summaryrefslogtreecommitdiff
path: root/PL.v
diff options
context:
space:
mode:
Diffstat (limited to 'PL.v')
-rw-r--r--PL.v246
1 files changed, 151 insertions, 95 deletions
diff --git a/PL.v b/PL.v
index bbb7f97..8e6bc44 100644
--- a/PL.v
+++ b/PL.v
@@ -1,39 +1,95 @@
Require Import Unicode.Utf8.
+Require Import Classical_Prop.
+Require Import ClassicalFacts.
+Require Import PropExtensionality.
Module No1.
Import Unicode.Utf8.
+Import ClassicalFacts.
+Import Classical_Prop.
+Import PropExtensionality.
+
(*We first give the axioms of Principia
for the propositional calculus in *1.*)
-Axiom Impl1_01 : ∀ P Q : Prop,
- (P → Q) = (¬P ∨ Q).
+Theorem Impl1_01 : ∀ P Q : Prop,
+ (P → Q) = (¬P ∨ Q).
+Proof. intros P Q.
+ apply propositional_extensionality.
+ split.
+ apply imply_to_or.
+ apply or_to_imply.
+Qed.
(*This is a definition in Principia: there → is a
defined sign and ∨, ¬ are primitive ones. So
we will use this axiom to switch between
disjunction and implication.*)
-Axiom MP1_1 : ∀ P Q : Prop,
+Theorem MP1_1 : ∀ P Q : Prop,
(P → Q) → P → Q. (*Modus ponens*)
-
+Proof. intros P Q.
+ intros iff_refl.
+ apply iff_refl.
+Qed.
(*1.11 ommitted: it is MP for propositions
containing variables. Likewise, ommitted
the well-formedness rules 1.7, 1.71, 1.72*)
-Axiom Taut1_2 : ∀ P : Prop,
+Theorem Taut1_2 : ∀ P : Prop,
P ∨ P → P. (*Tautology*)
+Proof. intros P.
+ apply imply_and_or.
+ apply iff_refl.
+Qed.
-Axiom Add1_3 : ∀ P Q : Prop,
+Theorem Add1_3 : ∀ P Q : Prop,
Q → P ∨ Q. (*Addition*)
+Proof. intros P Q.
+ apply or_intror.
+Qed.
-Axiom Perm1_4 : ∀ P Q : Prop,
+Theorem Perm1_4 : ∀ P Q : Prop,
P ∨ Q → Q ∨ P. (*Permutation*)
+Proof. intros P Q.
+ apply or_comm.
+Qed.
-Axiom Assoc1_5 : ∀ P Q R : Prop,
+Theorem Assoc1_5 : ∀ P Q R : Prop,
P ∨ (Q ∨ R) → Q ∨ (P ∨ R). (*Association*)
+Proof. intros P Q R.
+ specialize or_assoc with P Q R.
+ intros or_assoc1.
+ replace (P∨Q∨R) with ((P∨Q)∨R).
+ specialize or_comm with P Q.
+ intros or_comm1.
+ replace (P∨Q) with (Q∨P).
+ specialize or_assoc with Q P R.
+ intros or_assoc2.
+ replace ((Q∨P)∨R) with (Q∨P∨R).
+ apply iff_refl.
+ apply propositional_extensionality.
+ apply iff_sym.
+ apply or_assoc2.
+ apply propositional_extensionality.
+ apply or_comm.
+ apply propositional_extensionality.
+ apply or_assoc.
+Qed.
-Axiom Sum1_6: ∀ P Q R : Prop,
+Theorem Sum1_6 : ∀ P Q R : Prop,
(Q → R) → (P ∨ Q → P ∨ R). (*Summation*)
-
+Proof. intros P Q R.
+ specialize imply_and_or2 with Q R P.
+ intros imply_and_or2a.
+ replace (P∨Q) with (Q∨P).
+ replace (P∨R) with (R∨P).
+ apply imply_and_or2a.
+ apply propositional_extensionality.
+ apply or_comm.
+ apply propositional_extensionality.
+ apply or_comm.
+Qed.
+
(*These are all the propositional axioms of Principia.*)
End No1.
@@ -637,7 +693,7 @@ Proof. intros P Q.
MP Syll2_06a Perm1_4a.
Syll n2_55a Syll2_06a Sa.
apply Sa.
- Qed.
+Qed.
Theorem n2_6 : ∀ P Q : Prop,
(¬P→Q) → ((P → Q) → Q).
@@ -1547,7 +1603,7 @@ Theorem n4_12 : ∀ P Q : Prop,
rewrite <- Equiv4_01 in H.
rewrite <- Equiv4_01 in H.
apply H.
- Qed.
+Qed.
Theorem n4_13 : ∀ P : Prop,
P ↔ ¬¬P.
@@ -1563,7 +1619,7 @@ Theorem n4_13 : ∀ P : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_14 : ∀ P Q R : Prop,
((P ∧ Q) → R) ↔ ((P ∧ ¬R) → ¬Q).
@@ -1631,7 +1687,7 @@ Theorem n4_15 : ∀ P Q R : Prop,
apply Equiv4_01.
apply EqBi.
apply n4_13a.
- Qed.
+Qed.
Theorem n4_2 : ∀ P : Prop,
P ↔ P.
@@ -1645,7 +1701,7 @@ Theorem n4_2 : ∀ P : Prop,
Equiv n3_2a.
apply n3_2a.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_21 : ∀ P Q : Prop,
(P ↔ Q) ↔ (Q ↔ P).
@@ -1789,9 +1845,9 @@ Theorem n4_31 : ∀ P Q : Prop,
apply Equiv4_01.
Qed.
- Theorem n4_32 : ∀ P Q R : Prop,
+Theorem n4_32 : ∀ P Q R : Prop,
((P ∧ Q) ∧ R) ↔ (P ∧ (Q ∧ R)).
- Proof. intros P Q R.
+ Proof. intros P Q R.
specialize n4_15 with P Q R.
intros n4_15a.
specialize Transp4_1 with P (¬(Q ∧ R)).
@@ -1828,7 +1884,7 @@ Qed.
specialize n4_13 with (Q ∧ R).
intros n4_13a.
apply n4_13a.
- Qed.
+Qed.
(*Note that the actual proof uses n4_12, but
that transposition involves transforming a
biconditional into a conditional. This theorem
@@ -1850,10 +1906,10 @@ Theorem n4_33 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Axiom Abb4_34 : ∀ P Q R : Prop,
- P ∧ Q ∧ R = ((P ∧ Q) ∧ R).
+ (P ∧ Q ∧ R) = ((P ∧ Q) ∧ R).
(*This axiom ensures left association of brackets.
Coq's default is right association. But Principia
proves associativity of logical product as n4_32.
@@ -1882,7 +1938,7 @@ Proof. intros P Q R.
apply n3_47a.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_37 : ∀ P Q R : Prop,
(P ↔ Q) → ((P ∨ R) ↔ (Q ∨ R)).
@@ -1915,7 +1971,7 @@ Proof. intros P Q R.
apply n4_31b.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_38 : ∀ P Q R S : Prop,
((P ↔ R) ∧ (Q ↔ S)) → ((P ∧ Q) ↔ (R ∧ S)).
@@ -1986,7 +2042,7 @@ Proof. intros P Q R S.
reflexivity.
apply EqBi.
apply n4_32a.
- Qed.
+Qed.
Theorem n4_39 : ∀ P Q R S : Prop,
((P ↔ R) ∧ (Q ↔ S)) → ((P ∨ Q) ↔ (R ∨ S)).
@@ -2057,7 +2113,7 @@ Proof. intros P Q R S.
apply EqBi.
apply n4_32a.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_4 : ∀ P Q R : Prop,
(P ∧ (Q ∨ R)) ↔ ((P∧ Q) ∨ (P ∧ R)).
@@ -2266,7 +2322,7 @@ Theorem n4_44 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_45 : ∀ P Q : Prop,
P ↔ (P ∧ (P ∨ Q)).
@@ -2303,7 +2359,7 @@ Theorem n4_5 : ∀ P Q : Prop,
replace (¬(¬P ∨ ¬Q)) with (P ∧ Q).
apply n4_2a.
apply Prod3_01.
- Qed.
+Qed.
Theorem n4_51 : ∀ P Q : Prop,
¬(P ∧ Q) ↔ (¬P ∨ ¬Q).
@@ -2327,7 +2383,7 @@ Theorem n4_51 : ∀ P Q : Prop,
apply n4_21b.
apply EqBi.
apply EqBi.
- Qed.
+Qed.
Theorem n4_52 : ∀ P Q : Prop,
(P ∧ ¬Q) ↔ ¬(¬P ∨ Q).
@@ -2340,7 +2396,7 @@ Theorem n4_52 : ∀ P Q : Prop,
intros n4_13a.
apply EqBi.
apply n4_13a.
- Qed.
+Qed.
Theorem n4_53 : ∀ P Q : Prop,
¬(P ∧ ¬Q) ↔ (¬P ∨ Q).
@@ -2362,7 +2418,7 @@ Theorem n4_53 : ∀ P Q : Prop,
apply n4_21a.
apply EqBi.
apply EqBi.
- Qed.
+Qed.
Theorem n4_54 : ∀ P Q : Prop,
(¬P ∧ Q) ↔ ¬(P ∨ ¬Q).
@@ -2375,7 +2431,7 @@ Theorem n4_54 : ∀ P Q : Prop,
apply n4_5a.
apply EqBi.
apply n4_13a.
- Qed.
+Qed.
Theorem n4_55 : ∀ P Q : Prop,
¬(¬P ∧ Q) ↔ (P ∨ ¬Q).
@@ -2402,7 +2458,7 @@ Theorem n4_55 : ∀ P Q : Prop,
(¬P∧Q↔¬(P∨¬Q)).
intros n4_21b.
apply n4_21.
- Qed.
+Qed.
Theorem n4_56 : ∀ P Q : Prop,
(¬P ∧ ¬Q) ↔ ¬(P ∨ Q).
@@ -2415,7 +2471,7 @@ Theorem n4_56 : ∀ P Q : Prop,
specialize n4_13 with Q.
intros n4_13a.
apply n4_13a.
- Qed.
+Qed.
Theorem n4_57 : ∀ P Q : Prop,
¬(¬P ∧ ¬Q) ↔ (P ∨ Q).
@@ -2442,7 +2498,7 @@ Theorem n4_57 : ∀ P Q : Prop,
(P ∨ Q ↔ ¬(¬P ∧ ¬Q)) (¬P ∧ ¬Q ↔ ¬(P ∨ Q)).
intros n4_21b.
apply n4_21b.
- Qed.
+Qed.
Theorem n4_6 : ∀ P Q : Prop,
(P → Q) ↔ (¬P ∨ Q).
@@ -2451,7 +2507,7 @@ Theorem n4_6 : ∀ P Q : Prop,
intros n4_2a.
rewrite Impl1_01.
apply n4_2a.
- Qed.
+Qed.
Theorem n4_61 : ∀ P Q : Prop,
¬(P → Q) ↔ (P ∧ ¬Q).
@@ -2477,7 +2533,7 @@ Theorem n4_61 : ∀ P Q : Prop,
((P→Q)↔(¬P∨Q)).
intros n4_21a.
apply n4_21a.
- Qed.
+Qed.
Theorem n4_62 : ∀ P Q : Prop,
(P → ¬Q) ↔ (¬P ∨ ¬Q).
@@ -2485,7 +2541,7 @@ Theorem n4_62 : ∀ P Q : Prop,
specialize n4_6 with P (¬Q).
intros n4_6a.
apply n4_6a.
- Qed.
+Qed.
Theorem n4_63 : ∀ P Q : Prop,
¬(P → ¬Q) ↔ (P ∧ Q).
@@ -2511,7 +2567,7 @@ Theorem n4_63 : ∀ P Q : Prop,
apply n4_21a.
apply EqBi.
apply n4_5a.
- Qed.
+Qed.
Theorem n4_64 : ∀ P Q : Prop,
(¬P → Q) ↔ (P ∨ Q).
@@ -2527,7 +2583,7 @@ Theorem n4_64 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_65 : ∀ P Q : Prop,
¬(¬P → Q) ↔ (¬P ∧ ¬Q).
@@ -2553,7 +2609,7 @@ Theorem n4_65 : ∀ P Q : Prop,
((¬P → Q)↔(P ∨ Q)).
intros n4_21a.
apply n4_21a.
- Qed.
+Qed.
Theorem n4_66 : ∀ P Q : Prop,
(¬P → ¬Q) ↔ (P ∨ ¬Q).
@@ -2561,7 +2617,7 @@ Theorem n4_66 : ∀ P Q : Prop,
specialize n4_64 with P (¬Q).
intros n4_64a.
apply n4_64a.
- Qed.
+Qed.
Theorem n4_67 : ∀ P Q : Prop,
¬(¬P → ¬Q) ↔ (¬P ∧ Q).
@@ -2587,7 +2643,7 @@ Theorem n4_67 : ∀ P Q : Prop,
((¬P → ¬Q)↔(P ∨ ¬Q)).
intros n4_21a.
apply n4_21a.
- Qed.
+Qed.
(*Return to this proof.*)
(*We did get one half of the ↔.*)
@@ -2616,7 +2672,7 @@ Theorem n4_7 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_71 : ∀ P Q : Prop,
(P → Q) ↔ (P ↔ (P ∧ Q)).
@@ -2651,7 +2707,7 @@ Theorem n4_71 : ∀ P Q : Prop,
apply Equiv4_01.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_72 : ∀ P Q : Prop,
(P → Q) ↔ (Q ↔ (P ∨ Q)).
@@ -2705,7 +2761,7 @@ Theorem n4_72 : ∀ P Q : Prop,
specialize n4_21 with (Q ∨ P) (¬(¬Q ∧ ¬P)).
intros n4_21b.
apply n4_21b.
- Qed.
+Qed.
Theorem n4_73 : ∀ P Q : Prop,
Q → (P ↔ (P ∧ Q)).
@@ -2723,7 +2779,7 @@ Theorem n4_73 : ∀ P Q : Prop,
Syll Simp2_02a Simp3_26a Sa.
apply Sa.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_74 : ∀ P Q : Prop,
¬P → (Q ↔ (P ∨ Q)).
@@ -2742,7 +2798,7 @@ Theorem n4_74 : ∀ P Q : Prop,
specialize n4_21 with (Q↔(P ∨ Q)) (P → Q).
intros n4_21a.
apply n4_21a.
- Qed.
+Qed.
Theorem n4_76 : ∀ P Q R : Prop,
((P → Q) ∧ (P → R)) ↔ (P → (Q ∧ R)).
@@ -2762,7 +2818,7 @@ Theorem n4_76 : ∀ P Q R : Prop,
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
- Qed.
+Qed.
Theorem n4_77 : ∀ P Q R : Prop,
((Q → P) ∧ (R → P)) ↔ ((Q ∨ R) → P).
@@ -2796,7 +2852,7 @@ Theorem n4_77 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_78 : ∀ P Q R : Prop,
((P → Q) ∨ (P → R)) ↔ (P → (Q ∨ R)).
@@ -2859,7 +2915,7 @@ Theorem n4_78 : ∀ P Q R : Prop,
rewrite <- Impl1_01.
rewrite <- Impl1_01.
reflexivity.
- Qed.
+Qed.
Theorem n4_79 : ∀ P Q R : Prop,
((Q → P) ∨ (R → P)) ↔ ((Q ∧ R) → P).
@@ -2933,7 +2989,7 @@ Theorem n4_79 : ∀ P Q R : Prop,
rewrite <- Prod3_01 in n4_22b.
apply n4_22b.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_8 : ∀ P : Prop,
(P → ¬P) ↔ ¬P.
@@ -2949,7 +3005,7 @@ Theorem n4_8 : ∀ P : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_81 : ∀ P : Prop,
(¬P → P) ↔ P.
@@ -2965,7 +3021,7 @@ Theorem n4_81 : ∀ P : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_82 : ∀ P Q : Prop,
((P → Q) ∧ (P → ¬Q)) ↔ ¬P.
@@ -2995,7 +3051,7 @@ Theorem n4_82 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_83 : ∀ P Q : Prop,
((P → Q) ∧ (¬P → Q)) ↔ Q.
@@ -3025,7 +3081,7 @@ Theorem n4_83 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_84 : ∀ P Q R : Prop,
(P ↔ Q) → ((P → R) ↔ (Q → R)).
@@ -3055,7 +3111,7 @@ Theorem n4_84 : ∀ P Q R : Prop,
apply n4_21a.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n4_85 : ∀ P Q R : Prop,
(P ↔ Q) → ((R → P) ↔ (R → Q)).
@@ -3111,7 +3167,7 @@ Theorem n4_86 : ∀ P Q R : Prop,
specialize n4_21 with P Q.
intros n4_21a.
apply n4_21a.
- Qed.
+Qed.
Theorem n4_87 : ∀ P Q R : Prop,
(((P ∧ Q) → R) ↔ (P → Q → R)) ↔
@@ -3167,7 +3223,7 @@ Theorem n4_87 : ∀ P Q R : Prop,
apply Equiv4_01.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
End No4.
@@ -3205,7 +3261,7 @@ Theorem n5_1 : ∀ P Q : Prop,
reflexivity.
apply EqBi.
apply n4_76a.
- Qed.
+Qed.
Theorem n5_11 : ∀ P Q : Prop,
(P → Q) ∨ (¬P → Q).
@@ -3216,7 +3272,7 @@ Theorem n5_11 : ∀ P Q : Prop,
intros n2_54a.
MP n2_54a n2_5a.
apply n2_54a.
- Qed.
+Qed.
(*The proof sketch cites n2_51,
but this may be a misprint.*)
@@ -3229,7 +3285,7 @@ Theorem n5_12 : ∀ P Q : Prop,
intros n2_54a.
MP n2_54a n2_5a.
apply n2_54a.
- Qed.
+Qed.
(*The proof sketch cites n2_52,
but this may be a misprint.*)
@@ -3248,7 +3304,7 @@ Theorem n5_13 : ∀ P Q : Prop,
apply n4_13a.
rewrite <- Impl1_01.
reflexivity.
- Qed.
+Qed.
Theorem n5_14 : ∀ P Q R : Prop,
(P → Q) ∨ (Q → R).
@@ -3271,7 +3327,7 @@ Theorem n5_14 : ∀ P Q R : Prop,
apply n4_13a.
rewrite <- Impl1_01.
reflexivity.
- Qed.
+Qed.
Theorem n5_15 : ∀ P Q : Prop,
(P ↔ Q) ∨ (P ↔ ¬Q).
@@ -3357,7 +3413,7 @@ Theorem n5_15 : ∀ P Q : Prop,
apply n4_12a.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_16 : ∀ P Q : Prop,
¬((P ↔ Q) ∧ (P ↔ ¬Q)).
@@ -3466,7 +3522,7 @@ Theorem n5_16 : ∀ P Q : Prop,
specialize n4_32 with (P→Q) (P→¬Q) (Q→P).
intros n4_32a.
apply n4_32a.
- Qed.
+Qed.
Theorem n5_17 : ∀ P Q : Prop,
((P ∨ Q) ∧ ¬(P ∧ Q)) ↔ (P ↔ ¬Q).
@@ -3525,7 +3581,7 @@ Theorem n5_17 : ∀ P Q : Prop,
apply n4_31a.
apply EqBi.
apply n4_21a.
- Qed.
+Qed.
Theorem n5_18 : ∀ P Q : Prop,
(P ↔ Q) ↔ ¬(P ↔ ¬Q).
@@ -3545,7 +3601,7 @@ Theorem n5_18 : ∀ P Q : Prop,
apply H.
apply EqBi.
apply n5_17a.
- Qed.
+Qed.
Theorem n5_19 : ∀ P : Prop,
¬(P ↔ ¬P).
@@ -3558,7 +3614,7 @@ Theorem n5_19 : ∀ P : Prop,
apply n4_2a.
apply EqBi.
apply n5_18a.
- Qed.
+Qed.
Theorem n5_21 : ∀ P Q : Prop,
(¬P ∧ ¬Q) → (P ↔ Q).
@@ -3571,7 +3627,7 @@ Theorem n5_21 : ∀ P Q : Prop,
apply n5_1a.
apply EqBi.
apply Transp4_11a.
- Qed.
+Qed.
Theorem n5_22 : ∀ P Q : Prop,
¬(P ↔ Q) ↔ ((P ∧ ¬Q) ∨ (Q ∧ ¬P)).
@@ -3598,7 +3654,7 @@ Theorem n5_22 : ∀ P Q : Prop,
apply Equiv4_01.
apply EqBi.
apply n4_51a.
- Qed.
+Qed.
Theorem n5_23 : ∀ P Q : Prop,
(P ↔ Q) ↔ ((P ∧ Q) ∨ (¬P ∧ ¬Q)).
@@ -3626,9 +3682,9 @@ Theorem n5_23 : ∀ P Q : Prop,
specialize n4_13 with Q.
intros n4_13a.
apply n4_13a.
- Qed.
+Qed.
(*The proof sketch in Principia offers n4_36.
- This seems to be a misprint. We used n4_3.*)
+ This seems to be a misprint. We used n4_3.*)
Theorem n5_24 : ∀ P Q : Prop,
¬((P ∧ Q) ∨ (¬P ∧ ¬Q)) ↔ ((P ∧ ¬Q) ∨ (Q ∧ ¬P)).
@@ -3654,7 +3710,7 @@ Theorem n5_24 : ∀ P Q : Prop,
intros Transp4_11a.
apply EqBi.
apply Transp4_11a. (*Not cited*)
- Qed.
+Qed.
Theorem n5_25 : ∀ P Q : Prop,
(P ∨ Q) ↔ ((P → Q) → Q).
@@ -3670,7 +3726,7 @@ Theorem n5_25 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_3 : ∀ P Q R : Prop,
((P ∧ Q) → R) ↔ ((P ∧ Q) → (P ∧ R)).
@@ -3698,7 +3754,7 @@ Theorem n5_3 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_31 : ∀ P Q R : Prop,
(R ∧ (P → Q)) → (P → (Q ∧ R)).
@@ -3719,7 +3775,7 @@ Theorem n5_31 : ∀ P Q R : Prop,
intros Imp3_31a. (*Not cited*)
MP Imp3_31a Sb.
apply Imp3_31a.
- Qed.
+Qed.
Theorem n5_32 : ∀ P Q R : Prop,
(P → (Q ↔ R)) ↔ ((P ∧ Q) ↔ (P ∧ R)).
@@ -3779,7 +3835,7 @@ Theorem n5_32 : ∀ P Q R : Prop,
apply H.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_33 : ∀ P Q R : Prop,
(P ∧ (Q → R)) ↔ (P ∧ ((P ∧ Q) → R)).
@@ -3811,7 +3867,7 @@ Theorem n5_33 : ∀ P Q R : Prop,
intros n4_3a.
apply n4_3a. (*Not cited*)
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_35 : ∀ P Q R : Prop,
((P → Q) ∧ (P → R)) → (P → (Q ↔ R)).
@@ -3825,7 +3881,7 @@ Theorem n5_35 : ∀ P Q R : Prop,
MP Syll2_05a n5_1a.
Syll Comp3_43a Syll2_05a Sa.
apply Sa.
- Qed.
+Qed.
Theorem n5_36 : ∀ P Q : Prop,
(P ∧ (P ↔ Q)) ↔ (Q ∧ (P ↔ Q)).
@@ -3852,7 +3908,7 @@ Theorem n5_36 : ∀ P Q : Prop,
reflexivity.
apply EqBi.
apply n5_32a.
- Qed.
+Qed.
(*The proof sketch cites Ass3_35 and n4_38,
but the sketch was indecipherable.*)
@@ -3870,7 +3926,7 @@ Theorem n5_4 : ∀ P Q : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_41 : ∀ P Q R : Prop,
((P → Q) → (P → R)) ↔ (P → Q → R).
@@ -3886,7 +3942,7 @@ Theorem n5_41 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_42 : ∀ P Q R : Prop,
(P → Q → R) ↔ (P → Q → P ∧ R).
@@ -3925,7 +3981,7 @@ Theorem n5_42 : ∀ P Q R : Prop,
apply EqBi.
apply H.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_44 : ∀ P Q R : Prop,
(P→Q) → ((P → R) ↔ (P → (Q ∧ R))).
@@ -3992,7 +4048,7 @@ Theorem n5_44 : ∀ P Q R : Prop,
apply EqBi.
apply n4_21a.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_5 : ∀ P Q : Prop,
P → ((P → Q) ↔ Q).
@@ -4027,7 +4083,7 @@ Theorem n5_5 : ∀ P Q : Prop,
specialize n4_24 with P.
intros n4_24a. (*Not cited*)
apply n4_24a.
- Qed.
+Qed.
Theorem n5_501 : ∀ P Q : Prop,
P → (Q ↔ (P ↔ Q)).
@@ -4075,7 +4131,7 @@ Theorem n5_501 : ∀ P Q : Prop,
specialize n4_32 with P (P→Q) (Q→P).
intros n4_32a. (*Not cited*)
apply n4_32a.
- Qed.
+Qed.
Theorem n5_53 : ∀ P Q R S : Prop,
(((P ∨ Q) ∨ R) → S) ↔ (((P → S) ∧ (Q → S)) ∧ (R → S)).
@@ -4098,7 +4154,7 @@ Theorem n5_53 : ∀ P Q R S : Prop,
apply n4_21a. (*Not cited*)
apply EqBi.
apply n4_77b.
- Qed.
+Qed.
Theorem n5_54 : ∀ P Q : Prop,
((P ∧ Q) ↔ P) ∨ ((P ∧ Q) ↔ Q).
@@ -4162,7 +4218,7 @@ Theorem n5_54 : ∀ P Q : Prop,
specialize n4_3 with P Q.
intros n4_3a. (*Not cited*)
apply n4_3a.
- Qed.
+Qed.
Theorem n5_55 : ∀ P Q : Prop,
((P ∨ Q) ↔ P) ∨ ((P ∨ Q) ↔ Q).
@@ -4231,7 +4287,7 @@ Theorem n5_55 : ∀ P Q : Prop,
specialize n4_31 with P (P ∧ Q).
intros n4_31d. (*Not cited*)
apply n4_31d.
- Qed.
+Qed.
Theorem n5_6 : ∀ P Q R : Prop,
((P ∧ ¬Q) → R) ↔ (P → (Q ∨ R)).
@@ -4271,7 +4327,7 @@ Theorem n5_6 : ∀ P Q R : Prop,
apply n4_64a.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_61 : ∀ P Q : Prop,
((P ∨ Q) ∧ ¬Q) ↔ (P ∧ ¬Q).
@@ -4309,7 +4365,7 @@ Theorem n5_61 : ∀ P Q : Prop,
reflexivity.
apply EqBi.
apply n5_32a.
- Qed.
+Qed.
Theorem n5_62 : ∀ P Q : Prop,
((P ∧ Q) ∨ ¬Q) ↔ (P ∨ ¬Q).
@@ -4344,7 +4400,7 @@ Theorem n5_62 : ∀ P Q : Prop,
reflexivity.
rewrite <- Impl1_01.
reflexivity.
- Qed.
+Qed.
Theorem n5_63 : ∀ P Q : Prop,
(P ∨ Q) ↔ (P ∨ (¬P ∧ Q)).
@@ -4378,7 +4434,7 @@ Theorem n5_63 : ∀ P Q : Prop,
specialize n4_13 with P.
intros n4_13a. (*Not cited*)
apply n4_13a.
- Qed.
+Qed.
Theorem n5_7 : ∀ P Q R : Prop,
((P ∨ R) ↔ (Q ∨ R)) ↔ (R ∨ (P ↔ Q)).
@@ -4582,7 +4638,7 @@ Theorem n5_71 : ∀ P Q R : Prop,
intros n4_31b. (*Not cited*)
apply n4_31b.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_74 : ∀ P Q R : Prop,
(P → (Q ↔ R)) ↔ ((P → Q) ↔ (P → R)).
@@ -4621,7 +4677,7 @@ Theorem n5_74 : ∀ P Q R : Prop,
apply n4_76a.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
Theorem n5_75 : ∀ P Q R : Prop,
((R → ¬Q) ∧ (P ↔ Q ∨ R)) → ((P ∧ ¬Q) ↔ R).
@@ -4695,6 +4751,6 @@ Theorem n5_75 : ∀ P Q R : Prop,
apply Equiv4_01.
apply Equiv4_01.
apply Equiv4_01.
- Qed.
+Qed.
End No5. \ No newline at end of file