  ~R)  Q  R  ~P) ((Q  R  ~P)  Q  P  ~R). 
  intros Simp3_26a.
  MP Simp3_26a n4_14a.
  Syll Syll2_06a Simp3_26a Sa.
  specialize Simp3_27 with ((Q  P  ~R)  Q  R  ~P) ((Q  R  ~P)  Q  P  ~R). 
  intros Simp3_27a.
  MP Simp3_27a n4_14a.
  specialize n3_22 with P Q. 
  intros n3_22b.
  specialize Syll2_06 with (PQ) (QP) (~R). 
  intros Syll2_06b.
  MP Syll2_06b n3_22b.
  Syll Syll2_06b Simp3_27a Sb.
  split. 
  apply Sa.
  apply Sb.
  apply EqBi.
  apply n4_13a.
  Qed.

Theorem n4_2 :  P : Prop,
  P  P.
  Proof. intros P.
  specialize n3_2 with (PP) (PP). 
  intros n3_2a.
  specialize n2_08 with P. 
  intros n2_08a.
  MP n3_2a n2_08a.
  MP n3_2a n2_08a.
  Equiv n3_2a.
  apply n3_2a.
  apply Equiv4_01.
  Qed.

Theorem n4_21 :  P Q : Prop,
  (P  Q)  (Q  P).
  Proof. intros P Q.
  specialize n3_22 with (PQ) (QP). 
  intros n3_22a.
  specialize Equiv4_01 with P Q. 
  intros Equiv4_01a.
  replace ((P  Q)  (Q  P)) with (PQ) in n3_22a.
  specialize Equiv4_01 with Q P. 
  intros Equiv4_01b.
  replace ((Q  P)  (P  Q)) with (QP) in n3_22a.
  specialize n3_22 with (QP) (PQ). 
  intros n3_22b.
  replace ((P  Q)  (Q  P)) with (PQ) in n3_22b.
  replace ((Q  P)  (P  Q)) with (QP) in n3_22b.
  Conj n3_22a n3_22b.
  split. 
  apply Equiv4_01b.
  apply n3_22b.
  split. 
  apply n3_22a.
  apply n3_22b.
Qed.

Theorem n4_22 :  P Q R : Prop,
  ((P  Q)  (Q  R))  (P  R).
Proof. intros P Q R.
  specialize Simp3_26 with (PQ) (QR). 
  intros Simp3_26a.
  specialize Simp3_26 with (PQ) (QP). 
  intros Simp3_26b.
  replace ((PQ)  (QP)) with (PQ) in Simp3_26b.
  Syll Simp3_26a Simp3_26b Sa.
  specialize Simp3_27 with (PQ) (QR). 
  intros Simp3_27a.
  specialize Simp3_26 with (QR) (RQ). 
  intros Simp3_26c.
  replace ((QR)  (RQ)) with (QR) in Simp3_26c.
  Syll Simp3_27a Simp3_26c Sb.
  specialize n2_83 with ((PQ)∧(QR)) P Q R. 
  intros n2_83a.
  MP n2_83a Sa. 
  MP n2_83a Sb.
  specialize Simp3_27 with (PQ) (QR). 
  intros Simp3_27b.
  specialize Simp3_27 with (QR) (RQ). 
  intros Simp3_27c.
  replace ((QR)  (RQ)) with (QR) in Simp3_27c.
  Syll Simp3_27b Simp3_27c Sc.
  specialize Simp3_26 with (PQ) (QR).
  intros Simp3_26d.
  specialize Simp3_27 with (PQ) (QP). 
  intros Simp3_27d.
  replace ((PQ)  (QP)) with (PQ) in Simp3_27d.
  Syll Simp3_26d Simp3_27d Sd.
  specialize n2_83 with ((PQ)∧(QR)) R Q P. 
  intros n2_83b.
  MP n2_83b Sc. MP n2_83b Sd.
  clear Sd. clear Sb. clear Sc. clear Sa. clear Simp3_26a. clear Simp3_26b. clear Simp3_26c. clear Simp3_26d. clear Simp3_27a. clear Simp3_27b. clear Simp3_27c. clear Simp3_27d.
  Conj n2_83a n2_83b. 
  split.
  apply n2_83a. 
  apply n2_83b.
  specialize Comp3_43 with ((PQ)∧(QR)) (PR) (RP).
  intros Comp3_43a.
  MP Comp3_43a H.
  replace ((PR)  (RP)) with (PR) in Comp3_43a.
  apply Comp3_43a.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
Qed.

Theorem n4_24 :  P : Prop,
  P  (P  P).
  Proof. intros P.
  specialize n3_2 with P P. 
  intros n3_2a.
  specialize n2_43 with P (P  P). 
  intros n2_43a.
  MP n3_2a n2_43a.
  specialize Simp3_26 with P P. 
  intros Simp3_26a.
  Conj n2_43a Simp3_26a.
  split.
  apply n2_43a.
  apply Simp3_26a.
  Equiv H.
  apply H.
  apply Equiv4_01.
Qed.

Theorem n4_25 :  P : Prop,
  P  (P  P).
Proof. intros P.
  specialize Add1_3 with P P.
  intros Add1_3a.
  specialize Taut1_2 with P. 
  intros Taut1_2a.
  Conj Add1_3a Taut1_2a.
  split.
  apply Add1_3a.
  apply Taut1_2a.
  Equiv H. apply H.
  apply Equiv4_01.
Qed.

Theorem n4_3 :  P Q : Prop,
  (P  Q)  (Q  P).
Proof. intros P Q.
  specialize n3_22 with P Q.
  intros n3_22a.
  specialize n3_22 with Q P.
  intros n3_22b.
  Conj n3_22a n3_22b.
  split.
  apply n3_22a.
  apply n3_22b.
  Equiv H. apply H.
  apply Equiv4_01.
Qed.

Theorem n4_31 :  P Q : Prop,
  (P  Q)  (Q  P).
  Proof. intros P Q.
    specialize Perm1_4 with P Q.
    intros Perm1_4a.
    specialize Perm1_4 with Q P.
    intros Perm1_4b.
    Conj Perm1_4a Perm1_4b.
    split.
    apply Perm1_4a.
    apply Perm1_4b.
    Equiv H. apply H.
    apply Equiv4_01.
Qed.

  Theorem n4_32 :  P Q R : Prop,
    ((P  Q)  R)  (P  (Q  R)).
    Proof. intros P Q R.
    specialize n4_15 with P Q R.
    intros n4_15a.
    specialize Trans4_1 with P (~(Q  R)).
    intros Trans4_1a.
    replace (~~(Q  R)) with (Q  R) in Trans4_1a.
    replace (Q  R→~P) with (P→~(Q  R)) in n4_15a.
    specialize Trans4_11 with (P  Q  ~R) (P  ~(Q  R)).
    intros Trans4_11a.
    replace ((P  Q  ~R)  (P  ~(Q  R))) with (~(P  Q  ~R)  ~(P  ~(Q  R))) in n4_15a.
    replace (P  Q  ~R) with (~(P  Q )  ~R) in n4_15a.
    replace (P  ~(Q  R)) with (~P  ~(Q  R)) in n4_15a.
    replace (~(~(P  Q)  ~R)) with ((P  Q)  R) in n4_15a.
    replace (~(~P  ~(Q  R))) with (P  (Q  R )) in n4_15a.
    apply n4_15a.
    apply Prod3_01.
    apply Prod3_01.
    rewrite Impl1_01.
    reflexivity.
    rewrite Impl1_01.
    reflexivity.
    replace (~(P  Q  ~R)  ~(P  ~(Q  R))) with ((P  Q  ~R)  (P  ~(Q  R))).
    reflexivity.
    apply EqBi.
    apply Trans4_11a.
    apply EqBi.
    apply Trans4_1a.
    apply EqBi.
    apply n4_13. 
    Qed. (*Note that the actual proof uses n4_12, but that transposition involves transforming a biconditional into a conditional. This way of doing it - using Trans4_1 to transpose a conditional and then applying n4_13 to double negate - is easier without a derived rule for replacing a biconditional with one of its equivalent implications.*)

Theorem n4_33 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  R).
  Proof. intros P Q R.
    specialize n2_31 with P Q R.
    intros n2_31a.
    specialize n2_32 with P Q R.
    intros n2_32a.
    split. apply n2_31a.
    apply n2_32a.
  Qed.

  Axiom n4_34 :  P Q R : Prop,
  P  Q  R = ((P  Q)  R). (*This axiom ensures left association of brackets. Coq's default is right association. But Principia proves associativity of logical product as n4_32. So in effect, this axiom gives us a derived rule that allows us to shift between Coq's and Principia's default rules for brackets of logical products.*)

Theorem n4_36 :  P Q R : Prop,
  (P  Q)  ((P  R)  (Q  R)).
Proof. intros P Q R.
  specialize Fact3_45 with P Q R.
  intros Fact3_45a.
  specialize Fact3_45 with Q P R.
  intros Fact3_45b.
  Conj Fact3_45a Fact3_45b.
  split.
  apply Fact3_45a.
  apply Fact3_45b.
  specialize n3_47 with (PQ) (QP) (P  R  Q  R) (Q  R  P  R).
  intros n3_47a.
  MP n3_47 H.
  replace  ((P  Q)  (Q  P)) with (PQ) in n3_47a.
  replace ((P  R  Q  R)  (Q  R  P  R)) with (P  R  Q  R) in n3_47a.
  apply n3_47a.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

Theorem n4_37 :  P Q R : Prop,
  (P  Q)  ((P  R)  (Q  R)).
Proof. intros P Q R.
  specialize Sum1_6 with R P Q.
  intros Sum1_6a.
  specialize Sum1_6 with R Q P.
  intros Sum1_6b.
  Conj Sum1_6a Sum1_6b.
  split.
  apply Sum1_6a.
  apply Sum1_6b.
  specialize n3_47 with (P  Q) (Q  P) (R  P  R  Q) (R  Q  R  P).
  intros n3_47a.
  MP n3_47 H.
  replace  ((P  Q)  (Q  P)) with (PQ) in n3_47a.
  replace ((R  P  R  Q)  (R  Q  R  P)) with (R  P  R  Q) in n3_47a.
  replace (R  P) with (P  R) in n3_47a.
  replace (R  Q) with (Q  R) in n3_47a.
  apply n3_47a.
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_31.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

Theorem n4_38 :  P Q R S : Prop,
  ((P  R)  (Q  S))  ((P  Q)  (R  S)).
Proof. intros P Q R S.
  specialize n3_47 with P Q R S.
  intros n3_47a.
  specialize n3_47 with R S P Q.
  intros n3_47b.
  Conj n3_47a n3_47b.
  split.
  apply n3_47a.
  apply n3_47b.
  specialize n3_47 with ((PR)  (QS)) ((RP)  (SQ)) (P  Q  R  S) (R  S  P  Q).
  intros n3_47c.
  MP n3_47c H.
  specialize n4_32 with (PR) (QS) ((RP)  (S  Q)).
  intros n4_32a.
  replace (((P  R)  (Q  S))  (R  P)  (S  Q)) with ((P  R)  (Q  S)  (R  P)  (S  Q)) in n3_47c.
  specialize n4_32 with (QS) (RP) (S  Q).
  intros n4_32b.
  replace ((Q  S)  (R  P)  (S  Q)) with (((Q  S)  (R  P))  (S  Q)) in n3_47c.
  specialize n3_22 with (QS) (RP).
  intros n3_22a.
  specialize n3_22 with (RP) (QS).
  intros n3_22b.
  Conj n3_22a n3_22b.
  split.
  apply n3_22a.
  apply n3_22b.
  Equiv H0.
  replace ((Q  S)  (R  P)) with ((R  P)  (Q  S)) in n3_47c.
  specialize n4_32 with (R  P) (Q  S) (S  Q).
  intros n4_32c.
  replace (((R  P)  (Q  S))  (S  Q)) with ((R  P)  (Q  S)  (S  Q)) in n3_47c.
  specialize n4_32 with (PR) (R  P) ((Q  S)∧(S  Q)).
  intros n4_32d.
  replace ((P  R)  (R  P)  (Q  S)  (S  Q)) with (((P  R)  (R  P))  (Q  S)  (S  Q)) in n3_47c.
  replace ((PR)  (R  P)) with (PR) in n3_47c.
  replace ((Q  S)  (S  Q)) with (QS) in n3_47c.
  replace ((P  Q  R  S)  (R  S  P  Q)) with ((P  Q)  (R  S)) in n3_47c.
  apply n3_47c.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  apply EqBi.
  apply n4_32d.
  replace ((R  P)  (Q  S)  (S  Q)) with (((R  P)  (Q  S))  (S  Q)).
  reflexivity.
  apply EqBi.
  apply n4_32c.
  replace ((R  P)  (Q  S)) with ((Q  S)  (R  P)).
  reflexivity.
  apply EqBi.
  apply H0.
  apply Equiv4_01.
  apply EqBi.
  apply n4_32b.
  replace ((P  R)  (Q  S)  (R  P)  (S  Q)) with (((P  R)  (Q  S))  (R  P)  (S  Q)).
  reflexivity.
  apply EqBi.
  apply n4_32a.
  Qed.

Theorem n4_39 :  P Q R S : Prop,
  ((P  R)  (Q  S))  ((P  Q)  (R  S)).
Proof.  intros P Q R S.
  specialize n3_48 with P Q R S.
  intros n3_48a.
  specialize n3_48 with R S P Q.
  intros n3_48b.
  Conj n3_48a n3_48b.
  split.
  apply n3_48a.
  apply n3_48b.
  specialize n3_47 with ((P  R)  (Q  S)) ((R  P)  (S  Q)) (P  Q  R  S) (R  S  P  Q).
  intros n3_47a.
  MP n3_47a H.
  replace ((P  Q  R  S)  (R  S  P  Q)) with ((P  Q)  (R  S)) in n3_47a.
  specialize n4_32 with ((P  R)  (Q  S)) (R  P) (S  Q).
  intros n4_32a.
  replace (((P  R)  (Q  S))  (R  P)  (S  Q)) with ((((P  R)  (Q  S))  (R  P))  (S  Q)) in n3_47a.
  specialize n4_32 with (P  R) (Q  S) (R  P).
  intros n4_32b.
  replace (((P  R)  (Q  S))  (R  P)) with ((P  R)  (Q  S)  (R  P)) in n3_47a.
  specialize n3_22 with (Q  S) (R  P).
  intros n3_22a. 
  specialize n3_22 with (R  P) (Q  S).
  intros n3_22b.
  Conj  n3_22a n3_22b.
  split.
  apply n3_22a.
  apply n3_22b.
  Equiv H0.
  replace ((Q  S)  (R  P)) with ((R  P)  (Q  S)) in n3_47a.
  specialize n4_32 with (P  R) (R  P) (Q  S).
  intros n4_32c.
  replace ((P  R)  (R  P)  (Q  S)) with (((P  R)  (R  P))  (Q  S)) in n3_47a.
  replace ((P  R)  (R  P)) with (PR) in n3_47a.
  specialize n4_32 with (PR) (QS) (SQ).
  intros n4_32d.
  replace (((P  R)  (Q  S))  (S  Q)) with ((P  R)  (Q  S)  (S  Q)) in n3_47a.
  replace ((Q  S)  (S  Q)) with (Q  S) in n3_47a.
  apply n3_47a.
  apply Equiv4_01.
  replace ((P  R)  (Q  S)  (S  Q)) with (((P  R)  (Q  S))  (S  Q)).
  reflexivity.
  apply EqBi.
  apply n4_32d.
  apply Equiv4_01.
  apply EqBi.
  apply n4_32c.
  replace ((R  P)  (Q  S)) with ((Q  S)  (R  P)).
  reflexivity.
  apply EqBi.
  apply H0.
  apply Equiv4_01.
  replace ((P  R)  (Q  S)  (R  P)) with (((P  R)  (Q  S))  (R  P)).
  reflexivity.
  apply EqBi.
  apply n4_32b.
  apply EqBi.
  apply n4_32a.
  apply Equiv4_01.
  Qed.

Theorem n4_4 :  P Q R : Prop,
  (P  (Q  R))  ((P Q)  (P  R)).
Proof. intros P Q R.
  specialize n3_2 with P Q.
  intros n3_2a.
  specialize n3_2 with P R.
  intros n3_2b.
  Conj n3_2a n3_2b.
  split.
  apply n3_2a.
  apply n3_2b.
  specialize Comp3_43 with P (QPQ) (RPR).
  intros Comp3_43a.
  MP Comp3_43a H.
  specialize n3_48 with Q R (PQ) (PR).
  intros n3_48a.
  Syll Comp3_43a n3_48a Sa.
  specialize Imp3_31 with P (QR) ((P Q)  (P  R)).
  intros Imp3_31a.
  MP Imp3_31a Sa.
  specialize Simp3_26 with P Q.
  intros Simp3_26a.
  specialize Simp3_26 with P R.
  intros Simp3_26b.
  Conj Simp3_26a Simp3_26b.
  split.
  apply Simp3_26a.
  apply Simp3_26b.
  specialize n3_44 with P (PQ) (PR).
  intros n3_44a.
  MP n3_44a H0.
  specialize Simp3_27 with P Q.
  intros Simp3_27a.
  specialize Simp3_27 with P R.
  intros Simp3_27b.
  Conj Simp3_27a Simp3_27b.
  split.
  apply Simp3_27a.
  apply Simp3_27b.
  specialize n3_48 with (PQ) (PR) Q R.
  intros n3_48b.
  MP n3_48b H1.
  clear H1. clear Simp3_27a. clear Simp3_27b.
  Conj n3_44a n3_48b.
  split.
  apply n3_44a.
  apply n3_48b.
  specialize Comp3_43 with (P  Q  P  R) P (QR).
  intros Comp3_43b.
  MP Comp3_43b H1.
  clear H1. clear H0. clear n3_44a. clear n3_48b. clear Simp3_26a. clear Simp3_26b.
  Conj Imp3_31a Comp3_43b.
  split.
apply Imp3_31a.
apply Comp3_43b.
Equiv H0.
apply H0.
apply Equiv4_01.
Qed.

Theorem n4_41 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  (P  R)).
Proof. intros P Q R.
  specialize Simp3_26 with Q R.
  intros Simp3_26a.
  specialize Sum1_6 with P (Q  R) Q.
  intros Sum1_6a.
  MP Simp3_26a Sum1_6a.
  specialize Simp3_27 with Q R.
  intros Simp3_27a.
  specialize Sum1_6 with P (Q  R) R.
  intros Sum1_6b.
  MP Simp3_27a Sum1_6b.
  clear Simp3_26a. clear Simp3_27a.
  Conj Sum1_6a Sum1_6b.
  split.
  apply Sum1_6a.
  apply Sum1_6b.
  specialize Comp3_43 with (P  Q  R) (P  Q) (P  R).
  intros Comp3_43a.
  MP Comp3_43a H.
  specialize n2_53 with P Q. 
  intros n2_53a.
  specialize n2_53 with P R. 
  intros n2_53b.
  Conj n2_53a n2_53b.
  split.
  apply n2_53a.
  apply n2_53b.
  specialize n3_47 with (P  Q) (P  R) (~P  Q) (~P  R).
  intros n3_47a.
  MP n3_47a H0.
  specialize Comp3_43 with (~P) Q R.
  intros Comp3_43b.
  Syll n3_47a Comp3_43b Sa.
  specialize n2_54 with P (QR).
  intros n2_54a.
  Syll Sa n2_54a Sb.
  split.
  apply Comp3_43a.
  apply Sb.
Qed.

Theorem n4_42 :  P Q : Prop,
  P  ((P  Q)  (P  ~Q)).
Proof. intros P Q.
  specialize n3_21 with P (Q  ~Q).
  intros n3_21a.
  specialize n2_11 with Q.
  intros n2_11a.
  MP n3_21a n2_11a.
  specialize Simp3_26 with P (Q  ~Q).
  intros Simp3_26a. clear n2_11a.
  Conj n3_21a Simp3_26a.
  split.
  apply n3_21a.
  apply Simp3_26a.
  Equiv H.
  specialize n4_4 with P Q (~Q).
  intros n4_4a.
  replace (P  (Q  ~Q)) with P in n4_4a.
  apply n4_4a.
  apply EqBi.
  apply H.
  apply Equiv4_01.
Qed.

Theorem n4_43 :  P Q : Prop,
  P  ((P  Q)  (P  ~Q)).
Proof. intros P Q.
  specialize n2_2 with P Q.
  intros n2_2a.
  specialize n2_2 with P (~Q).
  intros n2_2b.
  Conj n2_2a n2_2b.
  split.
  apply n2_2a.
  apply n2_2b.
  specialize Comp3_43 with P (PQ) (P∨~Q).
  intros Comp3_43a.
  MP Comp3_43a H.
  specialize n2_53 with P Q.
  intros n2_53a.
  specialize n2_53 with P (~Q).
  intros n2_53b.
  Conj n2_53a n2_53b.
  split.
  apply n2_53a.
  apply n2_53b.
  specialize n3_47 with (PQ) (P∨~Q) (~PQ) (~P→~Q).
  intros n3_47a.
  MP n3_47a H0.
  specialize n2_65 with (~P) Q. 
  intros n2_65a.
  replace (~~P) with P in n2_65a.
  specialize Imp3_31 with (~P  Q) (~P  ~Q) (P).
  intros Imp3_31a.
  MP Imp3_31a n2_65a.
  Syll n3_47a Imp3_31a Sa.
  clear n2_2a. clear n2_2b. clear H. clear n2_53a. clear n2_53b. clear H0. clear n2_65a. clear n3_47a. clear Imp3_31a.
  Conj Comp3_43a Sa.
  split.
  apply Comp3_43a.
  apply Sa.
  Equiv H.
  apply H.
  apply Equiv4_01.
  apply EqBi.
  apply n4_13.
Qed.

Theorem n4_44 :  P Q : Prop,
  P  (P  (P  Q)).
  Proof. intros P Q.
    specialize n2_2 with P (PQ).
    intros n2_2a.
    specialize n2_08 with P.
    intros n2_08a.
    specialize Simp3_26 with P Q.
    intros Simp3_26a.
    Conj n2_08a Simp3_26a.
    split.
    apply n2_08a.
    apply Simp3_26a.
    specialize n3_44 with P P (P  Q).
    intros n3_44a.
    MP n3_44a H.
    clear H. clear n2_08a. clear Simp3_26a.
    Conj n2_2a n3_44a.
    split.
    apply n2_2a.
    apply n3_44a.
    Equiv H.
    apply H.
    apply Equiv4_01.
  Qed.

Theorem n4_45 :  P Q : Prop,
  P  (P  (P  Q)).
  Proof. intros P Q.
  specialize n2_2 with (P  P) (P  Q).
  intros n2_2a.
  replace (P  P  P  Q) with (P  (P  Q)) in n2_2a.
  replace (P  P) with P in n2_2a.
  specialize Simp3_26 with P (P  Q).
  intros Simp3_26a.
  split.
  apply n2_2a.
  apply Simp3_26a.
  apply EqBi.
  apply n4_24.
  apply EqBi.
  apply n4_4.
Qed.

Theorem n4_5 :  P Q : Prop,
  P  Q  ~(~P  ~Q).
  Proof. intros P Q.
    specialize n4_2 with (P  Q).
    intros n4_2a.
    rewrite Prod3_01.
    replace (~(~P  ~Q)) with (P  Q).
    apply n4_2a.
    apply Prod3_01.
  Qed.

Theorem n4_51 :  P Q : Prop,
  ~(P  Q)  (~P  ~Q).
  Proof. intros P Q.
    specialize n4_5 with P Q.
    intros n4_5a.
    specialize n4_12 with (P  Q) (~P  ~Q).
    intros n4_12a.
    replace ((P  Q  ~(~P  ~Q))  (~P  ~Q  ~(P  Q))) with ((P  Q  ~(~P  ~Q)) = (~P  ~Q  ~(P  Q))) in n4_12a.
    replace (P  Q  ~(~P  ~Q)) with (~P  ~Q  ~(P  Q)) in n4_5a.
    replace (~P  ~Q  ~(P  Q)) with (~(P  Q)  (~P  ~Q)) in n4_5a.
    apply n4_5a.
    specialize n4_21 with (~(P  Q)) (~P  ~Q).
    intros n4_21a.
    apply EqBi.
    apply n4_21.
    apply EqBi.
    apply EqBi.
  Qed.

Theorem n4_52 :  P Q : Prop,
  (P  ~Q)  ~(~P  Q).
  Proof. intros P Q.
    specialize n4_5 with P (~Q).
    intros n4_5a.
    replace (~~Q) with Q in n4_5a.
    apply n4_5a.
    specialize n4_13 with Q.
    intros n4_13a.
    apply EqBi.
    apply n4_13a.
  Qed.

Theorem n4_53 :  P Q : Prop,
  ~(P  ~Q)  (~P  Q).
  Proof. intros P Q.
    specialize n4_52 with P Q.
    intros n4_52a.
    specialize n4_12 with ( P  ~Q) ((~P  Q)).
    intros n4_12a.
    replace ((P  ~Q  ~(~P  Q))  (~P  Q  ~(P  ~Q))) with ((P  ~Q  ~(~P  Q)) = (~P  Q  ~(P  ~Q))) in n4_12a.
    replace (P  ~Q  ~(~P  Q)) with (~P  Q  ~(P  ~Q)) in n4_52a.
    replace (~P  Q  ~(P  ~Q)) with (~(P  ~Q)  (~P  Q)) in n4_52a.
    apply n4_52a.
    specialize n4_21 with (~(P  ~Q)) (~P  Q).
    intros n4_21a.
    apply EqBi.
    apply n4_21a.
    apply EqBi.
    apply EqBi.
  Qed.

Theorem n4_54 :  P Q : Prop,
  (~P  Q)  ~(P  ~Q).
  Proof. intros P Q.
    specialize n4_5 with (~P) Q.
    intros n4_5a.
    specialize n4_13 with P.
    intros n4_13a.
    replace (~~P) with P in n4_5a.
    apply n4_5a.
    apply EqBi.
    apply n4_13a.
  Qed.

Theorem n4_55 :  P Q : Prop,
  ~(~P  Q)  (P  ~Q).
  Proof. intros P Q.
    specialize n4_54 with P Q.
    intros n4_54a.
    specialize n4_12 with (~P  Q) (P  ~Q).
    intros n4_12a.
    replace (~P  Q  ~(P  ~Q)) with (P  ~Q  ~(~P  Q)) in n4_54a.
    replace (P  ~Q  ~(~P  Q)) with (~(~P  Q)  (P  ~Q)) in n4_54a.
    apply n4_54a.
    specialize n4_21 with (~(~P  Q)) (P  ~Q).
    intros n4_21a.
    apply EqBi.
    apply n4_21a.
    replace ((~P  Q  ~(P  ~Q))  (P  ~Q  ~(~P  Q))) with ((~P  Q  ~(P  ~Q)) = (P  ~Q  ~(~P  Q))) in n4_12a.
    rewrite n4_12a.
    reflexivity.
    apply EqBi.
    apply EqBi.
  Qed.

Theorem n4_56 :  P Q : Prop,
  (~P  ~Q)  ~(P  Q).
  Proof. intros P Q.
    specialize n4_54 with P (~Q).
    intros n4_54a.
    replace (~~Q) with Q in n4_54a.
    apply n4_54a.
    apply EqBi.
    apply n4_13.
  Qed.

Theorem n4_57 :  P Q : Prop,
  ~(~P  ~Q)  (P  Q).
  Proof. intros P Q.
    specialize n4_56 with P Q.
    intros n4_56a.
    specialize n4_12 with (~P  ~Q) (P  Q).
    intros n4_12a.
    replace (~P  ~Q  ~(P  Q)) with (P  Q  ~(~P  ~Q)) in n4_56a.
    replace (P  Q  ~(~P  ~Q)) with (~(~P  ~Q)  P  Q) in n4_56a.
    apply n4_56a.
    specialize n4_21 with (~(~P  ~Q)) (P  Q).
    intros n4_21a.
    apply EqBi.
    apply n4_21a.
    replace ((~P  ~Q  ~(P  Q))  (P  Q  ~(~P  ~Q))) with ((P  Q  ~(~P  ~Q))  (~P  ~Q  ~(P  Q))) in n4_12a.
    apply EqBi.
    apply n4_12a.
    apply EqBi.
    specialize n4_21 with (P  Q  ~(~P  ~Q)) (~P  ~Q  ~(P  Q)).
    intros n4_21b.
    apply n4_21b.
  Qed.
    
Theorem n4_6 :  P Q : Prop,
  (P  Q)  (~P  Q).
  Proof. intros P Q.
    specialize n4_2 with (~P Q).
    intros n4_2a.
    rewrite Impl1_01.
    apply n4_2a.
  Qed.

Theorem n4_61 :  P Q : Prop,
  ~(P  Q)  (P  ~Q).
  Proof. intros P Q.
  specialize n4_6 with P Q.
  intros n4_6a.
  specialize Trans4_11 with (PQ) (~PQ).
  intros Trans4_11a.
  specialize n4_52 with P Q.
  intros n4_52a.
  replace ((P  Q)  ~P  Q) with (~(P  Q)  ~(~P  Q)) in n4_6a.
  replace (~(~P  Q)) with (P  ~Q) in n4_6a.
  apply n4_6a.
  apply EqBi.
  apply n4_52a.
  replace (((P  Q)  ~P  Q)  (~(P  Q)  ~(~P  Q))) with ((~(P  Q)  ~(~P  Q))  ((P  Q)  ~P  Q)) in Trans4_11a.
  apply EqBi.
  apply Trans4_11a.
  apply EqBi.
  apply n4_21.
  Qed.

Theorem n4_62 :  P Q : Prop,
  (P  ~Q)  (~P  ~Q).
  Proof. intros P Q.
    specialize n4_6 with P (~Q).
    intros n4_6a.
    apply n4_6a.
  Qed.

Theorem n4_63 :  P Q : Prop,
  ~(P  ~Q)  (P  Q).
  Proof. intros P Q.
    specialize n4_62 with P Q.
    intros n4_62a.
    specialize Trans4_11 with (P  ~Q) (~P  ~Q).
    intros Trans4_11a.
    specialize n4_5 with P Q.
    intros n4_5a.
    replace (~(~P  ~Q)) with (P  Q) in Trans4_11a.
    replace ((P  ~Q)  ~P  ~Q) with ((~(P  ~Q)  P  Q)) in n4_62a.
    apply n4_62a.
    replace (((P  ~Q)  ~P  ~Q)  (~(P  ~Q)   P  Q)) with ((~(P  ~Q)   P  Q)  ((P  ~Q)  ~P  ~Q)) in Trans4_11a.
    apply EqBi.
    apply Trans4_11a.
    specialize n4_21 with (~(P  ~Q)  P  Q) ((P  ~Q)  ~P  ~Q).
    intros n4_21a.
    apply EqBi.
    apply n4_21a.
    apply EqBi.
    apply n4_5a.
  Qed.

Theorem n4_64 :  P Q : Prop,
  (~P  Q)  (P  Q).
  Proof. intros P Q.
    specialize n2_54 with P Q.
    intros n2_54a.
    specialize n2_53 with P Q.
    intros n2_53a.
    Conj n2_54a n2_53a.
    split.
    apply n2_54a.
    apply n2_53a.
    Equiv H.
    apply H.
    apply Equiv4_01.
  Qed.

Theorem n4_65 :  P Q : Prop,
  ~(~P  Q)  (~P  ~Q).
  Proof. intros P Q.
  specialize n4_64 with P Q.
  intros n4_64a.
  specialize Trans4_11 with(~P  Q) (P  Q).
  intros Trans4_11a.
  specialize n4_56 with P Q.
  intros n4_56a.
  replace (((~P  Q)  P  Q)  (~(~P  Q)  ~(P  Q))) with ((~(~P  Q)  ~(P  Q))  ((~P  Q)  P  Q)) in Trans4_11a.
  replace ((~P  Q)  P  Q) with (~(~P  Q)  ~(P  Q)) in n4_64a.
  replace (~(P  Q)) with (~P  ~Q) in n4_64a.
  apply n4_64a.
  apply EqBi.
  apply n4_56a.
  apply EqBi.
  apply Trans4_11a.
  apply EqBi.
  apply n4_21.
  Qed.

Theorem n4_66 :  P Q : Prop,
  (~P  ~Q)  (P  ~Q).
  Proof. intros P Q.
  specialize n4_64 with P (~Q).
  intros n4_64a.
  apply n4_64a.
  Qed.

Theorem n4_67 :  P Q : Prop,
  ~(~P  ~Q)  (~P  Q).
  Proof. intros P Q.
  specialize n4_66 with P Q.
  intros n4_66a.
  specialize Trans4_11 with (~P  ~Q) (P  ~Q).
  intros Trans4_11a.
  replace ((~P  ~Q)  P  ~Q) with (~(~P  ~Q)  ~(P  ~Q)) in n4_66a.
  specialize n4_54 with P Q.
  intros n4_54a.
  replace (~(P  ~Q)) with (~P  Q) in n4_66a.
  apply n4_66a.
  apply EqBi.
  apply n4_54a.
  replace (((~P  ~Q)  P  ~Q)  (~(~P  ~Q)  ~(P  ~Q))) with ((~(~P  ~Q)  ~(P  ~Q))  ((~P  ~Q)  P  ~Q)) in Trans4_11a.
  apply EqBi.
  apply Trans4_11a.
  apply EqBi.
  apply n4_21.
  Qed.

Theorem n4_7 :  P Q : Prop,
  (P  Q)  (P  (P  Q)).
  Proof. intros P Q.
  specialize Comp3_43 with P P Q.
  intros Comp3_43a.
  specialize Exp3_3 with  (P  P) (P  Q) (P  P  Q).
  intros Exp3_3a.
  MP Exp3_3a Comp3_43a.
  specialize n2_08 with P.
  intros n2_08a.
  MP Exp3_3a n2_08a.
  specialize Simp3_27 with P Q.
  intros Simp3_27a.
  specialize Syll2_05 with P (P  Q) Q.
  intros Syll2_05a.
  MP Syll2_05a Simp3_26a.
  clear n2_08a. clear Comp3_43a. clear Simp3_27a.
  Conj Syll2_05a Exp3_3a.
  split.
  apply Exp3_3a.
  apply Syll2_05a.
  Equiv H.
  apply H.
  apply Equiv4_01.
  Qed.

Theorem n4_71 :  P Q : Prop,
  (P  Q)  (P  (P  Q)).
  Proof. intros P Q.
  specialize n4_7 with P Q.
  intros n4_7a.
  specialize n3_21 with (P→(PQ)) ((PQ)→P).
  intros n3_21a.
  replace ((P  P  Q)  (P  Q  P)) with (P↔(P  Q)) in n3_21a.
  specialize Simp3_26 with P Q.
  intros Simp3_26a.
  MP n3_21a Simp3_26a.
  specialize Simp3_26 with (P→(PQ)) ((PQ)→P).
  intros Simp3_26b.
  replace ((P  P  Q)  (P  Q  P)) with (P↔(P  Q)) in Simp3_26b. clear Simp3_26a.
  Conj n3_21a Simp3_26b.
  split.
  apply n3_21a.
  apply Simp3_26b.
  Equiv H.
  clear n3_21a. clear Simp3_26b.
  Conj n4_7a H.
  split.
  apply n4_7a.
  apply H.
  specialize n4_22 with (P  Q) (P  P  Q) (P  P  Q).
  intros n4_22a.
  MP n4_22a H0.
  apply n4_22a.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

Theorem n4_72 :  P Q : Prop,
  (P  Q)  (Q  (P  Q)).
  Proof. intros P Q.
  specialize Trans4_1 with P Q.
  intros Trans4_1a.
  specialize n4_71 with (~Q) (~P).
  intros n4_71a.
  Conj Trans4_1a n4_71a.
  split.
  apply Trans4_1a.
  apply n4_71a.
  specialize n4_22 with (PQ) (~Q→~P) (~Q↔~Q  ~ P).
  intros n4_22a.
  MP n4_22a H.
  specialize n4_21 with (~Q) (~Q  ~P).
  intros n4_21a.
  Conj n4_22a n4_21a.
  split.
  apply n4_22a.
  apply n4_21a.
  specialize n4_22 with (PQ) (~Q  ~Q  ~P) (~Q  ~P  ~Q).
  intros n4_22b.
  MP n4_22b H0.
  specialize n4_12 with (~Q  ~ P) (Q).
  intros n4_12a.
  Conj n4_22b n4_12a.
  split.
  apply n4_22b.
  apply n4_12a.
  specialize n4_22 with (P  Q) ((~Q  ~ P)  ~Q) (Q  ~(~Q  ~P)).
  intros n4_22c.
  MP n4_22b H0.
  specialize n4_57 with Q P.
  intros n4_57a.
  replace (~(~Q  ~P)) with (Q  P) in n4_22c.
  specialize n4_31 with P Q.
  intros n4_31a.
  replace (Q  P) with (P  Q) in n4_22c.
  apply n4_22c.
  apply EqBi.
  apply n4_31a.
  apply EqBi.
  replace (~(~Q  ~P)  Q  P) with (Q  P ↔~(~Q  ~P)) in n4_57a.
  apply n4_57a.
  apply EqBi.
  apply n4_21.
  Qed.

Theorem n4_73 :  P Q : Prop,
  Q  (P  (P  Q)).
  Proof. intros P Q.
  specialize n2_02 with P Q.
  intros n2_02a.
  specialize n4_71 with P Q.
  intros n4_71a.
  replace ((P  Q)  (P  P  Q)) with (((P  Q)  (P  P  Q))  ((P  P  Q)→(PQ))) in n4_71a.
  specialize Simp3_26 with ((P  Q)  P  P  Q) (P  P  Q  P  Q).
  intros Simp3_26a.
  MP Simp3_26a n4_71a.
  Syll n2_02a Simp3_26a Sa.
  apply Sa.
  apply Equiv4_01.
  Qed.

Theorem n4_74 :  P Q : Prop,
  ~P  (Q  (P  Q)).
  Proof. intros P Q.
  specialize n2_21 with P Q.
  intros n2_21a.
  specialize n4_72 with P Q.
  intros n4_72a.
  replace (P  Q) with (Q  P  Q) in n2_21a.
  apply n2_21a.
  apply EqBi.
  replace ((P  Q)  (Q  P  Q)) with ((Q  P  Q)  (P  Q)) in n4_72a.
  apply n4_72a.
  apply EqBi.
  apply n4_21.
  Qed.

Theorem n4_76 :  P Q R : Prop,
  ((P  Q)  (P  R))  (P  (Q  R)).
  Proof. intros P Q R.
  specialize n4_41 with (~P) Q R.
  intros n4_41a.
  replace (~P  Q) with (PQ) in n4_41a.
  replace (~P  R) with (PR) in n4_41a.
  replace (~P  Q  R) with (P  Q  R) in n4_41a.
  replace ((P  Q  R)  (P  Q)  (P  R)) with ((P  Q)  (P  R)  (P  Q  R)) in n4_41a.
  apply n4_41a.
  apply EqBi.
  apply n4_21.
  apply Impl1_01.
  apply Impl1_01.
  apply Impl1_01.
  Qed.

Theorem n4_77 :  P Q R : Prop,
  ((Q  P)  (R  P))  ((Q  R)  P).
  Proof. intros P Q R.
  specialize n3_44 with P Q R.
  intros n3_44a.
  split.
  apply n3_44a.
  split.
  specialize n2_2 with Q R.
  intros n2_2a.
  Syll n2_2a H Sa.
  apply Sa.
  specialize Add1_3 with Q R.
  intros Add1_3a.
  Syll Add1_3a H Sb.
  apply Sb.
  Qed. (*Note that we used the split tactic on a conditional, effectively introducing an assumption for conditional proof. It remains to prove that (AvB)→C and A→(AvB) together imply A→C, and similarly that (AvB)→C and B→(AvB) together imply B→C. This can be proved by Syll, but we need a rule of replacement in the context of ((AvB)→C)→(A→C)/\(B→C).*)

Theorem n4_78 :  P Q R : Prop,
  ((P  Q)  (P  R))  (P  (Q  R)).
  Proof. intros P Q R.
  specialize n4_2 with ((PQ)  (P  R)).
  intros n4_2a.
  replace (((P  Q)  (P  R))↔((P  Q)  (P  R))) with (((P  Q)  (P  R))↔((~P  Q)  ~P  R)) in n4_2a.
  specialize n4_33 with (~P) Q (~P  R).
  intros n4_33a.
  replace ((~P  Q)  ~P  R) with (~P  Q  ~P  R) in n4_2a.
  specialize n4_31 with (~P) Q.
  intros n4_31a.
  specialize n4_37 with (~PQ) (Q  ~P) R.
  intros n4_37a.
  MP n4_37a n4_31a.
  replace (Q  ~P  R) with ((Q  ~P)  R) in n4_2a.
  replace ((Q  ~P)  R) with ((~P  Q)  R) in n4_2a.
  specialize n4_33 with (~P) (~PQ) R.
  intros n4_33b.
  replace (~P  (~P  Q)  R) with ((~P  (~P  Q))  R) in n4_2a.
  specialize n4_25 with (~P).
  intros n4_25a.
  specialize n4_37 with (~P) (~P  ~P) (Q  R).
  intros n4_37b.
  MP n4_37b n4_25a.
  replace (~P  ~P  Q) with ((~P  ~P)  Q) in n4_2a.
  replace (((~P  ~P)  Q)  R) with ((~P  ~P)  Q  R) in n4_2a.
  replace ((~P  ~P)  Q  R) with ((~P)  (Q  R)) in n4_2a.
  replace (~P  Q  R) with (P  (Q  R)) in n4_2a.
  apply n4_2a.
  apply Impl1_01.
  apply EqBi.
  apply n4_37b.
  apply n2_33.
  replace ((~P  ~P)  Q) with (~P  ~P  Q).
  reflexivity.
  apply n2_33.
  replace ((~P  ~P  Q)  R) with (~P  (~P  Q)  R).
  reflexivity.
  apply EqBi.
  apply n4_33b.
  apply EqBi.
  apply n4_37a.
  replace ((Q  ~P)  R) with (Q  ~P  R).
  reflexivity.
  apply n2_33.
  apply EqBi.
  apply n4_33a.
  replace (~P  Q) with (PQ).
  replace (~P  R) with (PR).
  reflexivity.
  apply Impl1_01.
  apply Impl1_01.
  Qed.

Theorem n4_79 :  P Q R : Prop,
  ((Q  P)  (R  P))  ((Q  R)  P).
  Proof. intros P Q R.
    specialize Trans4_1 with Q P.
    intros Trans4_1a.
    specialize Trans4_1 with R P.
    intros Trans4_1b.
    Conj Trans4_1a Trans4_1b.
    split.
    apply Trans4_1a.
    apply Trans4_1b.
    specialize n4_39 with (QP) (RP) (~P→~Q) (~P→~R).
    intros n4_39a.
    MP n4_39a H.
    specialize n4_78 with (~P) (~Q) (~R).
    intros n4_78a.
    replace ((~P  ~Q)  (~P  ~R)) with (~P  ~Q  ~R) in n4_39a.
    specialize Trans2_15 with P (~Q  ~R).
    intros Trans2_15a.
    replace (~P  ~Q  ~R) with (~(~Q  ~R)  P) in n4_39a.
    replace (~(~Q  ~R)) with (Q  R) in n4_39a.
    apply n4_39a.
    apply Prod3_01.
    replace (~(~Q  ~R)  P) with (~P  ~Q  ~R).
    reflexivity.
    apply EqBi.
    split.
    apply Trans2_15a.
    apply Trans2_15.
    replace (~P  ~Q  ~R) with ((~P  ~Q)  (~P  ~R)).
    reflexivity.
    apply EqBi.
    apply n4_78a.
  Qed.

Theorem n4_8 :  P : Prop,
  (P  ~P)  ~P.
  Proof. intros P.
    specialize Abs2_01 with P.
    intros Abs2_01a.
    specialize  n2_02 with P (~P).
    intros n2_02a.
    Conj Abs2_01a n2_02a.
    split.
    apply Abs2_01a.
    apply n2_02a.
    Equiv H.
    apply H.
    apply Equiv4_01.
  Qed.

Theorem n4_81 :  P : Prop,
  (~P  P)  P.
  Proof. intros P.
    specialize n2_18 with P.
    intros n2_18a.
    specialize  n2_02 with (~P) P.
    intros n2_02a.
    Conj n2_18a n2_02a.
    split.
    apply n2_18a.
    apply n2_02a.
    Equiv H.
    apply H.
    apply Equiv4_01.
  Qed.

Theorem n4_82 :  P Q : Prop,
  ((P  Q)  (P  ~Q))  ~P.
  Proof. intros P Q. 
    specialize n2_65 with P Q.
    intros n2_65a.
    specialize Imp3_31 with (PQ) (P→~Q) (~P).
    intros Imp3_31a.
    MP Imp3_31a n2_65a.
    specialize n2_21 with P Q.
    intros n2_21a.
    specialize n2_21 with P (~Q).
    intros n2_21b.
    Conj n2_21a n2_21b.
    split.
    apply n2_21a.
    apply n2_21b.
    specialize Comp3_43 with (~P) (PQ) (P→~Q).
    intros Comp3_43a.
    MP Comp3_43a H.
    clear n2_65a. clear n2_21a. clear n2_21b.
    clear H.
    Conj Imp3_31a Comp3_43a.
    split.
    apply Imp3_31a.
    apply Comp3_43a.
    Equiv H.
    apply H.
    apply Equiv4_01.
  Qed.

Theorem n4_83 :  P Q : Prop,
  ((P  Q)  (~P  Q))  Q.
  Proof. intros P Q.
  specialize n2_61 with P Q.
  intros n2_61a.
  specialize Imp3_31 with (PQ) (~PQ) (Q).
  intros Imp3_31a.
  MP Imp3_31a n2_61a.
  specialize n2_02 with P Q.
  intros n2_02a.
  specialize n2_02 with (~P) Q.
  intros n2_02b.
  Conj n2_02a n2_02b.
  split.
  apply n2_02a.
  apply n2_02b.
  specialize Comp3_43 with Q (PQ) (~PQ).
  intros Comp3_43a.
  MP Comp3_43a H.
  clear n2_61a. clear n2_02a. clear n2_02b.
  clear H.
  Conj Imp3_31a Comp3_43a.
  split.
  apply Imp3_31a.
  apply Comp3_43a.
  Equiv H.
  apply H.
  apply Equiv4_01.
  Qed.

Theorem n4_84 :  P Q R : Prop,
  (P  Q)  ((P  R)  (Q  R)).
  Proof. intros P Q R.
    specialize Syll2_06 with P Q R.
    intros Syll2_06a.
    specialize Syll2_06 with Q P R.
    intros Syll2_06b.
    Conj Syll2_06a Syll2_06b.
    split.
    apply Syll2_06a.
    apply Syll2_06b.
    specialize n3_47 with (PQ) (QP) ((QR)→PR) ((PR)→QR).
    intros n3_47a.
    MP n3_47a H.
    replace ((PQ)  (Q  P)) with (PQ) in n3_47a.
    replace (((Q  R)  P  R)  ((P  R)  Q  R)) with ((Q  R)  (P  R)) in n3_47a.
    replace ((Q  R)  (P  R)) with ((P R)  (Q  R)) in n3_47a.
    apply n3_47a.
    apply EqBi.
    apply n4_21.
    apply Equiv4_01.
    apply Equiv4_01.
  Qed.

Theorem n4_85 :  P Q R : Prop,
  (P  Q)  ((R  P)  (R  Q)).
  Proof. intros P Q R.
  specialize Syll2_05 with R P Q.
  intros Syll2_05a.
  specialize Syll2_05 with R Q P.
  intros Syll2_05b.
  Conj Syll2_05a Syll2_05b.
  split.
  apply Syll2_05a.
  apply Syll2_05b.
  specialize n3_47 with (PQ) (QP) ((RP)→RQ) ((RQ)→RP).
  intros n3_47a.
  MP n3_47a H.
  replace ((PQ)  (Q  P)) with (PQ) in n3_47a.
  replace (((R  P)  R  Q)  ((R  Q)  R  P)) with ((R  P)  (R  Q)) in n3_47a.
  apply n3_47a.
  apply Equiv4_01.
  apply Equiv4_01.
Qed.

Theorem n4_86 :  P Q R : Prop,
  (P  Q)  ((P  R)  (Q  R)).
  Proof. intros P Q R.
  split.
  split.
  replace (PQ) with (QP) in H.
  Conj H H0.
  split.
  apply H.
  apply H0.
  specialize n4_22 with  Q P R.
  intros n4_22a.
  MP n4_22a H1.
  replace (Q  R) with ((QR)  (RQ)) in n4_22a.
  specialize Simp3_26 with (QR) (RQ).
  intros Simp3_26a.
  MP Simp3_26a n4_22a.
  apply Simp3_26a.
  apply Equiv4_01.
  apply EqBi.
  apply n4_21.
  replace (PR) with (RP) in H0.
  Conj H0 H.
  split.
  apply H.
  apply H0.
  replace ((P  Q)  (R  P)) with ((R  P)  (P  Q)) in H1.
  specialize n4_22 with R P Q.
  intros n4_22a.
  MP n4_22a H1.
  replace (R  Q) with ((RQ)  (QR)) in n4_22a.
  specialize Simp3_26 with (RQ) (QR).
  intros Simp3_26a.
  MP Simp3_26a n4_22a.
  apply Simp3_26a.
  apply Equiv4_01.
  apply EqBi.
  apply n4_3.
  apply EqBi.
  apply n4_21.
  split.
  Conj H H0.
  split.
  apply H.
  apply H0.
  specialize n4_22 with P Q R.
  intros n4_22a.
  MP n4_22a H1.
  replace (PR) with ((PR)∧(RP)) in n4_22a.
  specialize Simp3_26 with (PR) (RP).
  intros Simp3_26a.
  MP Simp3_26a n4_22a.
  apply Simp3_26a.
  apply Equiv4_01.
  Conj H H0.
  split.
  apply H.
  apply H0.
  specialize n4_22 with P Q R.
  intros n4_22a.
  MP n4_22a H1.
  replace (PR) with ((PR)∧(RP)) in n4_22a.
  specialize Simp3_27 with (PR) (RP).
  intros Simp3_27a.
  MP Simp3_27a n4_22a.
  apply Simp3_27a.
  apply Equiv4_01.
  Qed.

Theorem n4_87 :  P Q R : Prop,
  (((P  Q)  R)  (P  Q  R))  ((Q  (P  R))  (Q  P  R)).
  Proof. intros P Q R.
  specialize Exp3_3 with P Q R.
  intros Exp3_3a.
  specialize Imp3_31 with P Q R.
  intros Imp3_31a.
  Conj Exp3_3a Imp3_31a.
  split.
  apply Exp3_3a.
  apply Imp3_31a.
  Equiv H.
  specialize Exp3_3 with Q P R.
  intros Exp3_3b.
  specialize Imp3_31 with Q P R.
  intros Imp3_31b.
  Conj Exp3_3b Imp3_31b.
  split.
  apply Exp3_3b.
  apply Imp3_31b.
  Equiv H0.
  specialize Comm2_04 with P Q R.
  intros Comm2_04a.
  specialize Comm2_04 with Q P R.
  intros Comm2_04b.
  Conj Comm2_04a Comm2_04b.
  split.
  apply Comm2_04a.
  apply Comm2_04b.
  Equiv H1.
  clear Exp3_3a. clear Imp3_31a. clear Exp3_3b. clear Imp3_31b. clear Comm2_04a. clear Comm2_04b.
  replace (PQR) with (P  Q  R).
  replace (QPR) with (Q  P  R).
  replace (QPR) with (P  Q  R).
  specialize n4_2 with ((P  Q  R)  (P  Q  R)).
  intros n4_2a.
  apply n4_2a.
  apply EqBi.
  apply H1.
  replace (QPR) with (QPR).
  reflexivity.
  apply EqBi.
  apply H0.
  replace (PQR) with (PQR).
  reflexivity.
  apply EqBi.
  apply H.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

End No4.

Module No5.

Import No1.
Import No2.
Import No3.
Import No4.

Theorem n5_1 :  P Q : Prop,
  (P  Q)  (P  Q).
  Proof. intros P Q.
  specialize n3_4 with P Q.
  intros n3_4a.
  specialize n3_4 with Q P.
  intros n3_4b.
  specialize n3_22 with P Q.
  intros n3_22a.
  Syll n3_22a n3_4b Sa.
  clear n3_22a. clear n3_4b.
  Conj n3_4a Sa.
  split.
  apply n3_4a.
  apply Sa.
  specialize n4_76 with (PQ) (PQ) (QP).
  intros n4_76a.
  replace ((P  Q  P  Q)  (P  Q  Q  P)) with (P  Q  (P  Q)  (Q  P)) in H.
  replace ((PQ)∧(QP)) with (PQ) in H.
  apply H.
  apply Equiv4_01.
  replace (P  Q  (P  Q)  (Q  P)) with ((P  Q  P  Q)  (P  Q  Q  P)).
  reflexivity.
  apply EqBi.
  apply n4_76a.
  Qed. (*Note that n4_76 is not cited, but it is used to move from ((a→b) ∧  (a→c)) to (a→ (b ∧ c)).*)

Theorem n5_11 :  P Q : Prop,
  (P  Q)  (~P  Q).
  Proof. intros P Q.
  specialize n2_5 with P Q.
  intros n2_5a.
  specialize n2_54 with ((P  Q)) (~ P  Q).
  intros n2_54a.
  MP n2_54a n2_5a.
  apply n2_54a.
  Qed.

Theorem n5_12 :  P Q : Prop,
  (P  Q)  (P  ~Q).
  Proof. intros P Q.
  specialize n2_51 with P Q.
  intros n2_51a.
  specialize n2_54 with ((P  Q)) (P  ~ Q).
  intros n2_54a.
  MP n2_54a n2_5a.
  apply n2_54a.
  Qed.

Theorem n5_13 :  P Q : Prop,
  (P  Q)  (Q  P).
  Proof. intros P Q.
  specialize n2_521 with P Q.
  intros n2_521a.
  replace (~ (P  Q)  Q  P) with (~~ (P  Q)  (Q  P)) in n2_521a.
  replace (~~(PQ)) with (PQ) in n2_521a.
  apply n2_521a.
  apply EqBi.
  apply n4_13.
  replace (~~ (P  Q)  (Q  P)) with (~ (P  Q)  Q  P).
  reflexivity.
  apply Impl1_01.
  Qed. (*n4_13 is not cited, but is needed for double negation elimination.*)

Theorem n5_14 :  P Q R : Prop,
  (P  Q)  (Q  R).
  Proof. intros P Q R.
  specialize n2_02 with P Q.
  intros n2_02a.
  specialize Trans2_16 with Q (PQ).
  intros Trans2_16a.
  MP Trans2_16a n2_02a.
  specialize n2_21 with Q R.
  intros n2_21a.
  Syll Trans2_16a n2_21a Sa.
  replace (~(PQ)→(QR)) with (~~(PQ)∨(QR)) in Sa.
  replace (~~(PQ)) with (PQ) in Sa.
  apply Sa.
  apply EqBi.
  apply n4_13.
  replace (~~(PQ)∨(QR)) with (~(PQ)→(QR)).
  reflexivity.
  apply Impl1_01.
  Qed.

Theorem n5_15 :  P Q : Prop,
  (P  Q)  (P  ~Q).
  Proof. intros P Q.
  specialize n4_61 with P Q.
  intros n4_61a.
  replace (~ (P  Q)  P  ~ Q) with ((~ (P  Q)  P  ~ Q)  ((P  ~ Q)  ~ (P  Q))) in n4_61a.
  specialize Simp3_26 with (~ (P  Q)  P  ~ Q) ((P  ~ Q)  ~ (P  Q)).
  intros Simp3_26a.
  MP Simp3_26a n4_61a.
  specialize n5_1 with P (~Q).
  intros n5_1a.
  Syll Simp3_26a n5_1a Sa.
  specialize n2_54 with (PQ) (P  ~Q).
  intros n2_54a.
  MP n2_54a Sa.
  specialize n4_61 with Q P.
  intros n4_61b.
  replace ((~(Q  P))  (Q  ~P)) with (((~(Q  P))  (Q  ~P))  ((Q  ~P)  (~(Q  P)))) in n4_61b.
  specialize Simp3_26 with (~(Q  P)→ (Q  ~P)) ((Q  ~P)→ (~(Q  P))).
  intros Simp3_26b.
  MP Simp3_26b n4_61b.
  specialize n5_1 with Q (~P).
  intros n5_1b.
  Syll Simp3_26b n5_1b Sb.
  specialize n4_12 with P Q.
  intros n4_12a.
  replace (Q↔~P) with (P↔~Q) in Sb.
  specialize n2_54 with (QP) (P↔~Q).
  intros n2_54b.
  MP n2_54b Sb.
  clear n4_61a. clear Simp3_26a. clear n5_1a. clear n2_54a. clear n4_61b. clear Simp3_26b. clear n5_1b. clear n4_12a. clear n2_54b.
  replace (~(P  Q)  P  ~Q) with (~~ (P  Q)  (P  ~Q)) in Sa.
  replace (~~(PQ)) with (PQ) in Sa.
  replace (~(Q  P)  (P  ~Q)) with (~~(Q  P)  (P  ~Q)) in Sb.
  replace (~~(QP)) with (QP) in Sb.
  Conj Sa Sb.
  split.
  apply Sa.
  apply Sb.
  specialize n4_41 with (P↔~Q) (PQ) (QP).
  intros n4_41a.
  replace ((P  Q)  (P  ~Q)) with ((P  ~Q)  (P  Q)) in H.
  replace ((Q  P)  (P  ~Q)) with ((P  ~Q)  (Q  P)) in H.
  replace (((P  ~Q)  (P  Q))  ((P  ~Q)  (Q  P))) with ((P  ~Q)  (P  Q)  (Q  P)) in H.
  replace ((PQ)  (Q  P)) with (PQ) in H.
  replace ((P  ~Q)  (P  Q)) with ((P  Q)  (P  ~Q)) in H.
  apply H.
  apply EqBi.
  apply n4_31.
  apply Equiv4_01.
  apply EqBi.
  apply n4_41a.
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_13.
  replace (~~(Q  P)  (P  ~Q)) with (~(Q  P)  (P  ~Q)).
  reflexivity.
  apply Impl1_01.
  apply EqBi.
  apply n4_13.
  replace (~~ (P  Q)  (P  ~Q)) with (~(P  Q)  P  ~Q).
  reflexivity.
  apply Impl1_01.
  apply EqBi.
  apply n4_12a.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

Theorem n5_16 :  P Q : Prop,
  ~((P  Q)  (P  ~Q)).
  Proof. intros P Q.
  specialize Simp3_26 with ((PQ)∧ (P  ~Q)) (QP).
  intros Simp3_26a.
  specialize n2_08 with ((P  Q)  (P  ~Q)).
  intros n2_08a.
  replace (((P  Q)  (P  ~Q))  (Q  P)) with ((P  Q)  ((P  ~Q)  (Q  P))) in Simp3_26a.
  replace ((P  ~Q)  (Q  P)) with ((Q  P)  (P  ~Q)) in Simp3_26a.
  replace ((PQ)  (Q  P)∧ (P  ~Q)) with (((PQ)  (Q  P))  (P  ~Q)) in Simp3_26a.
  replace ((P  Q)  (Q  P)) with (PQ) in Simp3_26a.
  Syll n2_08a Simp3_26a Sa.
  specialize n4_82 with P Q.
  intros n4_82a.
  replace ((P  Q)  (P  ~Q)) with (~P) in Sa.
  specialize Simp3_27 with (PQ) ((QP)∧ (P  ~Q)).
  intros Simp3_27a.
  replace ((PQ)  (Q  P)∧ (P  ~Q)) with (((PQ)  (Q  P))  (P  ~Q)) in Simp3_27a.
  replace ((P  Q)  (Q  P)) with (PQ) in Simp3_27a.
  specialize Syll3_33 with Q P (~Q).
  intros Syll3_33a.
  Syll Simp3_27a Syll2_06a Sb.
  specialize Abs2_01 with Q.
  intros Abs2_01a.
  Syll Sb Abs2_01a Sc.
  clear Sb. clear Simp3_26a. clear n2_08a. clear n4_82a. clear Simp3_27a. clear Syll3_33a. clear Abs2_01a.
  Conj Sa Sc.
  split.
  apply Sa.
  apply Sc.
  specialize Comp3_43 with ((P  Q)  (P  ~Q)) (~P) (~Q).
  intros Comp3_43a.
  MP Comp3_43a H.
  specialize n4_65 with Q P.
  intros n4_65a.
  replace (~Q  ~P) with (~P  ~Q) in n4_65a.
  replace (~P  ~Q) with (~(~QP)) in Comp3_43a.
  specialize Exp3_3 with (PQ) (P→~Q) (~(~QP)).
  intros Exp3_3a.
  MP Exp3_3a Comp3_43a.
  replace ((P→~Q)→~(~QP)) with (~(P→~Q)∨~(~QP)) in Exp3_3a.
  specialize n4_51 with (P→~Q) (~QP).
  intros n4_51a.
  replace (~(P  ~Q)  ~(~Q  P)) with (~((P  ~Q)  (~Q  P))) in Exp3_3a.
  replace ((P→~Q)  (~ Q  P)) with (P↔~Q) in Exp3_3a.
  replace ((PQ)→~(P↔~Q)) with (~(PQ)∨~(P↔~Q)) in Exp3_3a.
  specialize n4_51 with (PQ) (P↔~Q).
  intros n4_51b.
  replace (~(P  Q)  ~(P  ~Q)) with (~((P  Q)  (P  ~Q))) in Exp3_3a.
  apply Exp3_3a.
  apply EqBi.
  apply n4_51b.
  replace (~(P  Q)  ~(P  ~Q)) with (P  Q  ~(P  ~Q)).
  reflexivity.
  apply Impl1_01.
  apply Equiv4_01.
  apply EqBi.
  apply n4_51a.
  replace (~(P  ~Q)  ~(~Q  P)) with ((P  ~Q)  ~(~Q  P)).
  reflexivity.
  apply Impl1_01.
  apply EqBi.
  apply n4_65a.
  apply EqBi.
  apply n4_3.
  apply Equiv4_01.
  apply EqBi.
  apply n4_32.
  replace (~P) with ((P  Q)  (P  ~Q)).
  reflexivity.
  apply EqBi.
  apply n4_82a.
  apply Equiv4_01.
  apply EqBi.
  apply n4_32.
  apply EqBi.
  apply n4_3.
  replace ((P  Q)  (P  ~Q)  (Q  P)) with (((P  Q)  (P  ~Q))  (Q  P)).
  reflexivity.
  apply EqBi.
  apply n4_32.
  Qed.

Theorem n5_17 :  P Q : Prop,
  ((P  Q)  ~(P  Q))  (P  ~Q).
  Proof. intros P Q.
  specialize n4_64 with Q P.
  intros n4_64a.
  specialize n4_21 with (QP) (~QP).
  intros n4_21a.
  replace ((~QP)↔(QP)) with ((QP)↔(~QP)) in n4_64a.
  replace (QP) with (PQ) in n4_64a.
  specialize n4_63 with P Q.
  intros n4_63a.
  replace (~(P  ~Q)  P  Q) with (P  Q  ~(P  ~Q)) in n4_63a.
  specialize Trans4_11 with (PQ) (~(P→~Q)).
  intros Trans4_11a.
  replace (~~(P→~Q)) with (P→~Q) in Trans4_11a.
  replace (P  Q  ~(P  ~Q)) with (~(P  Q)  (P  ~Q)) in n4_63a.
  clear Trans4_11a. clear n4_21a.
  Conj n4_64a n4_63a.
  split.
  apply n4_64a.
  apply n4_63a.
  specialize n4_38 with (P  Q) (~(P  Q)) (~Q  P) (P  ~Q).
  intros n4_38a.
  MP n4_38a H.
  replace ((~QP)  (P  ~Q)) with (~QP) in n4_38a.
  specialize n4_21 with P (~Q).
  intros n4_21b.
  replace (~QP) with (P↔~Q) in n4_38a.
  apply n4_38a.
  apply EqBi.
  apply n4_21b.
  apply Equiv4_01.
  replace (~(P  Q)  (P  ~Q)) with (P  Q  ~(P  ~Q)).
  reflexivity.
  apply EqBi.
  apply Trans4_11a.
  apply EqBi.
  apply n4_13.
  apply EqBi.
  apply n4_21.
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_21a.
  Qed.

Theorem n5_18 :  P Q : Prop,
  (P  Q)  ~(P  ~Q).
  Proof. intros P Q.
  specialize n5_15 with P Q.
  intros n5_15a.
  specialize n5_16 with P Q.
  intros n5_16a.
  Conj n5_15a n5_16a.
  split.
  apply n5_15a.
  apply n5_16a.
  specialize n5_17 with (PQ) (P↔~Q).
  intros n5_17a.
  replace ((P  Q)  ~(P  ~Q)) with (((P  Q)  (P  ~Q))  ~((P  Q)  (P  ~Q))).
  apply H.
  apply EqBi.
  apply n5_17a.
  Qed.

Theorem n5_19 :  P : Prop,
  ~(P  ~P).
  Proof. intros P.
  specialize n5_18 with P P.
  intros n5_18a.
  specialize n4_2 with P.
  intros n4_2a.
  replace (~(P↔~P)) with (PP).
  apply n4_2a.
  apply EqBi.
  apply n5_18a.
  Qed.

Theorem n5_21 :  P Q : Prop,
  (~P  ~Q)  (P  Q).
  Proof. intros P Q.
  specialize n5_1 with (~P) (~Q).
  intros n5_1a.
  specialize Trans4_11 with P Q.
  intros Trans4_11a.
  replace (~P↔~Q) with (PQ) in n5_1a.
  apply n5_1a.
  apply EqBi.
  apply Trans4_11a.
  Qed.

Theorem n5_22 :  P Q : Prop,
  ~(P  Q)  ((P  ~Q)  (Q  ~P)).
  Proof. intros P Q.
  specialize n4_61 with P Q.
  intros n4_61a.
  specialize n4_61 with Q P.
  intros n4_61b.
  Conj n4_61a n4_61b.
  split.
  apply n4_61a.
  apply n4_61b.
  specialize n4_39 with (~(P  Q)) (~(Q  P)) (P  ~Q) (Q  ~P).
  intros n4_39a.
  MP n4_39a H.
  specialize n4_51 with (PQ) (QP).
  intros n4_51a.
  replace (~(P  Q)  ~(Q  P)) with (~((P  Q)  (Q  P))) in n4_39a.
  replace ((P  Q)  (Q  P)) with (PQ) in n4_39a.
  apply n4_39a.
  apply Equiv4_01.
  apply EqBi.
  apply n4_51a.
  Qed.

Theorem n5_23 :  P Q : Prop,
  (P  Q)  ((P  Q)  (~P  ~Q)).
  Proof. intros P Q.
  specialize n5_18 with P Q.
  intros n5_18a.
  specialize n5_22 with P (~Q).
  intros n5_22a.
  specialize n4_13 with Q.
  intros n4_13a.
  replace (~(P↔~Q)) with ((P  ~~Q)  (~Q  ~P)) in n5_18a.
  replace (~~Q) with Q in n5_18a.
  replace (~Q  ~P) with (~P  ~Q) in n5_18a.
  apply n5_18a.
  apply EqBi.
  apply n4_3. (*with (~P) (~Q)*)
  apply EqBi.
  apply n4_13a.
  replace (P∧~~Q∨~Q∧~P) with (~(P↔~Q)).
  reflexivity.
  apply EqBi.
  apply n5_22a.
  Qed. (*The proof sketch in Principia offers n4_36, but we found it far simpler to simply use the commutativity of conjunction (n4_3).*)

Theorem n5_24 :  P Q : Prop,
  ~((P  Q)  (~P  ~Q))  ((P  ~Q)  (Q  ~P)).
  Proof. intros P Q.
  specialize n5_22 with P Q.
  intros n5_22a.
  specialize n5_23 with P Q.
  intros n5_23a.
  replace ((PQ)↔((P Q) ∨(~P  ~Q))) with ((~(PQ)↔~((P Q) ∨(~P  ~Q)))) in n5_23a.
  replace (~(PQ)) with (~((P  Q)  (~P  ~Q))) in n5_22a.
  apply n5_22a.
  replace (~((P  Q)  (~P  ~Q))) with (~(P  Q)).
  reflexivity.
  apply EqBi.
  apply n5_23a.
  replace (~(P  Q)  ~(P  Q  ~P  ~Q)) with ((P  Q)  P  Q  ~P  ~Q).
  reflexivity.
  specialize Trans4_11 with (PQ) (P  Q  ~P  ~Q).
  intros Trans4_11a.
  apply EqBi.
  apply Trans4_11a.
  Qed. (*Note that Trans4_11 is not cited explicitly.*)

Theorem n5_25 :  P Q : Prop,
  (P  Q)  ((P  Q)  Q).
  Proof. intros P Q.
  specialize n2_62 with P Q.
  intros n2_62a.
  specialize n2_68 with P Q.
  intros n2_68a.
  Conj n2_62a n2_68a.
  split.
  apply n2_62a.
  apply n2_68a.
  Equiv H.
  apply H.
  apply Equiv4_01.
  Qed.

Theorem n5_3 :  P Q R : Prop,
  ((P  Q)  R)  ((P  Q)  (P  R)).
  Proof. intros P Q R.
  specialize Comp3_43 with (P  Q) P R.
  intros Comp3_43a.
  specialize Exp3_3 with (P  Q  P) (P  Q R) (P  Q  P  R).
  intros Exp3_3a.
  MP Exp3_3a Comp3_43a.
  specialize Simp3_26 with P Q.
  intros Simp3_26a.
  MP Exp3_3a Simp3_26a.
  specialize Syll2_05 with (P  Q) (P  R) R.
  intros Syll2_05a.
  specialize Simp3_27 with P R.
  intros Simp3_27a.
  MP Syll2_05a Simp3_27a.
  clear Comp3_43a. clear Simp3_27a. clear Simp3_26a.
  Conj Exp3_3a Syll2_05a.
  split.
  apply Exp3_3a.
  apply Syll2_05a.
  Equiv H.
  apply H.
  apply Equiv4_01.
  Qed. (*Note that Exp is not cited in the proof sketch, but seems necessary.*)

Theorem n5_31 :  P Q R : Prop,
  (R  (P  Q))  (P  (Q  R)).
  Proof. intros P Q R.
  specialize Comp3_43 with P Q R.
  intros Comp3_43a.
  specialize n2_02 with P R.
  intros n2_02a.
  replace ((PQ)  (PR)) with ((PR)  (PQ)) in Comp3_43a.
  specialize Exp3_3 with (PR) (PQ) (P→(Q  R)).
  intros Exp3_3a.
  MP Exp3_3a Comp3_43a.
  Syll n2_02a Exp3_3a Sa.
  specialize Imp3_31 with R (PQ) (P→(Q  R)).
  intros Imp3_31a.
  MP Imp3_31a Sa.
  apply Imp3_31a.
  apply EqBi.
  apply n4_3. (*with (P→R)∧(P→Q)).*)
  Qed. (*Note that Exp, Imp, and n4_3 are not cited in the proof sketch.*)

Theorem n5_32 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  (P  R)).
  Proof. intros P Q R.
  specialize n4_76 with P (QR) (RQ).
  intros n4_76a.
  specialize Exp3_3 with P Q R.
  intros Exp3_3a.
  specialize Imp3_31 with P Q R.
  intros Imp3_31a.
  Conj Exp3_3a Imp3_31a.
  split.
  apply Exp3_3a.
  apply Imp3_31a.
  Equiv H.
  specialize Exp3_3 with P R Q.
  intros Exp3_3b.
  specialize Imp3_31 with P R Q.
  intros Imp3_31b.
  Conj Exp3_3b Imp3_31b.
  split.
  apply Exp3_3b.
  apply Imp3_31b.
  Equiv H0.
  specialize n5_3 with P Q R.
  intros n5_3a.
  specialize n5_3 with P R Q.
  intros n5_3b.
  replace (PQR) with (PQR) in n4_76a.
  replace (PQR) with (PQPR) in n4_76a.
  replace (PRQ) with (PRQ) in n4_76a.
  replace (PRQ) with (PRPQ) in n4_76a.
  replace ((PQPR)∧(PRPQ)) with ((PQ)↔(PR)) in n4_76a.
  replace ((PQ  PR)↔(P→(QR)∧(RQ))) with ((P→(QR)∧(RQ))↔(PQ  PR)) in n4_76a.
  replace ((QR)∧(RQ)) with (QR) in n4_76a.
  apply n4_76a.
  apply Equiv4_01.
  apply EqBi.
  apply n4_3. (*to commute the biconditional to get the theorem.*)
  apply Equiv4_01.
  replace (P  R  P  Q) with (P  R  Q).
  reflexivity.
  apply EqBi.
  apply n5_3b.
  apply EqBi.
  apply H0.
  replace (P  Q  P  R) with (P  Q  R).
  reflexivity.
  apply EqBi.
  apply n5_3a.
  apply EqBi.
  apply H.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

Theorem n5_33 :  P Q R : Prop,
  (P  (Q  R))  (P  ((P  Q)  R)).
  Proof. intros P Q R.
    specialize n5_32 with P (QR) ((PQ)→R).
    intros n5_32a.
    replace ((P→(QR)↔(PQR))↔(P∧(QR)↔P∧(PQR))) with (((P→(QR)↔(PQR))→(P∧(QR)↔P∧(PQR)))∧((P∧(QR)↔P∧(PQR)→(P→(QR)↔(PQR))))) in n5_32a.
    specialize Simp3_26 with ((P→(QR)↔(PQR))→(P∧(QR)↔P∧(PQR))) ((P∧(QR)↔P∧(PQR)→(P→(QR)↔(PQR)))). (*Not cited.*)
    intros Simp3_26a.
    MP Simp3_26a n5_32a.
    specialize n4_73 with Q P.
    intros n4_73a.
    specialize n4_84 with Q (QP) R.
    intros n4_84a.
    Syll n4_73a n4_84a Sa.
    replace (QP) with (PQ) in Sa.
    MP Simp3_26a Sa.
    apply Simp3_26a.
    apply EqBi.
    apply n4_3. (*Not cited.*)
    apply Equiv4_01.
  Qed.

Theorem n5_35 :  P Q R : Prop,
  ((P  Q)  (P  R))  (P  (Q  R)).
  Proof. intros P Q R.
  specialize Comp3_43 with P Q R.
  intros Comp3_43a.
  specialize n5_1 with Q R.
  intros n5_1a.
  specialize Syll2_05 with P (QR) (QR).
  intros Syll2_05a.
  MP Syll2_05a n5_1a.
  Syll Comp3_43a Syll2_05a Sa.
  apply Sa.
  Qed.

Theorem n5_36 :  P Q : Prop,
  (P  (P  Q))  (Q  (P  Q)).
  Proof. intros P Q.
  specialize n5_32 with (PQ) P Q.
  intros n5_32a.
  specialize n2_08 with (PQ).
  intros n2_08a.
  replace (PQPQ) with ((PQ)∧P↔(PQ)∧Q) in n2_08a.
  replace ((PQ)∧P) with (P∧(PQ)) in n2_08a.
  replace ((PQ)∧Q) with (Q∧(PQ)) in n2_08a.
  apply n2_08a.
  apply EqBi.
  apply n4_3.
  apply EqBi.
  apply n4_3.
  replace ((P  Q)  P  (P  Q)  Q) with (P  Q  P  Q).
  reflexivity.
  apply EqBi.
  apply n5_32a.
  Qed. (*The proof sketch cites Ass3_35 and n4_38. Since I couldn't decipher how that proof would go, I used a different one invoking other theorems.*)

Theorem n5_4 :  P Q : Prop,
  (P  (P  Q))  (P  Q).
  Proof. intros P Q.
  specialize n2_43 with P Q.
  intros n2_43a.
  specialize n2_02 with (P) (PQ).
  intros n2_02a.
  Conj n2_43a n2_02a.
  split.
  apply n2_43a.
  apply n2_02a.
  Equiv H.
  apply H.
  apply Equiv4_01.
  Qed.

Theorem n5_41 :  P Q R : Prop,
  ((P  Q)  (P  R))  (P  Q  R).
  Proof. intros P Q R.
  specialize n2_86 with P Q R.
  intros n2_86a.
  specialize n2_77 with P Q R.
  intros n2_77a.
  Conj n2_86a n2_77a.
  split.
  apply n2_86a.
  apply n2_77a.
  Equiv H.
  apply H.
  apply Equiv4_01.
  Qed.

Theorem n5_42 :  P Q R : Prop,
  (P  Q  R)  (P  Q  P  R).
  Proof. intros P Q R.
  specialize n5_3 with P Q R.
  intros n5_3a.
  specialize n4_87 with P Q R.
  intros n4_87a.
  replace ((PQ)→R) with (PQR) in n5_3a.
  specialize n4_87 with P Q (PR).
  intros n4_87b.
  replace ((PQ)→(PR)) with (PQ→(PR)) in n5_3a.
  apply n5_3a.
  specialize Imp3_31 with P Q (PR).
  intros Imp3_31b.
  specialize Exp3_3 with P Q (PR).
  intros Exp3_3b.
  Conj Imp3_31b Exp3_3b.
  split.
  apply Imp3_31b.
  apply Exp3_3b.
  Equiv H.
  apply EqBi.
  apply H.
  apply Equiv4_01.
  specialize Imp3_31 with P Q R.
  intros Imp3_31a.
  specialize Exp3_3 with P Q R.
  intros Exp3_3a.
  Conj Imp3_31a Exp3_3.
  split.
  apply Imp3_31a.
  apply Exp3_3a.
  Equiv H.
  apply EqBi.
  apply H.
  apply Equiv4_01.
  Qed. (*The law n4_87 is really unwieldy to use in Coq. It is actually easier to introduce the subformula of the importation-exportation law required and apply that biconditional. It may be worthwhile in later parts of PM to prove a derived rule that allows us to manipulate a biconditional's subformulas that are biconditionals.*)

Theorem n5_44 :  P Q R : Prop,
  (PQ)  ((P  R)  (P  (Q  R))).
  Proof. intros P Q R.
  specialize n4_76 with P Q R.
  intros n4_76a.
  replace ((PQ)∧(PR)↔(PQR)) with (((PQ)∧(PR)→(PQR))∧((PQR)→(PQ)∧(PR))) in n4_76a.
  specialize Simp3_26 with ((PQ)∧(PR)→(PQR)) ((PQR)→(PQ)∧(PR)).
  intros Simp3_26a. (*Not cited.*)
  MP Simp3_26a n4_76a.
  specialize Exp3_3 with (PQ) (PR) (PQR).
  intros Exp3_3a. (*Not cited.*)
  MP Exp3_3a Simp3_26a.
  specialize Simp3_27 with ((PQ)∧(PR)→(PQR)) ((PQR)→(PQ)∧(PR)).
  intros Simp3_27a. (*Not cited.*)
  MP Simp3_27a n4_76a.
  specialize Simp3_26 with (PR) (PQ).
  intros Simp3_26b.
  replace ((PQ)∧(PR)) with ((PR)∧(PQ)) in Simp3_27a.
  Syll Simp3_27a Simp3_26b Sa.
  specialize n2_02 with (PQ) ((PQR)→PR).
  intros n2_02a. (*Not cited.*)
  MP n2_02a Sa.
  clear Sa. clear Simp3_26b. clear Simp3_26a. clear n4_76a. clear Simp3_27a.
  Conj Exp3_3a n2_02a.
  split.
  apply Exp3_3a.
  apply n2_02a.
  specialize n4_76 with (PQ) ((PR)→(P→(QR))) ((P→(QR))→(PR)).
  intros n4_76b.
  replace (((PQ)→(PR)→PQR)∧((PQ)→(PQR)→PR)) with ((PQ)→((PR)→PQR)∧((PQR)→PR)) in H.
  replace (((PR)→PQR)∧((PQR)→PR)) with ((PR)↔(PQR)) in H.
  apply H.
  apply Equiv4_01.
  replace ((PQ)→((PR)→PQR)∧((PQR)→PR)) with (((PQ)→(PR)→PQR)∧((PQ)→(PQR)→PR)).
  reflexivity.
  apply EqBi.
  apply n4_76b.
  apply EqBi.
  apply n4_3. (*Not cited.*)
  apply Equiv4_01.
  Qed. (*This proof does not use either n5_3 or n5_32. It instead uses four propositions not cited in the proof sketch, plus a second use of n4_76.*)

Theorem n5_5 :  P Q : Prop,
  P  ((P  Q)  Q).
  Proof. intros P Q.
  specialize Ass3_35 with P Q.
  intros Ass3_35a.
  specialize Exp3_3 with P (PQ) Q.
  intros Exp3_3a.
  MP Exp3_3a Ass3_35a.
  specialize n2_02 with P Q.
  intros n2_02a.
  specialize Exp3_3 with P Q (PQ).
  intros Exp3_3b.
  specialize n3_42 with P Q (PQ). (*Not mentioned explicitly.*)
  intros n3_42a.
  MP n3_42a n2_02a.
  MP Exp3_3b n3_42a.
  clear n3_42a. clear n2_02a. clear Ass3_35a.
  Conj Exp3_3a Exp3_3b.
  split.
  apply Exp3_3a.
  apply Exp3_3b.
  specialize n3_47 with P P ((PQ)→Q) (Q→(PQ)).
  intros n3_47a.
  MP n3_47a H.
  replace (PP) with P in n3_47a.
  replace (((PQ)→Q)∧(Q→(PQ))) with ((PQ)↔Q) in n3_47a.
  apply n3_47a.
  apply Equiv4_01.
  apply EqBi.
  apply n4_24. (*with P.*)
  Qed.

Theorem n5_501 :  P Q : Prop,
  P  (Q  (P  Q)).
  Proof. intros P Q.
  specialize n5_1 with P Q.
  intros n5_1a.
  specialize Exp3_3 with P Q (PQ).
  intros Exp3_3a.
  MP Exp3_3a n5_1a.
  specialize Ass3_35 with P Q.
  intros Ass3_35a.
  specialize Simp3_26 with (P∧(PQ)) (QP).
  intros Simp3_26a. (*Not cited.*)
  Syll Simp3_26a Ass3_35a Sa.
  replace ((P∧(PQ))∧(QP)) with (P∧((PQ)∧(QP))) in Sa.
  replace ((PQ)∧(QP)) with (PQ) in Sa.
  specialize Exp3_3 with P (PQ) Q.
  intros Exp3_3b.
  MP Exp3_3b Sa.
  clear n5_1a. clear Ass3_35a. clear Simp3_26a. clear Sa.
  Conj Exp3_3a Exp3_3b.
  split.
  apply Exp3_3a.
  apply Exp3_3b.
  specialize n4_76 with P (Q→(PQ)) ((PQ)→Q).
  intros n4_76a. (*Not cited.*)
  replace ((PQPQ)∧(PPQQ)) with ((P→(QPQ)∧(PQQ))) in H.
  replace ((Q→(PQ))∧((PQ)→Q)) with (Q↔(PQ)) in H.
  apply H.
  apply Equiv4_01.
  replace (P→(QPQ)∧(PQQ)) with ((PQPQ)∧(PPQQ)).
  reflexivity.
  apply EqBi.
  apply n4_76a.
  apply Equiv4_01.
  replace (P∧(PQ)∧(QP)) with ((P∧(PQ))∧(QP)).
  reflexivity.
  apply EqBi.
  apply n4_32. (*Not cited.*)
  Qed.

Theorem n5_53 :  P Q R S : Prop,
  (((P  Q)  R)  S)  (((P  S)  (Q  S))  (R  S)).
  Proof. intros P Q R S.
  specialize n4_77 with S (PQ) R.
  intros n4_77a.
  specialize n4_77 with S P Q.
  intros n4_77b.
  replace (P  Q  S) with ((PS)∧(QS)) in n4_77a.
  replace ((((PS)∧(QS))∧(RS))↔(((PQ)∨R)→S)) with ((((PQ)∨R)→S)↔(((PS)∧(QS))∧(RS))) in n4_77a.
  apply n4_77a.
  apply EqBi.
  apply n4_3. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_77b.
  Qed.

Theorem n5_54 :  P Q : Prop,
  ((P  Q)  P)  ((P  Q)  Q).
  Proof. intros P Q.
  specialize n4_73 with P Q.
  intros n4_73a.
  specialize n4_44 with Q P.
  intros n4_44a.
  specialize Trans2_16 with Q (P↔(PQ)).
  intros Trans2_16a.
  MP n4_73a Trans2_16a.
  specialize Trans4_11 with Q (Q∨(PQ)).
  intros Trans4_11a.
  replace (QP) with (PQ) in n4_44a.
  replace (QQPQ) with (~Q↔~(QPQ)) in n4_44a.
  replace (~Q) with (~(QPQ)) in Trans2_16a.
  replace (~(QPQ)) with (~Q∧~(PQ)) in Trans2_16a.
  specialize n5_1 with (~Q) (~(PQ)).
  intros n5_1a.
  Syll Trans2_16a n5_1a Sa.
  replace (~(PPQ)→(~Q↔~(PQ))) with (~~(PPQ)∨(~Q↔~(PQ))) in Sa.
  replace (~~(PPQ)) with (PPQ) in Sa.
  specialize Trans4_11 with Q (PQ).
  intros Trans4_11b.
  replace (~Q↔~(PQ)) with (Q↔(PQ)) in Sa.
  replace (Q↔(PQ)) with ((PQ)↔Q) in Sa.
  replace (P↔(PQ)) with ((PQ)↔P) in Sa.
  apply Sa.
  apply EqBi.
  apply n4_21. (*Not cited.*)
  apply EqBi.
  apply n4_21. 
  apply EqBi.
  apply Trans4_11b.
  apply EqBi.
  apply n4_13. (*Not cited.*)
  replace (~~(PPQ)∨(~Q↔~(PQ))) with (~(PPQ)→~Q↔~(PQ)).
  reflexivity.
  apply Impl1_01. (*Not cited.*)
  apply EqBi.
  apply n4_56. (*Not cited.*)
  replace (~(QPQ)) with (~Q).
  reflexivity.
  apply EqBi.
  apply n4_44a.
  replace (~Q↔~(QPQ)) with (QQPQ).
  reflexivity.
  apply EqBi.
  apply Trans4_11a.
  apply EqBi.
  apply n4_3. (*Not cited.*)
  Qed. 

Theorem n5_55 :  P Q : Prop,
  ((P  Q)  P)  ((P  Q)  Q).
  Proof. intros P Q.
  specialize Add1_3 with (PQ) (P).
  intros Add1_3a.
  replace ((PQ)∨P) with ((PP)∧(QP)) in Add1_3a.
  replace (PP) with P in Add1_3a.
  replace (QP) with (PQ) in Add1_3a.
  specialize n5_1 with P (PQ).
  intros n5_1a.
  Syll Add1_3a n5_1a Sa.
  specialize n4_74 with P Q.
  intros n4_74a.
  specialize Trans2_15 with P (QPQ).
  intros Trans2_15a. (*Not cited.*)
  MP Trans2_15a n4_74a.
  Syll Trans2_15a Sa Sb.
  replace (~(Q↔(PQ))→(P↔(PQ))) with (~~(Q↔(PQ))∨(P↔(PQ))) in Sb.
  replace (~~(Q↔(PQ))) with (Q↔(PQ)) in Sb.
  replace (Q↔(PQ)) with ((PQ)↔Q) in Sb.
  replace (P↔(PQ)) with ((PQ)↔P) in Sb.
  replace ((PQQ)∨(PQP)) with ((PQP)∨(PQQ)) in Sb.
  apply Sb.
  apply EqBi.
  apply n4_31. (*Not cited.*)
  apply EqBi.
  apply n4_21. (*Not cited.*)
  apply EqBi.
  apply n4_21.
  apply EqBi.
  apply n4_13. (*Not cited.*)
  replace (~~(QPQ)∨(PPQ)) with (~(QPQ)→PPQ).
  reflexivity.
  apply Impl1_01.
  apply EqBi.
  apply n4_31. 
  apply EqBi.
  apply n4_25. (*Not cited.*)
  replace ((PP)∧(QP)) with ((PQ)∨P).
  reflexivity.
  replace ((PQ)∨P) with (P∨(PQ)).
  replace (QP) with (PQ).
  apply EqBi.
  apply n4_41. (*Not cited.*)
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_31.
  Qed.

Theorem n5_6 :  P Q R : Prop,
  ((P  ~Q)  R)  (P  (Q  R)).
  Proof. intros P Q R.
  specialize n4_87 with P (~Q) R.
  intros n4_87a.
  specialize n4_64 with Q R.
  intros n4_64a.
  specialize n4_85 with P Q R.
  intros n4_85a.
  replace (((P  ~Q  R)  (P  ~Q  R))  ((~Q  P  R)  (~Q  P  R))) with ((((P  ~Q  R)  (P  ~Q  R))  ((~Q  P  R)  (~Q  P  R)))∧((((~Q  P  R)  (~Q  P  R)))→(((P  ~Q  R)  (P  ~Q  R))))) in n4_87a.
  specialize Simp3_27 with (((P  ~Q  R)  (P  ~Q  R)  (~Q  P  R)  (~Q  P  R))) (((~Q  P  R)  (~Q  P  R)  (P  ~Q  R)  (P  ~Q  R))).
  intros Simp3_27a.
  MP Simp3_27a n4_87a.
  specialize Imp3_31 with (~Q) P R.
  intros Imp3_31a.
  specialize Exp3_3 with (~Q) P R.
  intros Exp3_3a.
  Conj Imp3_31a Exp3_3a.
  split.
  apply Imp3_31a.
  apply Exp3_3a.
  Equiv H.
  MP Simp3_27a H.
  replace (~QR) with (QR) in Simp3_27a.
  apply Simp3_27a.
  replace (Q  R) with (~Q  R).
  reflexivity.
  apply EqBi.
  apply n4_64a.
  apply Equiv4_01.
  apply Equiv4_01.  
  Qed. (*A fair amount of manipulation was needed here to pull the relevant biconditional out of the biconditional of biconditionals.*)

Theorem n5_61 :  P Q : Prop,
  ((P  Q)  ~Q)  (P  ~Q).
  Proof. intros P Q.
  specialize n4_74 with Q P.
  intros n4_74a.
  specialize n5_32 with (~Q) P (QP).
  intros n5_32a.
  replace (~Q  P  Q  P) with (~Q  P  ~Q  (Q  P)) in n4_74a.
  replace (~QP) with (P∧~Q) in n4_74a.
  replace (~Q∧(QP)) with ((QP)∧~Q) in n4_74a.
  replace (QP) with (PQ) in n4_74a.
  replace (P  ~Q  (P  Q)  ~Q) with ((P  Q)  ~Q  P  ~Q) in n4_74a.
  apply n4_74a.
  apply EqBi.
  apply n4_3. (*Not cited exlicitly.*)
  apply EqBi.
  apply n4_31. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_3. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_3. (*Not cited explicitly.*)
  replace (~Q  P  ~Q  (Q  P)) with (~Q  P  Q  P).
  reflexivity.
  apply EqBi.
  apply n5_32a.
  Qed.

Theorem n5_62 :  P Q : Prop,
  ((P  Q)  ~Q)  (P  ~Q).
  Proof. intros P Q.
  specialize n4_7 with Q P.
  intros n4_7a.
  replace (QP) with (~QP) in n4_7a.
  replace (Q→(QP)) with (~Q∨(QP)) in n4_7a.
  replace (~Q∨(QP)) with ((QP)∨~Q) in n4_7a.
  replace (~QP) with (P∨~Q) in n4_7a.
  replace (QP) with (PQ) in n4_7a.
  replace (P  ~Q  P  Q  ~Q) with (P  Q  ~Q  P  ~Q) in n4_7a.
  apply n4_7a.
  apply EqBi.
  apply n4_21. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_3. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_31. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_31. (*Not cited explicitly.*)
  replace (~Q  Q  P) with (Q  Q  P).
  reflexivity.
  apply EqBi.
  apply n4_6. (*Not cited explicitly.*)
  replace (~Q  P) with (Q  P).
  reflexivity.
  apply EqBi.
  apply n4_6. (*Not cited explicitly.*)
  Qed.

Theorem n5_63 :  P Q : Prop,
  (P  Q)  (P  (~P  Q)).
  Proof. intros P Q.
  specialize n5_62 with Q (~P).
  intros n5_62a.
  replace (~~P) with P in n5_62a.
  replace (Q  P) with (P  Q) in n5_62a.
  replace ((Q∧~P)∨P) with (P∨(Q∧~P)) in n5_62a.
  replace (P  Q  ~ P  P  Q) with (P  Q  P  Q  ~ P) in n5_62a.
  replace (Q∧~P) with (~PQ) in n5_62a.
  apply n5_62a.
  apply EqBi.
  apply n4_3. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_21. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_31. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_31. (*Not cited explicitly.*)
  apply EqBi.
  apply n4_13. (*Not cited explicitly.*)
  Qed.

Theorem n5_7 :  P Q R : Prop,
  ((P  R)  (Q  R))  (R  (P  Q)).
  Proof. intros P Q R.
  specialize n5_32 with (~R) (~P) (~Q).
  intros n5_32a. (*Not cited.*)
  replace (~R∧~P) with (~(RP)) in n5_32a.
  replace (~R∧~Q) with (~(RQ)) in n5_32a.
  replace ((~(RP))↔(~(RQ))) with ((RP)↔(RQ)) in n5_32a.
  replace ((~P)↔(~Q)) with (PQ) in n5_32a.
  replace (~R→(PQ)) with (~~R∨(PQ)) in n5_32a.
  replace (~~R) with R in n5_32a.
  replace (RP) with (PR) in n5_32a.
  replace (RQ) with (QR) in n5_32a.
  replace ((R∨(PQ))↔(PRQR)) with ((PRQR)↔(R∨(PQ))) in n5_32a.
  apply n5_32a. (*Not cited.*)
  apply EqBi.
  apply n4_21. (*Not cited.*)
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_31.
  apply EqBi.
  apply n4_13. (*Not cited.*)
  replace (~~R∨(PQ)) with (~RPQ).
  reflexivity.
  apply Impl1_01. (*Not cited.*)
  apply EqBi.
  apply Trans4_11. (*Not cited.*)
  apply EqBi.
  apply Trans4_11.
  replace (~(RQ)) with (~R∧~Q).
  reflexivity.
  apply EqBi.
  apply n4_56. (*Not cited.*)
  replace (~(RP)) with (~R∧~P).
  reflexivity.
  apply EqBi.
  apply n4_56.
  Qed. (*The proof sketch was indecipherable, but an easy proof was available through n5_32.*)

Theorem n5_71 :  P Q R : Prop,
  (Q  ~R)  (((P  Q)  R)  (P  R)).
  Proof. intros P Q R.
  specialize n4_4 with R P Q.
  intros n4_4a.
  specialize n4_62 with Q R.
  intros n4_62a.
  specialize n4_51 with Q R.
  intros n4_51a.
  replace (~Q∨~R) with (~(QR)) in n4_62a.
  replace ((Q→~R)↔~(QR)) with (((Q→~R)→~(QR))∧(~(QR)→(Q→~R))) in n4_62a.
  specialize Simp3_26 with ((Q→~R)→~(QR)) (~(QR)→(Q→~R)).
  intros Simp3_26a.
  MP Simp3_26a n4_62a.
  specialize n4_74 with (QR) (PR).
  intros n4_74a.
  Syll Simp3_26a n4_74a Sa.
  replace (RP) with (PR) in n4_4a.
  replace (RQ) with (QR) in n4_4a.
  replace ((PR)∨(QR)) with ((QR)∨(PR)) in n4_4a.
  replace ((QR)∨(PR)) with (R∧(PQ)) in Sa.
  replace (R∧(PQ)) with ((PQ)∧R) in Sa.
  replace ((PR)↔((PQ)∧R)) with (((PQ)∧R)↔(PR)) in Sa.
  apply Sa.
  apply EqBi.
  apply n4_21. (*Not cited.*)
  apply EqBi.
  apply n4_3. (*Not cited.*)
  apply EqBi.
  apply n4_4a. (*Not cited.*)
  apply EqBi.
  apply n4_31. (*Not cited.*)
  apply EqBi.
  apply n4_3. (*Not cited.*)
  apply EqBi.
  apply n4_3. (*Not cited.*)
  apply Equiv4_01.
  apply EqBi.
  apply n4_51a.
  Qed.

Theorem n5_74 :  P Q R : Prop,
  (P  (Q  R))  ((P  Q)  (P  R)).
  Proof. intros P Q R.
  specialize n5_41 with P Q R.
  intros n5_41a.
  specialize n5_41 with P R Q.
  intros n5_41b.
  Conj n5_41a n5_41b.
  split.
  apply n5_41a.
  apply n5_41b.
  specialize n4_38 with ((PQ)→(PR)) ((PR)→(PQ)) (PQR) (PRQ).
  intros n4_38a.
  MP n4_38a H.
  replace (((PQ)→(PR))∧((PR)→(PQ))) with ((PQ)↔(PR)) in n4_38a.
  specialize n4_76 with P (QR) (RQ).
  intros n4_76a.
  replace ((QR)∧(RQ)) with (QR) in n4_76a.
  replace ((PQR)∧(PRQ)) with (P→(QR)) in n4_38a.
  replace (((PQ)↔(PR))↔(PQR)) with ((P→(QR))↔((PQ)↔(PR))) in n4_38a.
  apply n4_38a.
  apply EqBi.
  apply n4_21. (*Not cited.*)
  replace (PQR) with ((PQR)∧(PRQ)).
  reflexivity.
  apply EqBi.
  apply n4_76a.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

Theorem n5_75 :  P Q R : Prop,
  ((R  ~Q)  (P  Q  R))  ((P  ~Q)  R).
  Proof. intros P Q R.
  specialize n5_6 with P Q R.
  intros n5_6a.
  replace ((P∧~QR)↔(PQR)) with (((P∧~QR)→(PQR))∧((PQR)→(P∧~QR))) in n5_6a.
  specialize Simp3_27 with ((P∧~QR)→(PQR)) ((PQR)→(P∧~QR)).
  intros Simp3_27a.
  MP Simp3_27a n5_6a.
  specialize Simp3_26 with (P→(QR)) ((QR)→P).
  intros Simp3_26a.
  replace ((P→(QR))∧((QR)→P)) with (P↔(QR)) in Simp3_26a.
  Syll Simp3_26a Simp3_27a Sa.
  specialize Simp3_27 with (R→~Q) (P↔(QR)).
  intros Simp3_27b.
  Syll Simp3_27b Sa Sb.
  specialize Simp3_27 with (P→(QR)) ((QR)→P).
  intros Simp3_27c.
  replace ((P→(QR))∧((QR)→P)) with (P↔(QR)) in Simp3_27c.
  Syll Simp3_27b Simp3_27c Sc.
  specialize n4_77 with P Q R.
  intros n4_77a.
  replace (QRP) with ((QP)∧(RP)) in Sc.
  specialize Simp3_27 with (QP) (RP).
  intros Simp3_27d.
  Syll Sa Simp3_27d Sd.
  specialize Simp3_26 with (R→~Q) (P↔(QR)).
  intros Simp3_26b.
  Conj Sd Simp3_26b.
  split.
  apply Sd.
  apply Simp3_26b.
  specialize Comp3_43 with ((R→~Q)∧(P↔(QR))) (RP) (R→~Q).
  intros Comp3_43a.
  MP Comp3_43a H.
  specialize Comp3_43 with R P (~Q).
  intros Comp3_43b.
  Syll Comp3_43a Comp3_43b Se.
  clear n5_6a. clear Simp3_27a. clear Simp3_27b. clear Simp3_27c. clear Simp3_27d. clear Simp3_26a. clear Simp3_26b. clear Comp3_43a. clear Comp3_43b. clear Sa. clear Sc. clear Sd. clear H. clear n4_77a.
  Conj Sb Se.
  split.
  apply Sb.
  apply Se.
  specialize Comp3_43 with ((R→~Q)∧(PQR)) (P∧~QR) (RP∧~Q).
  intros Comp3_43c.
  MP Comp3_43c H.
  replace ((P∧~QR)∧(RP∧~Q)) with (P∧~QR) in Comp3_43c.
  apply Comp3_43c.
  apply Equiv4_01.
  apply EqBi.
  apply n4_77a.
  apply Equiv4_01.
  apply Equiv4_01.
  apply Equiv4_01.
  Qed.

End No5.