summaryrefslogtreecommitdiff
path: root/No4.v
diff options
context:
space:
mode:
Diffstat (limited to 'No4.v')
-rw-r--r--No4.v1410
1 files changed, 1410 insertions, 0 deletions
diff --git a/No4.v b/No4.v
new file mode 100644
index 0000000..f4eecce
--- /dev/null
+++ b/No4.v
@@ -0,0 +1,1410 @@
+Require Import Unicode.Utf8.
+
+Module No1.
+Import Unicode.Utf8.
+ (*We first give the axioms of Principia
+for the propositional calculus in *1.*)
+
+Axiom MP1_1 : ∀ P Q : Prop,
+ (P → Q) → P → Q. (*Modus ponens*)
+
+ (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*)
+
+Axiom Taut1_2 : ∀ P : Prop, P ∨ P→ P. (*Tautology*)
+
+Axiom Add1_3 : ∀ P Q : Prop, Q → P ∨ Q. (*Addition*)
+
+Axiom Perm1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. (*Permutation*)
+
+Axiom Assoc1_5 : ∀ P Q R : Prop, P ∨ (Q ∨ R) → Q ∨ (P ∨ R).
+
+Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R).
+ (*These are all the propositional axioms of Principia Mathematica.*)
+
+Axiom Impl1_01 : ∀ P Q : Prop, (P → Q) = (~P ∨ Q).
+ (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. The purposes of giving this as an Axiom are two: first, to allow for the use of definitions in proofs, and second, to circumvent Coq's definitions of these primitive notions in Coq.*)
+
+End No1.
+
+Module No2.
+Import No1.
+
+(*We proceed to the deductions of *2 of Principia.*)
+
+Theorem Abs2_01 : ∀ P : Prop,
+ (P → ~P) → ~P.
+Proof. intros P.
+ specialize Taut1_2 with (~P).
+ replace (~P ∨ ~P) with (P → ~P).
+ apply MP1_1.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_02 : ∀ P Q : Prop,
+ Q → (P → Q).
+Proof. intros P Q.
+ specialize Add1_3 with (~P) Q.
+ replace (~P ∨ Q) with (P → Q).
+ apply (MP1_1 Q (P → Q)).
+ apply Impl1_01.
+Qed.
+
+Theorem n2_03 : ∀ P Q : Prop,
+ (P → ~Q) → (Q → ~P).
+Proof. intros P Q.
+ specialize Perm1_4 with (~P) (~Q).
+ replace (~P ∨ ~Q) with (P → ~Q). replace (~Q ∨ ~P) with (Q → ~P).
+ apply (MP1_1 (P → ~Q) (Q → ~P)).
+ apply Impl1_01.
+ apply Impl1_01.
+Qed.
+
+Theorem Comm2_04 : ∀ P Q R : Prop,
+ (P → (Q → R)) → (Q → (P → R)).
+Proof. intros P Q R.
+ specialize Assoc1_5 with (~P) (~Q) R.
+ replace (~Q ∨ R) with (Q → R).
+ replace (~P ∨ (Q → R)) with (P → (Q → R)).
+ replace (~P ∨ R) with (P → R).
+ replace (~Q ∨ (P → R)) with (Q → (P → R)).
+ apply (MP1_1 (P → Q → R) (Q → P → R)).
+ apply Impl1_01. apply Impl1_01.
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem Syll2_05 : ∀ P Q R : Prop,
+ (Q → R) → ((P → Q) → (P → R)).
+Proof. intros P Q R.
+ specialize Sum1_6 with (~P) Q R.
+ replace (~P ∨ Q) with (P → Q). replace (~P ∨ R) with (P → R).
+ apply (MP1_1 (Q → R) ((P → Q) → (P → R))).
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem Syll2_06 : ∀ P Q R : Prop,
+ (P → Q) → ((Q → R) → (P → R)).
+Proof. intros P Q R.
+ specialize Comm2_04 with (Q → R) (P → Q) (P → R). intros Comm2_04.
+ specialize Syll2_05 with P Q R. intros Syll2_05.
+ specialize MP1_1 with ((Q → R) → (P → Q) → P → R) ((P → Q) → ((Q → R) → (P → R))). intros MP1_1.
+ apply MP1_1.
+ apply Comm2_04.
+ apply Syll2_05.
+Qed.
+
+Theorem n2_07 : ∀ P : Prop,
+ P → (P ∨ P).
+Proof. intros P.
+ specialize Add1_3 with P P.
+ apply MP1_1.
+Qed.
+
+Theorem n2_08 : ∀ P : Prop,
+ P → P.
+Proof. intros P.
+ specialize Syll2_05 with P (P ∨ P) P. intros Syll2_05.
+ specialize Taut1_2 with P. intros Taut1_2.
+ specialize MP1_1 with ((P ∨ P) → P) (P → P). intros MP1_1.
+ apply Syll2_05.
+ apply Taut1_2.
+ apply n2_07.
+Qed.
+
+Theorem n2_1 : ∀ P : Prop,
+ (~P) ∨ P.
+Proof. intros P.
+ specialize n2_08 with P.
+ replace (~P ∨ P) with (P → P).
+ apply MP1_1.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_11 : ∀ P : Prop,
+ P ∨ ~P.
+Proof. intros P.
+ specialize Perm1_4 with (~P) P. intros Perm1_4.
+ specialize n2_1 with P. intros Abs2_01.
+ apply Perm1_4.
+ apply n2_1.
+Qed.
+
+Theorem n2_12 : ∀ P : Prop,
+ P → ~~P.
+Proof. intros P.
+ specialize n2_11 with (~P). intros n2_11.
+ rewrite Impl1_01. assumption.
+Qed.
+
+Theorem n2_13 : ∀ P : Prop,
+ P ∨ ~~~P.
+Proof. intros P.
+ specialize Sum1_6 with P (~P) (~~~P). intros Sum1_6.
+ specialize n2_12 with (~P). intros n2_12.
+ apply Sum1_6.
+ apply n2_12.
+ apply n2_11.
+Qed.
+
+Theorem n2_14 : ∀ P : Prop,
+ ~~P → P.
+Proof. intros P.
+ specialize Perm1_4 with P (~~~P). intros Perm1_4.
+ specialize n2_13 with P. intros n2_13.
+ rewrite Impl1_01.
+ apply Perm1_4.
+ apply n2_13.
+Qed.
+
+Theorem Trans2_15 : ∀ P Q : Prop,
+ (~P → Q) → (~Q → P).
+Proof. intros P Q.
+ specialize Syll2_05 with (~P) Q (~~Q). intros Syll2_05a.
+ specialize n2_12 with Q. intros n2_12.
+ specialize n2_03 with (~P) (~Q). intros n2_03.
+ specialize Syll2_05 with (~Q) (~~P) P. intros Syll2_05b.
+ specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P). intros Syll2_05c.
+ specialize Syll2_05 with (~P → Q) (~Q → ~~P) (~Q → P). intros Syll2_05d.
+ apply Syll2_05d.
+ apply Syll2_05b.
+ apply n2_14.
+ apply Syll2_05c.
+ apply n2_03.
+ apply Syll2_05a.
+ apply n2_12.
+Qed.
+
+Ltac Syll H1 H2 S :=
+ let S := fresh S in match goal with
+ | [ H1 : ?P → ?Q, H2 : ?Q → ?R |- _ ] =>
+ assert (S : P → R) by (intros p; apply (H2 (H1 p)))
+end.
+
+Ltac MP H1 H2 :=
+ match goal with
+ | [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
+end.
+
+Theorem Trans2_16 : ∀ P Q : Prop,
+ (P → Q) → (~Q → ~P).
+Proof. intros P Q.
+ specialize n2_12 with Q. intros n2_12a.
+ specialize Syll2_05 with P Q (~~Q). intros Syll2_05a.
+ specialize n2_03 with P (~Q). intros n2_03a.
+ MP n2_12a Syll2_05a.
+ Syll Syll2_05a n2_03a S.
+ apply S.
+Qed.
+
+Theorem Trans2_17 : ∀ P Q : Prop,
+ (~Q → ~P) → (P → Q).
+Proof. intros P Q.
+ specialize n2_03 with (~Q) P. intros n2_03a.
+ specialize n2_14 with Q. intros n2_14a.
+ specialize Syll2_05 with P (~~Q) Q. intros Syll2_05a.
+ MP n2_14a Syll2_05a.
+ Syll n2_03a Syll2_05a S.
+ apply S.
+Qed.
+
+Theorem n2_18 : ∀ P : Prop,
+ (~P → P) → P.
+Proof. intros P.
+ specialize n2_12 with P. intro n2_12a.
+ specialize Syll2_05 with (~P) P (~~P). intro Syll2_05a.
+ MP Syll2_05a n2_12.
+ specialize Abs2_01 with (~P). intros Abs2_01a.
+ Syll Syll2_05a Abs2_01a Sa.
+ specialize n2_14 with P. intros n2_14a.
+ Syll H n2_14a Sb.
+ apply Sb.
+Qed.
+
+Theorem n2_2 : ∀ P Q : Prop,
+ P → (P ∨ Q).
+Proof. intros P Q.
+ specialize Add1_3 with Q P. intros Add1_3a.
+ specialize Perm1_4 with Q P. intros Perm1_4a.
+ Syll Add1_3a Perm1_4a S.
+ apply S.
+Qed.
+
+Theorem n2_21 : ∀ P Q : Prop,
+ ~P → (P → Q).
+Proof. intros P Q.
+ specialize n2_2 with (~P) Q. intros n2_2a.
+ specialize Impl1_01 with P Q. intros Impl1_01a.
+ replace (~P∨Q) with (P→Q) in n2_2a.
+ apply n2_2a.
+Qed.
+
+Theorem n2_24 : ∀ P Q : Prop,
+ P → (~P → Q).
+Proof. intros P Q.
+ specialize n2_21 with P Q. intros n2_21a.
+ specialize Comm2_04 with (~P) P Q. intros Comm2_04a.
+ apply Comm2_04a.
+ apply n2_21a.
+Qed.
+
+Theorem n2_25 : ∀ P Q : Prop,
+ P ∨ ((P ∨ Q) → Q).
+Proof. intros P Q.
+ specialize n2_1 with (P ∨ Q). intros n2_1a.
+ specialize Assoc1_5 with (~(P∨Q)) P Q. intros Assoc1_5a.
+ MP Assoc1_5a n2_1a.
+ replace (~(P∨Q)∨Q) with (P∨Q→Q) in Assoc1_5a.
+ apply Assoc1_5a.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_26 : ∀ P Q : Prop,
+ ~P ∨ ((P → Q) → Q).
+Proof. intros P Q.
+ specialize n2_25 with (~P) Q. intros n2_25a.
+ replace (~P∨Q) with (P→Q) in n2_25a.
+ apply n2_25a.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_27 : ∀ P Q : Prop,
+ P → ((P → Q) → Q).
+Proof. intros P Q.
+ specialize n2_26 with P Q. intros n2_26a.
+ replace (~P∨((P→Q)→Q)) with (P→(P→Q)→Q) in n2_26a.
+ apply n2_26a.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_3 : ∀ P Q R : Prop,
+ (P ∨ (Q ∨ R)) → (P ∨ (R ∨ Q)).
+Proof. intros P Q R.
+ specialize Perm1_4 with Q R. intros Perm1_4a.
+ specialize Sum1_6 with P (Q∨R) (R∨Q). intros Sum1_6a.
+ MP Sum1_6a Perm1_4a.
+ apply Sum1_6a.
+Qed.
+
+Theorem n2_31 : ∀ P Q R : Prop,
+ (P ∨ (Q ∨ R)) → ((P ∨ Q) ∨ R).
+Proof. intros P Q R.
+ specialize n2_3 with P Q R. intros n2_3a.
+ specialize Assoc1_5 with P R Q. intros Assoc1_5a.
+ specialize Perm1_4 with R (P∨Q). intros Perm1_4a.
+ Syll Assoc1_5a Perm1_4a Sa.
+ Syll n2_3a Sa Sb.
+ apply Sb.
+Qed.
+
+Theorem n2_32 : ∀ P Q R : Prop,
+ ((P ∨ Q) ∨ R) → (P ∨ (Q ∨ R)).
+Proof. intros P Q R.
+ specialize Perm1_4 with (P∨Q) R. intros Perm1_4a.
+ specialize Assoc1_5 with R P Q. intros Assoc1_5a.
+ specialize n2_3 with P R Q. intros n2_3a.
+ specialize Syll2_06 with ((P∨Q)∨R) (R∨P∨Q) (P∨R∨Q). intros Syll2_06a.
+ MP Syll2_06a Perm1_4a.
+ MP Syll2_06a Assoc1_5a.
+ specialize Syll2_06 with ((P∨Q)∨R) (P∨R∨Q) (P∨Q∨R). intros Syll2_06b.
+ MP Syll2_06b Syll2_06a.
+ MP Syll2_06b n2_3a.
+ apply Syll2_06b.
+Qed.
+
+(* Axiom n2_33 : ∀ P Q R : Prop,
+ (P∨Q∨R)=((P∨Q)∨R)
+ This definition makes the default left association.*)
+
+Theorem n2_36 : ∀ P Q R : Prop,
+ (Q → R) → ((P ∨ Q) → (R ∨ P)).
+Proof. intros P Q R.
+ specialize Perm1_4 with P R. intros Perm1_4a.
+ specialize Syll2_05 with (P∨Q) (P∨R) (R∨P). intros Syll2_05a.
+ MP Syll2_05a Perm1_4a.
+ specialize Sum1_6 with P Q R. intros Sum1_6a.
+ Syll Sum1_6a Syll2_05a S.
+ apply S.
+Qed.
+
+Theorem n2_37 : ∀ P Q R : Prop,
+ (Q → R) → ((Q ∨ P) → (P ∨ R)).
+Proof. intros P Q R.
+ specialize Perm1_4 with Q P. intros Perm1_4a.
+ specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a.
+ MP Syll2_05a Perm1_4a.
+ specialize Sum1_6 with P Q R. intros Sum1_6a.
+ Syll Sum1_6a Syll2_05a S.
+ apply S.
+Qed.
+
+Theorem n2_38 : ∀ P Q R : Prop,
+ (Q → R) → ((Q ∨ P) → (R ∨ P)).
+Proof. intros P Q R.
+ specialize Perm1_4 with P R. intros Perm1_4a.
+ specialize Syll2_05 with (Q∨P) (P∨R) (R∨P). intros Syll2_05a.
+ MP Syll2_05a Perm1_4a.
+ specialize Perm1_4 with Q P. intros Perm1_4b.
+ specialize Syll2_06 with (Q∨P) (P∨Q) (P∨R). intros Syll2_06a.
+ MP Syll2_06a Perm1_4b.
+ Syll Syll2_06a Syll2_05a H.
+ specialize Sum1_6 with P Q R. intros Sum1_6a.
+ Syll Sum1_6a H S.
+ apply S.
+Qed.
+
+Theorem n2_4 : ∀ P Q : Prop,
+ (P ∨ (P ∨ Q)) → (P ∨ Q).
+Proof. intros P Q.
+ specialize n2_31 with P P Q. intros n2_31a.
+ specialize Taut1_2 with P. intros Taut1_2a.
+ specialize n2_38 with Q (P∨P) P. intros n2_38a.
+ MP n2_38a Taut1_2a.
+ Syll n2_31a n2_38a S.
+ apply S.
+Qed.
+
+Theorem n2_41 : ∀ P Q : Prop,
+ (Q ∨ (P ∨ Q)) → (P ∨ Q).
+Proof. intros P Q.
+ specialize Assoc1_5 with Q P Q. intros Assoc1_5a.
+ specialize Taut1_2 with Q. intros Taut1_2a.
+ specialize Sum1_6 with P (Q∨Q) Q. intros Sum1_6a.
+ MP Sum1_6a Taut1_2a.
+ Syll Assoc1_5a Sum1_6a S.
+ apply S.
+Qed.
+
+Theorem n2_42 : ∀ P Q : Prop,
+ (~P ∨ (P → Q)) → (P → Q).
+Proof. intros P Q.
+ specialize n2_4 with (~P) Q. intros n2_4a.
+ replace (~P∨Q) with (P→Q) in n2_4a.
+ apply n2_4a. apply Impl1_01.
+Qed.
+
+Theorem n2_43 : ∀ P Q : Prop,
+ (P → (P → Q)) → (P → Q).
+Proof. intros P Q.
+ specialize n2_42 with P Q. intros n2_42a.
+ replace (~P ∨ (P→Q)) with (P→(P→Q)) in n2_42a.
+ apply n2_42a. apply Impl1_01.
+Qed.
+
+Theorem n2_45 : ∀ P Q : Prop,
+ ~(P ∨ Q) → ~P.
+Proof. intros P Q.
+ specialize n2_2 with P Q. intros n2_2a.
+ specialize Trans2_16 with P (P∨Q). intros Trans2_16a.
+ MP n2_2 Trans2_16a.
+ apply Trans2_16a.
+Qed.
+
+Theorem n2_46 : ∀ P Q : Prop,
+ ~(P ∨ Q) → ~Q.
+Proof. intros P Q.
+ specialize Add1_3 with P Q. intros Add1_3a.
+ specialize Trans2_16 with Q (P∨Q). intros Trans2_16a.
+ MP Add1_3a Trans2_16a.
+ apply Trans2_16a.
+Qed.
+
+Theorem n2_47 : ∀ P Q : Prop,
+ ~(P ∨ Q) → (~P ∨ Q).
+Proof. intros P Q.
+ specialize n2_45 with P Q. intros n2_45a.
+ specialize n2_2 with (~P) Q. intros n2_2a.
+ Syll n2_45a n2_2a S.
+ apply S.
+Qed.
+
+Theorem n2_48 : ∀ P Q : Prop,
+ ~(P ∨ Q) → (P ∨ ~Q).
+Proof. intros P Q.
+ specialize n2_46 with P Q. intros n2_46a.
+ specialize Add1_3 with P (~Q). intros Add1_3a.
+ Syll n2_46a Add1_3a S.
+ apply S.
+Qed.
+
+Theorem n2_49 : ∀ P Q : Prop,
+ ~(P ∨ Q) → (~P ∨ ~Q).
+Proof. intros P Q.
+ specialize n2_45 with P Q. intros n2_45a.
+ specialize n2_2 with (~P) (~Q). intros n2_2a.
+ Syll n2_45a n2_2a S.
+ apply S.
+Qed.
+
+Theorem n2_5 : ∀ P Q : Prop,
+ ~(P → Q) → (~P → Q).
+Proof. intros P Q.
+ specialize n2_47 with (~P) Q. intros n2_47a.
+ replace (~P∨Q) with (P→Q) in n2_47a.
+ replace (~~P∨Q) with (~P→Q) in n2_47a.
+ apply n2_47a.
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem n2_51 : ∀ P Q : Prop,
+ ~(P → Q) → (P → ~Q).
+Proof. intros P Q.
+ specialize n2_48 with (~P) Q. intros n2_48a.
+ replace (~P∨Q) with (P→Q) in n2_48a.
+ replace (~P∨~Q) with (P→~Q) in n2_48a.
+ apply n2_48a.
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem n2_52 : ∀ P Q : Prop,
+ ~(P → Q) → (~P → ~Q).
+Proof. intros P Q.
+ specialize n2_49 with (~P) Q. intros n2_49a.
+ replace (~P∨Q) with (P→Q) in n2_49a.
+ replace (~~P∨~Q) with (~P→~Q) in n2_49a.
+ apply n2_49a.
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem n2_521 : ∀ P Q : Prop,
+ ~(P→Q)→(Q→P).
+Proof. intros P Q.
+ specialize n2_52 with P Q. intros n2_52a.
+ specialize Trans2_17 with Q P. intros Trans2_17a.
+ Syll n2_52a Trans2_17a S.
+ apply S.
+Qed.
+
+Theorem n2_53 : ∀ P Q : Prop,
+ (P ∨ Q) → (~P → Q).
+Proof. intros P Q.
+ specialize n2_12 with P. intros n2_12a.
+ specialize n2_38 with Q P (~~P). intros n2_38a.
+ MP n2_38a n2_12a.
+ replace (~~P∨Q) with (~P→Q) in n2_38a.
+ apply n2_38a. apply Impl1_01.
+Qed.
+
+Theorem n2_54 : ∀ P Q : Prop,
+ (~P → Q) → (P ∨ Q).
+Proof. intros P Q.
+ specialize n2_14 with P. intros n2_14a.
+ specialize n2_38 with Q (~~P) P. intros n2_38a.
+ MP n2_38a n2_12a.
+ replace (~~P∨Q) with (~P→Q) in n2_38a.
+ apply n2_38a. apply Impl1_01.
+Qed.
+
+Theorem n2_55 : ∀ P Q : Prop,
+ ~P → ((P ∨ Q) → Q).
+Proof. intros P Q.
+ specialize n2_53 with P Q. intros n2_53a.
+ specialize Comm2_04 with (P∨Q) (~P) Q. intros Comm2_04a.
+ MP n2_53a Comm2_04a.
+ apply Comm2_04a.
+Qed.
+
+Theorem n2_56 : ∀ P Q : Prop,
+ ~Q → ((P ∨ Q) → P).
+Proof. intros P Q.
+ specialize n2_55 with Q P. intros n2_55a.
+ specialize Perm1_4 with P Q. intros Perm1_4a.
+ specialize Syll2_06 with (P∨Q) (Q∨P) P. intros Syll2_06a.
+ (*MP Syll 2_06a Perm1_4a.
+Qed. This proof is done but for an error message: "got 2 extra arguments".*)
+ auto.
+Qed.
+
+Theorem n2_6 : ∀ P Q : Prop,
+ (~P→Q) → ((P → Q) → Q).
+Proof. intros P Q.
+ specialize n2_38 with Q (~P) Q. intros n2_38a.
+ specialize Taut1_2 with Q. intros Taut1_2a.
+ specialize Syll2_05 with (~P∨Q) (Q∨Q) Q. intros Syll2_05a.
+ MP Syll2_05a Taut1_2a.
+ Syll n2_38a Syll2_05a S.
+ replace (~P∨Q) with (P→Q) in S.
+ apply S.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_61 : ∀ P Q : Prop,
+ (P → Q) → ((~P → Q) → Q).
+Proof. intros P Q.
+ specialize n2_6 with P Q. intros n2_6a.
+ specialize Comm2_04 with (~P→Q) (P→Q) Q. intros Comm2_04a.
+ MP Comm2_04a n2_6a.
+ apply Comm2_04a.
+Qed.
+
+Theorem n2_62 : ∀ P Q : Prop,
+ (P ∨ Q) → ((P → Q) → Q).
+Proof. intros P Q.
+ specialize n2_53 with P Q. intros n2_53a.
+ specialize n2_6 with P Q. intros n2_6a.
+ Syll n2_53a n2_6a S.
+ apply S.
+Qed.
+
+Theorem n2_621 : ∀ P Q : Prop,
+ (P → Q) → ((P ∨ Q) → Q).
+Proof. intros P Q.
+ specialize n2_62 with P Q. intros n2_62a.
+ specialize Comm2_04 with (P ∨ Q) (P→Q) Q. intros Comm2_04a.
+ MP Comm2_04a n2_62a. apply Comm2_04a.
+Qed.
+
+Theorem n2_63 : ∀ P Q : Prop,
+ (P ∨ Q) → ((~P ∨ Q) → Q).
+Proof. intros P Q.
+ specialize n2_62 with P Q. intros n2_62a.
+ replace (~P∨Q) with (P→Q).
+ apply n2_62a.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_64 : ∀ P Q : Prop,
+ (P ∨ Q) → ((P ∨ ~Q) → P).
+Proof. intros P Q.
+ specialize n2_63 with Q P. intros n2_63a.
+ specialize Perm1_4 with P Q. intros Perm1_4a.
+ Syll n2_63a Perm1_4a Ha.
+ specialize Syll2_06 with (P∨~Q) (~Q∨P) P. intros Syll2_06a.
+ specialize Perm1_4 with P (~Q). intros Perm1_4b.
+ MP Syll2_05a Perm1_4b.
+ Syll Syll2_05a Ha S.
+ apply S.
+Qed.
+
+Theorem n2_65 : ∀ P Q : Prop,
+ (P → Q) → ((P → ~Q) → ~P).
+Proof. intros P Q.
+ specialize n2_64 with (~P) Q. intros n2_64a.
+ replace (~P∨Q) with (P→Q) in n2_64a.
+ replace (~P∨~Q) with (P→~Q) in n2_64a.
+ apply n2_64a.
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem n2_67 : ∀ P Q : Prop,
+ ((P ∨ Q) → Q) → (P → Q).
+Proof. intros P Q.
+ specialize n2_54 with P Q. intros n2_54a.
+ specialize Syll2_06 with (~P→Q) (P∨Q) Q. intros Syll2_06a.
+ MP Syll2_06a n2_54a.
+ specialize n2_24 with P Q. intros n2_24.
+ specialize Syll2_06 with P (~P→Q) Q. intros Syll2_06b.
+ MP Syll2_06b n2_24a.
+ Syll Syll2_06b Syll2_06a S.
+ apply S.
+Qed.
+
+Theorem n2_68 : ∀ P Q : Prop,
+ ((P → Q) → Q) → (P ∨ Q).
+Proof. intros P Q.
+ specialize n2_67 with (~P) Q. intros n2_67a.
+ replace (~P∨Q) with (P→Q) in n2_67a.
+ specialize n2_54 with P Q. intros n2_54a.
+ Syll n2_67a n2_54a S.
+ apply S.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_69 : ∀ P Q : Prop,
+ ((P → Q) → Q) → ((Q → P) → P).
+Proof. intros P Q.
+ specialize n2_68 with P Q. intros n2_68a.
+ specialize Perm1_4 with P Q. intros Perm1_4a.
+ Syll n2_68a Perm1_4a Sa.
+ specialize n2_62 with Q P. intros n2_62a.
+ Syll Sa n2_62a Sb.
+ apply Sb.
+Qed.
+
+Theorem n2_73 : ∀ P Q R : Prop,
+ (P → Q) → (((P ∨ Q) ∨ R) → (Q ∨ R)).
+Proof. intros P Q R.
+ specialize n2_621 with P Q. intros n2_621a.
+ specialize n2_38 with R (P∨Q) Q. intros n2_38a.
+ Syll n2_621a n2_38a S.
+ apply S.
+Qed.
+
+Theorem n2_74 : ∀ P Q R : Prop,
+ (Q → P) → ((P ∨ Q) ∨ R) → (P ∨ R).
+Proof. intros P Q R.
+ specialize n2_73 with Q P R. intros n2_73a.
+ specialize Assoc1_5 with P Q R. intros Assoc1_5a.
+ specialize n2_31 with Q P R. intros n2_31a. (*not cited explicitly!*)
+ Syll Assoc1_5a n2_31a Sa.
+ specialize n2_32 with P Q R. intros n2_32a. (*not cited explicitly!*)
+ Syll n2_32a Sa Sb.
+ specialize Syll2_06 with ((P∨Q)∨R) ((Q∨P)∨R) (P∨R). intros Syll2_06a.
+ MP Syll2_06a Sb.
+ Syll n2_73a Syll2_05a H.
+ apply H.
+Qed.
+
+Theorem n2_75 : ∀ P Q R : Prop,
+ (P ∨ Q) → ((P ∨ (Q → R)) → (P ∨ R)).
+Proof. intros P Q R.
+ specialize n2_74 with P (~Q) R. intros n2_74a.
+ specialize n2_53 with Q P. intros n2_53a.
+ Syll n2_53a n2_74a Sa.
+ specialize n2_31 with P (~Q) R. intros n2_31a.
+ specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R). intros Syll2_06a.
+ MP Syll2_06a n2_31a.
+ Syll Sa Syll2_06a Sb.
+ specialize Perm1_4 with P Q. intros Perm1_4a. (*not cited!*)
+ Syll Perm1_4a Sb Sc.
+ replace (~Q∨R) with (Q→R) in Sc.
+ apply Sc.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_76 : ∀ P Q R : Prop,
+ (P ∨ (Q → R)) → ((P ∨ Q) → (P ∨ R)).
+Proof. intros P Q R.
+ specialize n2_75 with P Q R. intros n2_75a.
+ specialize Comm2_04 with (P∨Q) (P∨(Q→R)) (P∨R). intros Comm2_04a.
+ apply Comm2_04a.
+ apply n2_75a.
+ (*MP Comm 2_04a n2_75a. This wouldn't work because "illegal tactic; two extra args."*)
+Qed.
+
+Theorem n2_77 : ∀ P Q R : Prop,
+ (P → (Q → R)) → ((P → Q) → (P → R)).
+Proof. intros P Q R.
+ specialize n2_76 with (~P) Q R. intros n2_76a.
+ replace (~P∨(Q→R)) with (P→Q→R) in n2_76a.
+ replace (~P∨Q) with (P→Q) in n2_76a.
+ replace (~P∨R) with (P→R) in n2_76a.
+ apply n2_76a.
+ apply Impl1_01. apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem n2_8 : ∀ Q R S : Prop,
+ (Q ∨ R) → ((~R ∨ S) → (Q ∨ S)).
+Proof. intros Q R S.
+ specialize n2_53 with R Q. intros n2_53a.
+ specialize Perm1_4 with Q R. intros Perm1_4a.
+ Syll Perm1_4a n2_53a Ha.
+ specialize n2_38 with S (~R) Q. intros n2_38a.
+ Syll H n2_38a Hb.
+ apply Hb.
+Qed.
+
+Theorem n2_81 : ∀ P Q R S : Prop,
+ (Q → (R → S)) → ((P ∨ Q) → ((P ∨ R) → (P ∨ S))).
+Proof. intros P Q R S.
+ specialize Sum1_6 with P Q (R→S). intros Sum1_6a.
+ specialize n2_76 with P R S. intros n2_76a.
+ specialize Syll2_05 with (P∨Q) (P∨(R→S)) ((P∨R)→(P∨S)). intros Syll2_05a.
+ MP Syll2_05a n2_76a.
+ Syll Sum1_6a Syll2_05a H.
+ apply H.
+Qed.
+
+Theorem n2_82 : ∀ P Q R S : Prop,
+ (P ∨ Q ∨ R)→((P ∨ ~R ∨ S)→(P ∨ Q ∨ S)).
+Proof. intros P Q R S.
+ specialize n2_8 with Q R S. intros n2_8a.
+ specialize n2_81 with P (Q∨R) (~R∨S) (Q∨S). intros n2_81a.
+ MP n2_81a n2_8a.
+ apply n2_81a.
+Qed.
+
+Theorem n2_83 : ∀ P Q R S : Prop,
+ (P→(Q→R))→((P→(R→S))→(P→(Q→S))).
+Proof. intros P Q R S.
+ specialize n2_82 with (~P) (~Q) R S. intros n2_82a.
+ replace (~Q∨R) with (Q→R) in n2_82a.
+ replace (~P∨(Q→R)) with (P→Q→R) in n2_82a.
+ replace (~R∨S) with (R→S) in n2_82a.
+ replace (~P∨(R→S)) with (P→R→S) in n2_82a.
+ replace (~Q∨S) with (Q→S) in n2_82a.
+ replace (~Q∨S) with (Q→S) in n2_82a.
+ replace (~P∨(Q→S)) with (P→Q→S) in n2_82a.
+ apply n2_82a.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Impl1_01.
+Qed.
+
+Theorem n2_85 : ∀ P Q R : Prop,
+ ((P ∨ Q) → (P ∨ R)) → (P ∨ (Q → R)).
+Proof. intros P Q R.
+ specialize Add1_3 with P Q. intros Add1_3a.
+ specialize Syll2_06 with Q (P∨Q) R. intros Syll2_06a.
+ MP Syll2_06a Add1_3a.
+ specialize n2_55 with P R. intros n2_55a.
+ specialize Syll2_05 with (P∨Q) (P∨R) R. intros Syll2_05a.
+ Syll n2_55a Syll2_05a Ha.
+ specialize n2_83 with (~P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R). intros n2_83a.
+ MP n2_83a Ha.
+ specialize Comm2_04 with (~P) (P∨Q→P∨R) (Q→R). intros Comm2_04a.
+ Syll Ha Comm2_04a Hb.
+ specialize n2_54 with P (Q→R). intros n2_54a.
+ specialize n2_02 with (~P) ((P∨Q→R)→(Q→R)). intros n2_02a. (*Not mentioned! Greg's suggestion per the BRS list in June 25, 2017.*)
+ MP Syll2_06a n2_02a.
+ MP Hb n2_02a.
+ Syll Hb n2_54a Hc.
+ apply Hc.
+Qed.
+
+Theorem n2_86 : ∀ P Q R : Prop,
+ ((P → Q) → (P → R)) → (P → (Q → R)).
+Proof. intros P Q R.
+ specialize n2_85 with (~P) Q R. intros n2_85a.
+ replace (~P∨Q) with (P→Q) in n2_85a.
+ replace (~P∨R) with (P→R) in n2_85a.
+ replace (~P∨(Q→R)) with (P→Q→R) in n2_85a.
+ apply n2_85a.
+ apply Impl1_01. apply Impl1_01. apply Impl1_01.
+Qed.
+
+End No2.
+
+Module No3.
+
+Import No1.
+Import No2.
+
+Axiom Prod3_01 : ∀ P Q : Prop, (P ∧ Q) = ~(~P ∨ ~Q).
+
+Axiom Abb3_02 : ∀ P Q R : Prop, (P→Q→R)=(P→Q)∧(Q→R).
+
+Theorem Conj3_03 : ∀ P Q : Prop, P → Q → (P∧Q).
+(*3.03 is a meta-theorem allowing one to move from the theoremhood of P and theoremhood of Q to the theoremhood of P and Q.*)
+Proof. intros P Q.
+ specialize n2_11 with (~P∨~Q). intros n2_11a.
+ specialize n2_32 with (~P) (~Q) (~(~P ∨ ~Q)). intros n2_32a.
+ MP n2_32a n2_11a.
+ replace (~(~P∨~Q)) with (P∧Q) in n2_32a.
+ replace (~Q ∨ (P∧Q)) with (Q→(P∧Q)) in n2_32a.
+ replace (~P ∨ (Q → (P∧Q))) with (P→Q→(P∧Q)) in n2_32a.
+ apply n2_32a.
+ apply Impl1_01.
+ apply Impl1_01.
+ apply Prod3_01.
+Qed.
+
+Ltac Conj H1 H2 :=
+ match goal with
+ | [ H1 : ?P, H2 : ?Q |- _ ] =>
+ assert (P ∧ Q) by (specialize Conj3_03 with P Q; intros Conj3_03; MP Conj3_03 P; MP Conj3_03 Q)
+end.
+
+(*Theorem Conj : ∀ P Q : Prop, P→Q→(P∧Q).
+Proof. intros P Q. specialize Conj3_03 with P Q. intros Conj3_03. left. intros Pp. intros Qq. MP Conj3_03 P. MP Conj3_03 Q. apply Conj3_03. (* split. apply Pp. apply Qq.
+ specialize Conj3_03 with P Q. intros Conj3_03a Pp Qq.
+ MP Conj3_03a P. MP Conj3_03a Q. apply Conj3_03a.*)
+ (*assert (Q∧P). split. apply Hq. apply Hp. apply H. *)
+Qed.*)
+
+Theorem n3_1 : ∀ P Q : Prop,
+ (P ∧ Q) → ~(~P ∨ ~Q).
+Proof. intros P Q.
+ replace (~(~P∨~Q)) with (P∧Q).
+ specialize n2_08 with (P∧Q). intros n2_08a.
+ apply n2_08a.
+ apply Prod3_01.
+Qed.
+
+Theorem n3_11 : ∀ P Q : Prop,
+ ~(~P ∨ ~Q) → (P ∧ Q).
+Proof. intros P Q.
+ replace (~(~P∨~Q)) with (P∧Q).
+ specialize n2_08 with (P∧Q). intros n2_08a.
+ apply n2_08a.
+ apply Prod3_01.
+Qed.
+
+Theorem n3_12 : ∀ P Q : Prop,
+ (~P ∨ ~Q) ∨ (P ∧ Q).
+Proof. intros P Q.
+ specialize n2_11 with (~P∨~Q). intros n2_11a.
+ replace (~(~P∨~Q)) with (P∧Q) in n2_11a.
+ apply n2_11a.
+ apply Prod3_01.
+Qed.
+
+Theorem n3_13 : ∀ P Q : Prop,
+ ~(P ∧ Q) → (~P ∨ ~Q).
+Proof. intros P Q.
+ specialize n3_11 with P Q. intros n3_11a.
+ specialize Trans2_15 with (~P∨~Q) (P∧Q). intros Trans2_15a.
+ MP Trans2_16a n3_11a.
+ apply Trans2_15a.
+Qed.
+
+Theorem n3_14 : ∀ P Q : Prop,
+ (~P ∨ ~Q) → ~(P ∧ Q).
+Proof. intros P Q.
+ specialize n3_1 with P Q. intros n3_1a.
+ specialize Trans2_16 with (P∧Q) (~(~P∨~Q)). intros Trans2_16a.
+ MP Trans2_16a n3_1a.
+ specialize n2_12 with (~P∨~Q). intros n2_12a.
+ Syll n2_12a Trans2_16a S.
+ apply S.
+Qed.
+
+Theorem n3_2 : ∀ P Q : Prop,
+ P → Q → (P ∧ Q).
+Proof. intros P Q.
+ specialize n3_12 with P Q. intros n3_12a.
+ specialize n2_32 with (~P) (~Q) (P∧Q). intros n2_32a.
+ MP n3_32a n3_12a.
+ replace (~Q ∨ P ∧ Q) with (Q→P∧Q) in n2_32a.
+ replace (~P ∨ (Q → P ∧ Q)) with (P→Q→P∧Q) in n2_32a.
+ apply n2_32a.
+ apply Impl1_01. apply Impl1_01.
+Qed.
+
+Theorem n3_21 : ∀ P Q : Prop,
+ Q → P → (P ∧ Q).
+Proof. intros P Q.
+ specialize n3_2 with P Q. intros n3_2a.
+ specialize Comm2_04 with P Q (P∧Q). intros Comm2_04a.
+ MP Comm2_04a n3_2a.
+ apply Comm2_04a.
+Qed.
+
+Theorem n3_22 : ∀ P Q : Prop,
+ (P ∧ Q) → (Q ∧ P).
+Proof. intros P Q.
+ specialize n3_13 with Q P. intros n3_13a.
+ specialize Perm1_4 with (~Q) (~P). intros Perm1_4a.
+ Syll n3_13a Perm1_4a Ha.
+ specialize n3_14 with P Q. intros n3_14a.
+ Syll Ha n3_14a Hb.
+ specialize Trans2_17 with (P∧Q) (Q ∧ P). intros Trans2_17a.
+ MP Trans2_17a Hb.
+ apply Trans2_17a.
+Qed.
+
+Theorem n3_24 : ∀ P : Prop,
+ ~(P ∧ ~P).
+Proof. intros P.
+ specialize n2_11 with (~P). intros n2_11a.
+ specialize n3_14 with P (~P). intros n3_14a.
+ MP n3_14a n2_11a.
+ apply n3_14a.
+Qed.
+
+Theorem Simp3_26 : ∀ P Q : Prop,
+ (P ∧ Q) → P.
+Proof. intros P Q.
+ specialize n2_02 with Q P. intros n2_02a.
+ replace (P→(Q→P)) with (~P∨(Q→P)) in n2_02a.
+ replace (Q→P) with (~Q∨P) in n2_02a.
+ specialize n2_31 with (~P) (~Q) P. intros n2_31a.
+ MP n2_31a n2_02a.
+ specialize n2_53 with (~P∨~Q) P. intros n2_53a.
+ MP n2_53a n2_02a.
+ replace (~(~P∨~Q)) with (P∧Q) in n2_53a.
+ apply n2_53a.
+ apply Prod3_01.
+ replace (~Q∨P) with (Q→P).
+ reflexivity.
+ apply Impl1_01.
+ replace (~P∨(Q→P)) with (P→Q→P).
+ reflexivity.
+ apply Impl1_01.
+Qed.
+
+Theorem Simp3_27 : ∀ P Q : Prop,
+ (P ∧ Q) → Q.
+Proof. intros P Q.
+ specialize n3_22 with P Q. intros n3_22a.
+ specialize Simp3_26 with Q P. intros Simp3_26a.
+ Syll n3_22a Simp3_26a S.
+ apply S.
+Qed.
+
+Theorem Exp3_3 : ∀ P Q R : Prop,
+ ((P ∧ Q) → R) → (P → (Q → R)).
+Proof. intros P Q R.
+ specialize Trans2_15 with (~P∨~Q) R. intros Trans2_15a.
+ replace (~R→(~P∨~Q)) with (~R→(P→~Q)) in Trans2_15a.
+ specialize Comm2_04 with (~R) P (~Q). intros Comm2_04a.
+ Syll Trans2_15a Comm2_04a Sa.
+ specialize Trans2_17 with Q R. intros Trans2_17a.
+ specialize Syll2_05 with P (~R→~Q) (Q→R). intros Syll2_05a.
+ MP Syll2_05a Trans2_17a.
+ Syll Sa Syll2_05a Sb.
+ replace (~(~P∨~Q)) with (P∧Q) in Sb.
+ apply Sb.
+ apply Prod3_01.
+ replace (~P∨~Q) with (P→~Q).
+ reflexivity.
+ apply Impl1_01.
+Qed.
+
+Theorem Imp3_31 : ∀ P Q R : Prop,
+ (P → (Q → R)) → (P ∧ Q) → R.
+Proof. intros P Q R.
+ specialize n2_31 with (~P) (~Q) R. intros n2_31a.
+ specialize n2_53 with (~P∨~Q) R. intros n2_53a.
+ Syll n2_31a n2_53a S.
+ replace (~Q∨R) with (Q→R) in S.
+ replace (~P∨(Q→R)) with (P→Q→R) in S.
+ replace (~(~P∨~Q)) with (P∧Q) in S.
+ apply S.
+ apply Prod3_01.
+ apply Impl1_01.
+ apply Impl1_01.
+Qed.
+
+Theorem Syll3_33 : ∀ P Q R : Prop,
+ ((P → Q) ∧ (Q → R)) → (P → R).
+Proof. intros P Q R.
+ specialize Syll2_06 with P Q R. intros Syll2_06a.
+ specialize Imp3_31 with (P→Q) (Q→R) (P→R). intros Imp3_31a.
+ MP Imp3_31a Syll2_06a.
+ apply Imp3_31a.
+Qed.
+
+Theorem Syll3_34 : ∀ P Q R : Prop,
+ ((Q → R) ∧ (P → Q)) → (P → R).
+Proof. intros P Q R.
+ specialize Syll2_05 with P Q R. intros Syll2_05a.
+ specialize Imp3_31 with (Q→R) (P→Q) (P→R). intros Imp3_31a.
+ MP Imp3_31a Syll2_05a.
+ apply Imp3_31a.
+Qed.
+
+Theorem Ass3_35 : ∀ P Q : Prop,
+ (P ∧ (P → Q)) → Q.
+Proof. intros P Q.
+ specialize n2_27 with P Q. intros n2_27a.
+ specialize Imp3_31 with P (P→Q) Q. intros Imp3_31a.
+ MP Imp3_31a n2_27a.
+ apply Imp3_31a.
+Qed.
+
+Theorem n3_37 : ∀ P Q R : Prop,
+ (P ∧ Q → R) → (P ∧ ~R → ~Q).
+Proof. intros P Q R.
+ specialize Trans2_16 with Q R. intros Trans2_16a.
+ specialize Syll2_05 with P (Q→R) (~R→~Q). intros Syll2_05a.
+ MP Syll2_05a Trans2_16a.
+ specialize Exp3_3 with P Q R. intros Exp3_3a.
+ Syll Exp3_3a Syll2_05a Sa.
+ specialize Imp3_31 with P (~R) (~Q). intros Imp3_31a.
+ Syll Sa Imp3_31a Sb.
+ apply Sb.
+Qed.
+
+Theorem n3_4 : ∀ P Q : Prop,
+ (P ∧ Q) → P → Q.
+Proof. intros P Q.
+ specialize n2_51 with P Q. intros n2_51a.
+ specialize Trans2_15 with (P→Q) (P→~Q). intros Trans2_15a.
+ MP Trans2_15a n2_51a.
+ replace (P→~Q) with (~P∨~Q) in Trans2_15a.
+ replace (~(~P∨~Q)) with (P∧Q) in Trans2_15a.
+ apply Trans2_15a.
+ apply Prod3_01.
+ replace (~P∨~Q) with (P→~Q).
+ reflexivity.
+ apply Impl1_01.
+Qed.
+
+Theorem n3_41 : ∀ P Q R : Prop,
+ (P → R) → (P ∧ Q → R).
+Proof. intros P Q R.
+ specialize Simp3_26 with P Q. intros Simp3_26a.
+ specialize Syll2_06 with (P∧Q) P R. intros Syll2_06a.
+ MP Simp3_26a Syll2_06a.
+ apply Syll2_06a.
+Qed.
+
+Theorem n3_42 : ∀ P Q R : Prop,
+ (Q → R) → (P ∧ Q → R).
+Proof. intros P Q R.
+ specialize Simp3_27 with P Q. intros Simp3_27a.
+ specialize Syll2_06 with (P∧Q) Q R. intros Syll2_06a.
+ MP Syll2_05a Simp3_27a.
+ apply Syll2_06a.
+Qed.
+
+Theorem Comp3_43 : ∀ P Q R : Prop,
+ (P → Q) ∧ (P → R) → (P → Q ∧ R).
+Proof. intros P Q R.
+ specialize n3_2 with Q R. intros n3_2a.
+ specialize Syll2_05 with P Q (R→Q∧R). intros Syll2_05a.
+ MP Syll2_05a n3_2a.
+ specialize n2_77 with P R (Q∧R). intros n2_77a.
+ Syll Syll2_05a n2_77a Sa.
+ specialize Imp3_31 with (P→Q) (P→R) (P→Q∧R). intros Imp3_31a.
+ MP Sa Imp3_31a.
+ apply Imp3_31a.
+Qed.
+
+Theorem n3_44 : ∀ P Q R : Prop,
+ (Q → P) ∧ (R → P) → (Q ∨ R → P).
+Proof. intros P Q R.
+ specialize Syll3_33 with (~Q) R P. intros Syll3_33a.
+ specialize n2_6 with Q P. intros n2_6a.
+ Syll Syll3_33a n2_6a Sa.
+ specialize Exp3_3 with (~Q→R) (R→P) ((Q→P)→P). intros Exp3_3a.
+ MP Exp3_3a Sa.
+ specialize Comm2_04 with (R→P) (Q→P) P. intros Comm2_04a.
+ Syll Exp3_3a Comm2_04a Sb.
+ specialize Imp3_31 with (Q→P) (R→P) P. intros Imp3_31a.
+ Syll Sb Imp3_31a Sc.
+ specialize Comm2_04 with (~Q→R) ((Q→P)∧(R→P)) P. intros Comm2_04b.
+ MP Comm2_04b Sc.
+ specialize n2_53 with Q R. intros n2_53a.
+ specialize Syll2_06 with (Q∨R) (~Q→R) P. intros Syll2_06a.
+ MP Syll2_06a n2_53a.
+ Syll Comm2_04b Syll2_06a Sd.
+ apply Sd.
+Qed.
+
+Theorem Fact3_45 : ∀ P Q R : Prop,
+ (P → Q) → (P ∧ R) → (Q ∧ R).
+Proof. intros P Q R.
+ specialize Syll2_06 with P Q (~R). intros Syll2_06a.
+ specialize Trans2_16 with (Q→~R) (P→~R). intros Trans2_16a.
+ Syll Syll2_06a Trans2_16a S.
+ replace (P→~R) with (~P∨~R) in S.
+ replace (Q→~R) with (~Q∨~R) in S.
+ replace (~(~P∨~R)) with (P∧R) in S.
+ replace (~(~Q∨~R)) with (Q∧R) in S.
+ apply S.
+ apply Prod3_01.
+ apply Prod3_01.
+ replace (~Q∨~R) with (Q→~R).
+ reflexivity.
+ apply Impl1_01.
+ replace (~P∨~R) with (P→~R).
+ reflexivity.
+ apply Impl1_01.
+Qed.
+
+Theorem n3_47 : ∀ P Q R S : Prop,
+ ((P → R) ∧ (Q → S)) → (P ∧ Q) → R ∧ S.
+Proof. intros P Q R S.
+ specialize Simp3_26 with (P→R) (Q→S). intros Simp3_26a.
+ specialize Fact3_45 with P R Q. intros Fact3_45a.
+ Syll Simp3_26a Fact3_45a Sa.
+ specialize n3_22 with R Q. intros n3_22a.
+ specialize Syll2_05 with (P∧Q) (R∧Q) (Q∧R). intros Syll2_05a.
+ MP Syll2_05a n3_22a.
+ Syll Sa Syll2_05a Sb.
+ specialize Simp3_27 with (P→R) (Q→S). intros Simp3_27a.
+ specialize Fact3_45 with Q S R. intros Fact3_45b.
+ Syll Simp3_27a Fact3_45b Sc.
+ specialize n3_22 with S R. intros n3_22b.
+ specialize Syll2_05 with (Q∧R) (S∧R) (R∧S). intros Syll2_05b.
+ MP Syll2_05b n3_22b.
+ Syll Sc Syll2_05b Sd.
+ specialize n2_83 with ((P→R)∧(Q→S)) (P∧Q) (Q∧R) (R∧S). intros n2_83a.
+ MP n2_83a Sb.
+ MP n2_83 Sd.
+ apply n2_83a.
+Qed.
+
+Theorem n3_48 : ∀ P Q R S : Prop,
+ ((P → R) ∧ (Q → S)) → (P ∨ Q) → R ∨ S.
+Proof. intros P Q R S.
+ specialize Simp3_26 with (P→R) (Q→S). intros Simp3_26a.
+ specialize Sum1_6 with Q P R. intros Sum1_6a.
+ Syll Simp3_26a Sum1_6a Sa.
+ specialize Perm1_4 with P Q. intros Perm1_4a.
+ specialize Syll2_06 with (P∨Q) (Q∨P) (Q∨R). intros Syll2_06a.
+ MP Syll2_06a Perm1_4a.
+ Syll Sa Syll2_06a Sb.
+ (*specialize Perm1_4 with Q R. intros Perm1_4b.
+ specialize Syll2_05 with (P∨Q) (Q∨R) (R∨Q). intros Syll2_05a.
+ MP Syll2_06b Perm1_4b.
+ Syll Sb Syll2_05a Sc.
+ Syll Syll2_05b Sb Sc.*)
+ specialize Simp3_27 with (P→R) (Q→S). intros Simp3_27a.
+ specialize Sum1_6 with R Q S. intros Sum1_6b.
+ Syll Simp3_27a Sum1_6b Sc.
+ specialize Perm1_4 with Q R. intros Perm1_4b.
+ specialize Syll2_06 with (Q∨R) (R∨Q) (R∨S). intros Syll2_06b.
+ MP Syll2_06b Perm1_4b.
+ Syll Sc Syll2_06a Sd.
+ specialize n2_83 with ((P→R)∧(Q→S)) (P∨Q) (Q∨R) (R∨S). intros n2_83a.
+ MP n2_83a Sb.
+ MP n2_83a Sd.
+ apply n2_83a.
+Qed.
+
+End No3.
+
+Module No4.
+
+Import No1.
+Import No2.
+Import No3.
+
+Axiom Equiv4_01 : ∀ P Q : Prop, (P↔Q)=((P→Q) ∧ (Q→P)).
+(*n4_02 defines P iff Q iff R as P iff Q AND Q iff R.*)
+
+Ltac Conj H1 H2 :=
+ match goal with
+ | [ H1: ?P, H2: ?Q |- _ ] =>
+ assert (H1 ∧ H2) by (specialize Conj3_03 with H1 H2; intros p; MP p H1; MP p H2)
+end.
+
+Ltac Equiv H1 H2 :=
+ match goal with
+ | [ H1 : ?P→?Q, H2 : ?Q→?P |- _ ] =>
+ assert (P ↔ Q) by (specialize Equiv4_01 with P Q;
+ intros Equiv4_01; Prod ((P→Q)∧(Q→P)); apply Equiv4_01)
+end.
+
+Theorem Trans4_1 : ∀ P Q : Prop,
+ (P → Q) ↔ (~Q → ~P).
+Proof. intros P Q.
+ specialize Trans2_16 with P Q. intros Trans2_16a.
+ specialize Trans2_17 with P Q. intros Trans2_17a.
+ specialize Conj3_03 with ((P→Q)→(~Q→~P)) ((~Q→~P)→(P→Q)). intros Conj3_03a.
+ MP Conj3_03a Trans2_16a.
+ MP Conj3_03a Trans2_17a.
+ replace (((P → Q) → ¬ Q → ¬ P) ∧ ((¬ Q → ¬ P) → P → Q)) with ((P → Q) ↔ (~Q → ~P)) in Conj3_03a.
+ apply Conj3_03a.
+ apply Equiv4_01.
+Qed.
+
+Theorem Trans4_11 : ∀ P Q : Prop,
+ (P ↔ Q) ↔ (~P ↔ ~Q).
+Proof. intros P Q.
+
+Qed.
+
+Theorem n4_12 : ∀ P Q : Prop,
+ (~P ↔ Q) ↔ (P ↔ ~Q).
+Admitted.
+
+Theorem n4_13 : ∀ P : Prop,
+ P ↔ ~~P.
+Admitted.
+
+Theorem n4_14 : ∀ P Q R : Prop,
+ ((P ∧ Q) → R) ↔ ((P ∧ ~R) → ~Q).
+Admitted.
+
+Theorem n4_15 : ∀ P Q R : Prop,
+ ((P ∧ Q) → ~R) ↔ ((Q ∧ R) → ~P).
+Admitted.
+
+Theorem n4_2 : ∀ P : Prop,
+ P ↔ ~~P.
+Admitted.
+
+Theorem n4_21 : ∀ P Q : Prop,
+ (P ↔ Q) ↔ (Q ↔ P).
+Proof. intuition.
+Qed.
+
+Theorem n4_22 : ∀ P Q R : Prop,
+ ((P ↔ Q) ∧ (Q ↔ R)) → (P → R).
+Proof. intuition.
+Qed.
+
+Theorem n4_24 : ∀ P : Prop,
+ P ↔ (P ∧ P).
+Proof. intuition.
+Qed.
+
+Theorem n4_25 : ∀ P : Prop,
+ P ↔ (P ∨ P).
+Proof. intuition.
+Qed.
+
+Theorem n4_3 : ∀ P Q : Prop,
+ (P ∧ Q) ↔ (Q ∧ P).
+Proof. intuition.
+Qed.
+
+Theorem n4_33 : ∀ P Q R : Prop,
+ (P ∧ (Q ∧ R)) ↔ (P ∨ (Q ∨ R)).
+Admitted.
+
+Theorem n4_36 : ∀ P Q R : Prop,
+ (P ↔ Q) → ((P ∧ R) ↔ (Q ∧ R)).
+Proof. intuition.
+Qed.
+
+Theorem n4_37 : ∀ P Q R : Prop,
+ (P ↔ Q) → ((P ∨ R) ↔ (Q ∨ R)).
+Proof. intuition.
+Qed.
+
+Theorem n4_38 : ∀ P Q R S : Prop,
+ ((P ↔ R) ∧ (Q ↔ S)) → ((P ∧ Q) ↔ (R ∧ S)).
+Proof. intuition.
+Qed.
+
+Theorem n4_39 : ∀ P Q R S : Prop,
+ ((P ↔ R) ∧ (Q ↔ S)) → ((P ∨ Q) ↔ (R ∨ S)).
+Proof. intuition.
+Qed.
+
+Theorem n4_4 : ∀ P Q R : Prop,
+ (P ∧ (Q ∨ R)) ↔ ((P∧ Q) ∨ (P ∧ R)).
+Proof. intuition.
+Qed.
+
+Theorem n4_41 : ∀ P Q R : Prop,
+ (P ∨ (Q ∧ R)) ↔ ((P ∨ Q) ∧ (P ∨ R)).
+Proof. intuition.
+Qed.
+
+Theorem n4_42 : ∀ P Q : Prop,
+ P ↔ ((P ∧ Q) ∨ (P ∧ ~Q)).
+Admitted.
+
+Theorem n4_43 : ∀ P Q : Prop,
+ P ↔ ((P ∨ Q) ∧ (P ∨ ~Q)).
+Admitted.
+
+Theorem n4_44 : ∀ P Q : Prop,
+ P ↔ (P ∨ (P ∧ Q)).
+Admitted.
+
+Theorem n4_45 : ∀ P Q : Prop,
+ P ↔ (P ∧ (P ∨ Q)).
+Admitted.
+
+Theorem n4_5 : ∀ P Q : Prop,
+ P ∧ Q ↔ ~(~P ∨ ~Q).
+Admitted.
+
+Theorem n4_51 : ∀ P Q : Prop,
+ ~(P ∧ Q) ↔ (~P ∨ ~Q).
+Admitted.
+
+Theorem n4_52 : ∀ P Q : Prop,
+ (P ∧ ~Q) ↔ ~(~P ∨ Q).
+Admitted.
+
+Theorem n4_53 : ∀ P Q : Prop,
+ ~(P ∧ ~Q) ↔ (~P ∨ Q).
+Admitted.
+
+Theorem n4_54 : ∀ P Q : Prop,
+ (~P ∧ Q) ↔ ~(P ∨ ~Q).
+Admitted.
+
+Theorem n4_55 : ∀ P Q : Prop,
+ ~(~P ∧ Q) ↔ (P ∨ ~Q).
+Admitted.
+
+Theorem n4_56 : ∀ P Q : Prop,
+ (~P ∧ ~Q) ↔ ~(P ∨ Q).
+Admitted.
+
+Theorem n4_57 : ∀ P Q : Prop,
+ ~(~P ∧ ~Q) ↔ (P ∨ Q).
+Admitted.
+
+Theorem n4_6 : ∀ P Q : Prop,
+ (P → Q) ↔ (~P ∨ Q).
+Admitted.
+
+Theorem n4_61 : ∀ P Q : Prop,
+ ~(P → Q) ↔ (P ∧ ~Q).
+Admitted.
+
+Theorem n4_62 : ∀ P Q : Prop,
+ (P → ~Q) ↔ (~P ∨ ~Q).
+Admitted.
+
+Theorem n4_63 : ∀ P Q : Prop,
+ ~(P → ~Q) ↔ (P ∧ Q).
+Admitted.
+
+Theorem n4_64 : ∀ P Q : Prop,
+ (~P → Q) ↔ (P ∨ Q).
+Admitted.
+
+Theorem n4_65 : ∀ P Q : Prop,
+ ~(~P → Q) ↔ (~P ∧ ~Q).
+Admitted.
+
+Theorem n4_66 : ∀ P Q : Prop,
+ (~P → ~Q) ↔ (P ∨ ~Q).
+Admitted.
+
+Theorem n4_67 : ∀ P Q : Prop,
+ ~(~P → ~Q) ↔ (~P ∧ Q).
+Admitted.
+
+Theorem n4_7 : ∀ P Q : Prop,
+ (P → Q) ↔ (P → (P ∧ Q)).
+Admitted.
+
+Theorem n4_71 : ∀ P Q : Prop,
+ (P → Q) ↔ (P ↔ (P ∧ Q)).
+Admitted.
+
+Theorem n4_72 : ∀ P Q : Prop,
+ (P → Q) ↔ (Q ↔ (P ∨ Q)).
+Admitted.
+
+Theorem n4_73 : ∀ P Q : Prop,
+ Q → (P ↔ (P ∧ Q)).
+Admitted.
+
+Theorem n4_74 : ∀ P Q : Prop,
+ ~P → (Q ↔ (P ∨ Q)).
+Admitted.
+
+Theorem n4_76 : ∀ P Q R : Prop,
+ ((P → Q) ∧ (P → R)) ↔ (P → (Q ∧ R)).
+Admitted.
+
+Theorem n4_77 : ∀ P Q R : Prop,
+ ((Q → P) ∧ (R → P)) ↔ ((Q ∨ R) → P).
+Admitted.
+
+Theorem n4_78 : ∀ P Q R : Prop,
+ ((P → Q) ∨ (P → R)) ↔ (P → (Q ∨ R)).
+Admitted.
+
+Theorem n4_79 : ∀ P Q R : Prop,
+ ((Q → P) ∨ (R → P)) ↔ ((Q ∧ R) → P).
+Admitted.
+
+Theorem n4_8 : ∀ P : Prop,
+ (P → ~P) ↔ ~P.
+Admitted.
+
+Theorem n4_81 : ∀ P : Prop,
+ (~P → P) ↔ P.
+Admitted.
+
+Theorem n4_82 : ∀ P Q : Prop,
+ ((P → Q) ∧ (P → ~Q)) ↔ ~P.
+Admitted.
+
+Theorem n4_83 : ∀ P Q : Prop,
+ ((P → Q) ∧ (~P → Q)) ↔ Q.
+Admitted.
+
+Theorem n4_84 : ∀ P Q R : Prop,
+ (P ↔ Q) → ((P → R) ↔ (Q → R)).
+Admitted.
+
+Theorem n4_85 : ∀ P Q R : Prop,
+ (P ↔ Q) → ((R → P) ↔ (R → Q)).
+Admitted.
+
+Theorem n4_86 : ∀ P Q R : Prop,
+ (P ↔ Q) → ((P ↔ R) ↔ (Q ↔ R)).
+Admitted.
+
+Theorem n4_87 : ∀ P Q R : Prop,
+ ((P ∧ Q) → R) ↔ (P → Q → R) ↔ (Q → (P → R)) ↔ (Q ∧ P → R).
+Admitted.
+
+End No4. \ No newline at end of file