diff options
| -rw-r--r-- | PL.v | 505 |
1 files changed, 335 insertions, 170 deletions
@@ -34,7 +34,7 @@ Axiom Assoc1_5 : ∀ P Q R : Prop, Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R). (*Summation*) - (*These are all the propositional axioms of Principia.*) +(*These are all the propositional axioms of Principia.*) End No1. @@ -149,7 +149,7 @@ Proof. intros P. specialize Perm1_4 with (~P) P. intros Perm1_4. specialize n2_1 with P. - intros Abs2_01. + intros n2_1. apply Perm1_4. apply n2_1. Qed. @@ -160,7 +160,7 @@ Proof. intros P. specialize n2_11 with (~P). intros n2_11. rewrite Impl1_01. - assumption. + apply n2_11. Qed. Theorem n2_13 : ∀ P : Prop, @@ -172,6 +172,8 @@ Proof. intros P. intros n2_12. apply Sum1_6. apply n2_12. + specialize n2_11 with P. + intros n2_11. apply n2_11. Qed. @@ -204,6 +206,8 @@ Proof. intros P Q. intros Syll2_05d. apply Syll2_05d. apply Syll2_05b. + specialize n2_14 with P. + intros n2_14. apply n2_14. apply Syll2_05c. apply n2_03. @@ -381,8 +385,7 @@ Qed. Axiom Abb2_33 : ∀ P Q R : Prop, (P ∨ Q ∨ R) = ((P ∨ Q) ∨ R). (*This definition makes the default left association. - The default in Coq is right association, so this will - need to be applied to underwrite some inferences.*) + The default in Coq is right association.*) Theorem n2_36 : ∀ P Q R : Prop, (Q → R) → ((P ∨ Q) → (R ∨ P)). @@ -703,8 +706,8 @@ Proof. intros P Q. intros Syll2_06a. specialize Perm1_4 with P (~Q). intros Perm1_4b. - MP Syll2_05a Perm1_4b. - Syll Syll2_05a Ha S. + MP Syll2_06a Perm1_4b. + Syll Syll2_06a Ha S. apply S. Qed. @@ -1019,7 +1022,7 @@ Proof. intros P Q. intros n3_11a. specialize Trans2_15 with (~P∨~Q) (P∧Q). intros Trans2_15a. - MP Trans2_16a n3_11a. + MP Trans2_15a n3_11a. apply Trans2_15a. Qed. @@ -1131,9 +1134,9 @@ Theorem Exp3_3 : ∀ P Q R : Prop, Proof. intros P Q R. specialize Trans2_15 with (~P∨~Q) R. intros Trans2_15a. - replace (~R→(~P∨~Q)) with (~R→(P→~Q)) in Trans2_15a. specialize Comm2_04 with (~R) P (~Q). intros Comm2_04a. + replace (P → ~Q) with (~P ∨ ~Q) in Comm2_04a. Syll Trans2_15a Comm2_04a Sa. specialize Trans2_17 with Q R. intros Trans2_17a. @@ -1141,13 +1144,15 @@ Proof. intros P Q R. intros Syll2_05a. MP Syll2_05a Trans2_17a. Syll Sa Syll2_05a Sb. - replace (~(~P∨~Q)) with (P∧Q) in Sb. + replace (~(~P ∨ ~Q)) with (P ∧ Q) in Sb. apply Sb. apply Prod3_01. replace (~P∨~Q) with (P→~Q). reflexivity. apply Impl1_01. Qed. +(*The proof sketch cites n2_08, but + we did not seem to need it.*) Theorem Imp3_31 : ∀ P Q R : Prop, (P → (Q → R)) → (P ∧ Q) → R. @@ -1165,6 +1170,8 @@ Proof. intros P Q R. apply Impl1_01. apply Impl1_01. Qed. +(*The proof sketch cites n2_08, but + we did not seem to need it.*) Theorem Syll3_33 : ∀ P Q R : Prop, ((P → Q) ∧ (Q → R)) → (P → R). @@ -1251,7 +1258,7 @@ Proof. intros P Q R. intros Simp3_27a. specialize Syll2_06 with (P∧Q) Q R. intros Syll2_06a. - MP Syll2_05a Simp3_27a. + MP Syll2_06a Simp3_27a. apply Syll2_06a. Qed. @@ -1593,9 +1600,16 @@ Theorem n4_15 : ∀ P Q R : Prop, intros Syll2_06b. MP Syll2_06b n3_22b. Syll Syll2_06b Simp3_27a Sb. + clear n4_14a. clear n3_22a. clear Syll2_06a. + clear n4_13a. clear Simp3_26a. clear n3_22b. + clear Simp3_27a. clear Syll2_06b. + Conj Sa Sb. split. apply Sa. apply Sb. + Equiv H. + apply H. + apply Equiv4_01. apply EqBi. apply n4_13a. Qed. @@ -1619,11 +1633,7 @@ Theorem n4_21 : ∀ P Q : Prop, Proof. intros P Q. specialize n3_22 with (P→Q) (Q→P). intros n3_22a. - specialize Equiv4_01 with P Q. - intros Equiv4_01a. replace ((P → Q) ∧ (Q → P)) with (P↔Q) in n3_22a. - specialize Equiv4_01 with Q P. - intros Equiv4_01b. replace ((Q → P) ∧ (P → Q)) with (Q↔P) in n3_22a. specialize n3_22 with (Q→P) (P→Q). intros n3_22b. @@ -1631,11 +1641,15 @@ Theorem n4_21 : ∀ P Q : Prop, replace ((Q → P) ∧ (P → Q)) with (Q↔P) in n3_22b. Conj n3_22a n3_22b. split. - apply Equiv4_01b. - apply n3_22b. - split. apply n3_22a. apply n3_22b. + Equiv H. + apply H. + apply Equiv4_01. + apply Equiv4_01. + apply Equiv4_01. + apply Equiv4_01. + apply Equiv4_01. Qed. Theorem n4_22 : ∀ P Q R : Prop, @@ -1792,7 +1806,9 @@ Qed. apply EqBi. apply Trans4_1a. apply EqBi. - apply n4_13. + specialize n4_13 with (Q ∧ R). + intros n4_13a. + apply n4_13a. Qed. (*Note that the actual proof uses n4_12, but that transposition involves transforming a @@ -1810,8 +1826,13 @@ Theorem n4_33 : ∀ P Q R : Prop, intros n2_31a. specialize n2_32 with P Q R. intros n2_32a. - split. apply n2_31a. + Conj n2_31a n2_32a. + split. + apply n2_31a. apply n2_32a. + Equiv H. + apply H. + apply Equiv4_01. Qed. Axiom Abb4_34 : ∀ P Q R : Prop, @@ -1868,9 +1889,13 @@ Proof. intros P Q R. replace (R ∨ Q) with (Q ∨ R) in n3_47a. apply n3_47a. apply EqBi. - apply n4_31. + specialize n4_31 with Q R. + intros n4_31a. + apply n4_31a. apply EqBi. - apply n4_31. + specialize n4_31 with P R. + intros n4_31b. + apply n4_31b. apply Equiv4_01. apply Equiv4_01. Qed. @@ -2092,7 +2117,7 @@ Proof. intros P Q R. intros Sum1_6b. MP Simp3_27a Sum1_6b. clear Simp3_26a. clear Simp3_27a. - Conj Sum1_6a Sum1_6b. + Conj Sum1_6a Sum1_6a. split. apply Sum1_6a. apply Sum1_6b. @@ -2116,9 +2141,16 @@ Proof. intros P Q R. specialize n2_54 with P (Q∧R). intros n2_54a. Syll Sa n2_54a Sb. + clear Sum1_6a. clear Sum1_6b. clear H. clear n2_53a. + clear n2_53b. clear H0. clear n3_47a. clear Sa. + clear Comp3_43b. clear n2_54a. + Conj Comp3_43a Sb. split. apply Comp3_43a. apply Sb. + Equiv H. + apply H. + apply Equiv4_01. Qed. Theorem n4_42 : ∀ P Q : Prop, @@ -2187,7 +2219,9 @@ Proof. intros P Q. apply H. apply Equiv4_01. apply EqBi. - apply n4_13. + specialize n4_13 with P. + intros n4_13a. + apply n4_13a. Qed. Theorem n4_44 : ∀ P Q : Prop, @@ -2225,13 +2259,21 @@ Theorem n4_45 : ∀ P Q : Prop, replace (P ∧ P) with P in n2_2a. specialize Simp3_26 with P (P ∨ Q). intros Simp3_26a. + Conj n2_2a Simp3_26a. split. apply n2_2a. apply Simp3_26a. + Equiv H. + apply H. + apply Equiv4_01. + specialize n4_24 with P. + intros n4_24a. apply EqBi. - apply n4_24. + apply n4_24a. + specialize n4_4 with P P Q. + intros n4_4a. apply EqBi. - apply n4_4. + apply n4_4a. Qed. Theorem n4_5 : ∀ P Q : Prop, @@ -2262,7 +2304,9 @@ Theorem n4_51 : ∀ P Q : Prop, specialize n4_21 with (~(P ∧ Q)) (~P ∨ ~Q). intros n4_21a. apply EqBi. - apply n4_21. + specialize n4_21 with (~(P∧Q)) (~P ∨ ~Q). + intros n4_21b. + apply n4_21b. apply EqBi. apply EqBi. Qed. @@ -2347,7 +2391,9 @@ Theorem n4_56 : ∀ P Q : Prop, replace (~~Q) with Q in n4_54a. apply n4_54a. apply EqBi. - apply n4_13. + specialize n4_13 with Q. + intros n4_13a. + apply n4_13a. Qed. Theorem n4_57 : ∀ P Q : Prop, @@ -2406,7 +2452,10 @@ Theorem n4_61 : ∀ P Q : Prop, apply EqBi. apply Trans4_11a. apply EqBi. - apply n4_21. + specialize n4_21 with (~(P→Q)↔~(~P∨Q)) + ((P→Q)↔(~P∨Q)). + intros n4_21a. + apply n4_21a. Qed. Theorem n4_62 : ∀ P Q : Prop, @@ -2479,7 +2528,10 @@ Theorem n4_65 : ∀ P Q : Prop, apply EqBi. apply Trans4_11a. apply EqBi. - apply n4_21. + specialize n4_21 with (~(~P → Q)↔~(P ∨ Q)) + ((~P → Q)↔(P ∨ Q)). + intros n4_21a. + apply n4_21a. Qed. Theorem n4_66 : ∀ P Q : Prop, @@ -2510,7 +2562,10 @@ Theorem n4_67 : ∀ P Q : Prop, apply EqBi. apply Trans4_11a. apply EqBi. - apply n4_21. + specialize n4_21 with (~(~P → ~Q)↔~(P ∨ ~Q)) + ((~P → ~Q)↔(P ∨ ~Q)). + intros n4_21a. + apply n4_21a. Qed. Theorem n4_7 : ∀ P Q : Prop, @@ -2529,7 +2584,7 @@ Theorem n4_7 : ∀ P Q : Prop, intros Simp3_27a. specialize Syll2_05 with P (P ∧ Q) Q. intros Syll2_05a. - MP Syll2_05a Simp3_26a. + MP Syll2_05a Simp3_27a. clear n2_08a. clear Comp3_43a. clear Simp3_27a. Conj Syll2_05a Exp3_3a. split. @@ -2624,7 +2679,9 @@ Theorem n4_72 : ∀ P Q : Prop, (Q ∨ P ↔~(~Q ∧ ~P)) in n4_57a. apply n4_57a. apply EqBi. - apply n4_21. + specialize n4_21 with (Q ∨ P) (~(~Q ∧ ~P)). + intros n4_21b. + apply n4_21b. Qed. Theorem n4_73 : ∀ P Q : Prop, @@ -2659,7 +2716,9 @@ Theorem n4_74 : ∀ P Q : Prop, ((Q ↔ P ∨ Q) ↔ (P → Q)) in n4_72a. apply n4_72a. apply EqBi. - apply n4_21. + specialize n4_21 with (Q↔(P ∨ Q)) (P → Q). + intros n4_21a. + apply n4_21a. Qed. Theorem n4_76 : ∀ P Q R : Prop, @@ -2674,7 +2733,9 @@ Theorem n4_76 : ∀ P Q R : Prop, ((P → Q) ∧ (P → R) ↔ (P → Q ∧ R)) in n4_41a. apply n4_41a. apply EqBi. - apply n4_21. + specialize n4_21 with ((P → Q) ∧ (P → R)) (P → Q ∧ R). + intros n4_21a. + apply n4_21a. apply Impl1_01. apply Impl1_01. apply Impl1_01. @@ -2825,27 +2886,32 @@ Theorem n4_79 : ∀ P Q R : Prop, intros n4_78a. replace ((~P → ~Q) ∨ (~P → ~R)) with (~P → ~Q ∨ ~R) in n4_39a. - specialize Trans2_15 with P (~Q ∨ ~R). - intros Trans2_15a. + specialize Trans4_1 with (~P) (~Q ∨ ~R). + intros Trans4_1c. replace (~P → ~Q ∨ ~R) with - (~(~Q ∨ ~R) → P) in n4_39a. + (~(~Q ∨ ~R) → ~~P) in n4_39a. replace (~(~Q ∨ ~R)) with (Q ∧ R) in n4_39a. + replace (~~P) with P in n4_39a. apply n4_39a. + specialize n4_13 with P. + intros n4_13a. + apply EqBi. + apply n4_13a. apply Prod3_01. - replace (~(~Q ∨ ~R) → P) with + replace (~(~Q ∨ ~R) → ~~P) with (~P → ~Q ∨ ~R). reflexivity. apply EqBi. - split. - apply Trans2_15a. - apply Trans2_15. + apply Trans4_1c. replace (~P → ~Q ∨ ~R) with ((~P → ~Q) ∨ (~P → ~R)). reflexivity. apply EqBi. apply n4_78a. Qed. + (*The proof sketch cites Trans2_15, but we did + not need Trans2_15 as a lemma here.*) Theorem n4_8 : ∀ P : Prop, (P → ~P) ↔ ~P. @@ -2962,7 +3028,9 @@ Theorem n4_84 : ∀ P Q R : Prop, ((P→ R) ↔ (Q → R)) in n3_47a. apply n3_47a. apply EqBi. - apply n4_21. + specialize n4_21 with (P→R) (Q→R). + intros n4_21a. + apply n4_21a. apply Equiv4_01. apply Equiv4_01. Qed. @@ -2991,73 +3059,37 @@ Theorem n4_85 : ∀ P Q R : Prop, Qed. Theorem n4_86 : ∀ P Q R : Prop, - (P ↔ Q) → ((P ↔ R) ↔ (Q ↔ R)). + (P ↔ Q) → ((P ↔ R) ↔ (Q ↔ R)). Proof. intros P Q R. - split. - split. - replace (P↔Q) with (Q↔P) in H. - Conj H H0. - split. - apply H. - apply H0. specialize n4_22 with Q P R. intros n4_22a. - MP n4_22a H1. - replace (Q ↔ R) with ((Q→R) ∧ (R→Q)) in n4_22a. - specialize Simp3_26 with (Q→R) (R→Q). - intros Simp3_26a. - MP Simp3_26a n4_22a. - apply Simp3_26a. - apply Equiv4_01. - apply EqBi. - apply n4_21. - replace (P↔R) with (R↔P) in H0. - Conj H0 H. + specialize Exp3_3 with (Q↔P) (P↔R) (Q↔R). + intros Exp3_3a. (*Not cited*) + MP Exp3_3a n4_22a. + specialize n4_22 with P Q R. + intros n4_22b. + specialize Exp3_3 with (P↔Q) (Q↔R) (P↔R). + intros Exp3_3b. + MP Exp3_3b n4_22b. + clear n4_22a. + clear n4_22b. + replace (Q↔P) with (P↔Q) in Exp3_3a. + Conj Exp3_3a Exp3_3b. split. - apply H. - apply H0. - replace ((P ↔ Q) ∧ (R ↔ P)) with - ((R ↔ P) ∧ (P ↔ Q)) in H1. - specialize n4_22 with R P Q. - intros n4_22a. - MP n4_22a H1. - replace (R ↔ Q) with ((R→Q) ∧ (Q→R)) in n4_22a. - specialize Simp3_26 with (R→Q) (Q→R). - intros Simp3_26a. - MP Simp3_26a n4_22a. - apply Simp3_26a. + apply Exp3_3a. + apply Exp3_3b. + specialize Comp3_43 with (P↔Q) + ((P↔R)→(Q↔R)) ((Q↔R)→(P↔R)). + intros Comp3_43a. (*Not cited*) + MP Comp3_43a H. + replace (((P↔R)→(Q↔R))∧((Q↔R)→(P↔R))) + with ((P↔R)↔(Q↔R)) in Comp3_43a. + apply Comp3_43a. apply Equiv4_01. apply EqBi. - apply n4_3. - apply EqBi. - apply n4_21. - split. - Conj H H0. - split. - apply H. - apply H0. - specialize n4_22 with P Q R. - intros n4_22a. - MP n4_22a H1. - replace (P↔R) with ((P→R)∧(R→P)) in n4_22a. - specialize Simp3_26 with (P→R) (R→P). - intros Simp3_26a. - MP Simp3_26a n4_22a. - apply Simp3_26a. - apply Equiv4_01. - Conj H H0. - split. - apply H. - apply H0. - specialize n4_22 with P Q R. - intros n4_22a. - MP n4_22a H1. - replace (P↔R) with ((P→R)∧(R→P)) in n4_22a. - specialize Simp3_27 with (P→R) (R→P). - intros Simp3_27a. - MP Simp3_27a n4_22a. - apply Simp3_27a. - apply Equiv4_01. + specialize n4_21 with P Q. + intros n4_21a. + apply n4_21a. Qed. Theorem n4_87 : ∀ P Q R : Prop, @@ -3164,6 +3196,8 @@ Theorem n5_11 : ∀ P Q : Prop, MP n2_54a n2_5a. apply n2_54a. Qed. + (*The proof sketch cites n2_51, + but this may be a misprint.*) Theorem n5_12 : ∀ P Q : Prop, (P → Q) ∨ (P → ~Q). @@ -3175,6 +3209,8 @@ Theorem n5_12 : ∀ P Q : Prop, MP n2_54a n2_5a. apply n2_54a. Qed. + (*The proof sketch cites n2_52, + but this may be a misprint.*) Theorem n5_13 : ∀ P Q : Prop, (P → Q) ∨ (Q → P). @@ -3186,7 +3222,9 @@ Theorem n5_13 : ∀ P Q : Prop, replace (~~(P→Q)) with (P→Q) in n2_521a. apply n2_521a. apply EqBi. - apply n4_13. (*Not cited*) + specialize n4_13 with (P→Q). + intros n4_13a. (*Not cited*) + apply n4_13a. replace (~~(P → Q) ∨ (Q → P)) with (~(P → Q) → Q → P). reflexivity. @@ -3209,7 +3247,9 @@ Theorem n5_14 : ∀ P Q R : Prop, replace (~~(P→Q)) with (P→Q) in Sa. apply Sa. apply EqBi. - apply n4_13. + specialize n4_13 with (P→Q). + intros n4_13a. + apply n4_13a. replace (~~(P→Q)∨(Q→R)) with (~(P→Q)→(Q→R)). reflexivity. @@ -3285,13 +3325,17 @@ Theorem n5_15 : ∀ P Q : Prop, apply EqBi. apply n4_31. apply EqBi. - apply n4_13. + specialize n4_13 with (Q→P). + intros n4_13a. + apply n4_13a. replace (~~(Q → P) ∨ (P ↔ ~Q)) with (~(Q → P) → (P ↔ ~Q)). reflexivity. apply Impl1_01. apply EqBi. - apply n4_13. + specialize n4_13 with (P→Q). + intros n4_13b. + apply n4_13b. replace (~~(P → Q) ∨ (P ↔ ~Q)) with (~(P → Q) → P ↔ ~Q). reflexivity. @@ -3385,24 +3429,34 @@ Theorem n5_16 : ∀ P Q : Prop, apply EqBi. apply n4_65a. apply EqBi. - apply n4_3. + specialize n4_3 with (~P) (~Q). + intros n4_3a. + apply n4_3a. apply Equiv4_01. apply EqBi. - apply n4_32. + specialize n4_32 with (P→Q) (Q→P) (P→~Q). + intros n4_32a. + apply n4_32a. replace (~P) with ((P → Q) ∧ (P → ~Q)). reflexivity. apply EqBi. apply n4_82a. apply Equiv4_01. apply EqBi. - apply n4_32. + specialize n4_32 with (P→Q) (Q→P) (P→~Q). + intros n4_32b. + apply n4_32b. apply EqBi. - apply n4_3. + specialize n4_3 with (Q→P) (P→~Q). + intros n4_3b. + apply n4_3b. replace ((P → Q) ∧ (P → ~Q) ∧ (Q → P)) with (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)). reflexivity. apply EqBi. - apply n4_32. + specialize n4_32 with (P→Q) (P→~Q) (Q→P). + intros n4_32a. + apply n4_32a. Qed. Theorem n5_17 : ∀ P Q : Prop, @@ -3449,11 +3503,17 @@ Theorem n5_17 : ∀ P Q : Prop, apply EqBi. apply Trans4_11a. apply EqBi. - apply n4_13. + specialize n4_13 with (P→~Q). + intros n4_13a. + apply n4_13a. apply EqBi. - apply n4_21. + specialize n4_21 with (P ∧ Q) (~(P→~Q)). + intros n4_21b. + apply n4_21b. apply EqBi. - apply n4_31. + specialize n4_31 with P Q. + intros n4_31a. + apply n4_31a. apply EqBi. apply n4_21a. Qed. @@ -3546,7 +3606,9 @@ Theorem n5_23 : ∀ P Q : Prop, replace (~Q ∧ ~P) with (~P ∧ ~Q) in n5_18a. apply n5_18a. apply EqBi. - apply n4_3. (*with (~P) (~Q)*) + specialize n4_3 with (~P) (~Q). + intros n4_3a. + apply n4_3a. (*with (~P) (~Q)*) apply EqBi. apply n4_13a. replace (P∧~~Q∨~Q∧~P) with (~(P↔~Q)). @@ -3687,7 +3749,10 @@ Theorem n5_32 : ∀ P Q R : Prop, apply n4_76a. apply Equiv4_01. apply EqBi. - apply n4_3. (*to commute the biconditional*) + specialize n4_21 with + (P→((Q→R)∧(R→Q))) ((P∧Q)↔(P∧R)). + intros n4_21a. + apply n4_21a. (*to commute the biconditional*) apply Equiv4_01. replace (P ∧ R → P ∧ Q) with (P ∧ R → Q). reflexivity. @@ -3720,8 +3785,7 @@ Theorem n5_33 : ∀ P Q R : Prop, specialize Simp3_26 with ((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R))) ((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R)))). - (*Not cited*) - intros Simp3_26a. + intros Simp3_26a. (*Not cited*) MP Simp3_26a n5_32a. specialize n4_73 with Q P. intros n4_73a. @@ -3732,7 +3796,9 @@ Theorem n5_33 : ∀ P Q R : Prop, MP Simp3_26a Sa. apply Simp3_26a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with P Q. + intros n4_3a. + apply n4_3a. (*Not cited*) apply Equiv4_01. Qed. @@ -3763,9 +3829,13 @@ Theorem n5_36 : ∀ P Q : Prop, replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in n2_08a. apply n2_08a. apply EqBi. - apply n4_3. + specialize n4_3 with Q (P↔Q). + intros n4_3a. + apply n4_3a. apply EqBi. - apply n4_3. + specialize n4_3 with P (P↔Q). + intros n4_3b. + apply n4_3b. replace ((P ↔ Q) ∧ P ↔ (P ↔ Q) ∧ Q) with (P ↔ Q → P ↔ Q). reflexivity. @@ -3899,7 +3969,9 @@ Theorem n5_44 : ∀ P Q R : Prop, apply EqBi. apply n4_76b. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with (P→R) (P→Q). + intros n4_3a. + apply n4_3a. (*Not cited*) apply Equiv4_01. Qed. @@ -3933,7 +4005,9 @@ Theorem n5_5 : ∀ P Q : Prop, apply n3_47a. apply Equiv4_01. apply EqBi. - apply n4_24. (*with P.*) + specialize n4_24 with P. + intros n4_24a. (*Not cited*) + apply n4_24a. Qed. Theorem n5_501 : ∀ P Q : Prop, @@ -3979,7 +4053,9 @@ Theorem n5_501 : ∀ P Q : Prop, ((P∧(P→Q))∧(Q→P)). reflexivity. apply EqBi. - apply n4_32. (*Not cited*) + specialize n4_32 with P (P→Q) (Q→P). + intros n4_32a. (*Not cited*) + apply n4_32a. Qed. Theorem n5_53 : ∀ P Q R S : Prop, @@ -3997,7 +4073,10 @@ Theorem n5_53 : ∀ P Q R S : Prop, in n4_77a. apply n4_77a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_21 with ((P ∨ Q) ∨ R → S) + (((P → S) ∧ (Q → S)) ∧ (R → S)). + intros n4_21a. + apply n4_21a. (*Not cited*) apply EqBi. apply n4_77b. Qed. @@ -4033,19 +4112,27 @@ Theorem n5_54 : ∀ P Q : Prop, replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa. apply Sa. apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with (P∧Q) P. + intros n4_21a. (*Not cited*) + apply n4_21a. apply EqBi. - apply n4_21. + specialize n4_21 with (P∧Q) Q. + intros n4_21b. (*Not cited*) + apply n4_21b. apply EqBi. apply Trans4_11b. apply EqBi. - apply n4_13. (*Not cited*) + specialize n4_13 with (P ↔ (P∧Q)). + intros n4_13a. (*Not cited*) + apply n4_13a. replace (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) with (~(P↔P∧Q)→~Q↔~(P∧Q)). reflexivity. apply Impl1_01. (*Not cited*) apply EqBi. - apply n4_56. (*Not cited*) + specialize n4_56 with Q (P∧Q). + intros n4_56a. (*Not cited*) + apply n4_56a. replace (~(Q∨P∧Q)) with (~Q). reflexivity. apply EqBi. @@ -4055,7 +4142,9 @@ Theorem n5_54 : ∀ P Q : Prop, apply EqBi. apply Trans4_11a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with P Q. + intros n4_3a. (*Not cited*) + apply n4_3a. Qed. Theorem n5_55 : ∀ P Q : Prop, @@ -4084,31 +4173,49 @@ Theorem n5_55 : ∀ P Q : Prop, ((P∨Q↔P)∨(P∨Q↔Q)) in Sb. apply Sb. apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with (P ∨ Q ↔ P) (P ∨ Q ↔ Q). + intros n4_31a. (*Not cited*) + apply n4_31a. apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with (P ∨ Q) P. + intros n4_21a. (*Not cited*) + apply n4_21a. apply EqBi. - apply n4_21. + specialize n4_21 with (P ∨ Q) Q. + intros n4_21b. (*Not cited*) + apply n4_21b. apply EqBi. - apply n4_13. (*Not cited*) + specialize n4_13 with (Q ↔ P ∨ Q). + intros n4_13a. (*Not cited*) + apply n4_13a. replace (~~(Q↔P∨Q)∨(P↔P∨Q)) with (~(Q↔P∨Q)→P↔P∨Q). reflexivity. apply Impl1_01. apply EqBi. - apply n4_31. + specialize n4_31 with P Q. + intros n4_31b. + apply n4_31b. apply EqBi. - apply n4_25. (*Not cited*) + specialize n4_25 with P. + intros n4_25a. (*Not cited*) + apply n4_25a. replace ((P∨P)∧(Q∨P)) with ((P∧Q)∨P). reflexivity. replace ((P∧Q)∨P) with (P∨(P∧Q)). replace (Q∨P) with (P∨Q). apply EqBi. - apply n4_41. (*Not cited*) + specialize n4_41 with P P Q. + intros n4_41a. (*Not cited*) + apply n4_41a. apply EqBi. - apply n4_31. + specialize n4_31 with P Q. + intros n4_31c. + apply n4_31c. apply EqBi. - apply n4_31. + specialize n4_31 with P (P ∧ Q). + intros n4_31d. (*Not cited*) + apply n4_31d. Qed. Theorem n5_6 : ∀ P Q R : Prop, @@ -4167,13 +4274,21 @@ Theorem n5_61 : ∀ P Q : Prop, ((P ∨ Q) ∧ ~Q ↔ P ∧ ~Q) in n4_74a. apply n4_74a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_21 with ((P∨Q)∧~Q) (P∧~Q). + intros n4_21a. (*Not cited*) + apply n4_21a. apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with P Q. + intros n4_31a. (*Not cited*) + apply n4_31a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with (Q∨P) (~Q). + intros n4_3a. (*Not cited*) + apply n4_3a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with P (~Q). + intros n4_3b. (*Not cited*) + apply n4_3b. replace (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) with (~Q → P ↔ Q ∨ P). reflexivity. @@ -4195,21 +4310,33 @@ Theorem n5_62 : ∀ P Q : Prop, (P ∧ Q ∨ ~Q ↔ P ∨ ~Q) in n4_7a. apply n4_7a. apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with (P ∧ Q ∨ ~Q) (P ∨ ~Q). + intros n4_21a. (*Not cited*) + apply n4_21a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with P Q. + intros n4_3a. (*Not cited*) + apply n4_3a. apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with P (~Q). + intros n4_31a. (*Not cited*) + apply n4_31a. apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with (Q ∧ P) (~Q). + intros n4_31b. (*Not cited*) + apply n4_31b. replace (~Q ∨ Q ∧ P) with (Q → Q ∧ P). reflexivity. apply EqBi. - apply n4_6. (*Not cited*) + specialize n4_6 with Q (Q∧P). + intros n4_6a. (*Not cited*) + apply n4_6a. replace (~Q ∨ P) with (Q → P). reflexivity. apply EqBi. - apply n4_6. (*Not cited*) + specialize n4_6 with Q P. + intros n4_6b. (*Not cited*) + apply n4_6b. Qed. Theorem n5_63 : ∀ P Q : Prop, @@ -4225,15 +4352,25 @@ Theorem n5_63 : ∀ P Q : Prop, replace (Q∧~P) with (~P∧Q) in n5_62a. apply n5_62a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with (~P) Q. + intros n4_3a. + apply n4_3a. (*Not cited*) apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with (P∨Q) (P∨(Q∧~P)). + intros n4_21a. (*Not cited*) + apply n4_21a. apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with P (Q∧~P). + intros n4_31a. (*Not cited*) + apply n4_31a. apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with P Q. + intros n4_31b. (*Not cited*) + apply n4_31b. apply EqBi. - apply n4_13. (*Not cited*) + specialize n4_13 with P. + intros n4_13a. (*Not cited*) + apply n4_13a. Qed. Theorem n5_7 : ∀ P Q R : Prop, @@ -4255,28 +4392,44 @@ Theorem n5_7 : ∀ P Q R : Prop, ((P∨R↔Q∨R)↔(R∨(P↔Q))) in n5_32a. apply n5_32a. (*Not cited*) apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with ((P∨R)↔(Q∨R)) (R∨(P↔Q)). + intros n4_21a. + apply n4_21a. (*Not cited*) apply EqBi. - apply n4_31. + specialize n4_31 with Q R. + intros n4_31a. (*Not cited*) + apply n4_31a. apply EqBi. - apply n4_31. + specialize n4_31 with P R. + intros n4_31b. (*Not cited*) + apply n4_31b. apply EqBi. - apply n4_13. (*Not cited*) + specialize n4_13 with R. + intros n4_13a. (*Not cited*) + apply n4_13a. replace (~~R∨(P↔Q)) with (~R→P↔Q). reflexivity. apply Impl1_01. (*Not cited*) apply EqBi. - apply Trans4_11. (*Not cited*) + specialize Trans4_11 with P Q. + intros Trans4_11a. (*Not cited*) + apply Trans4_11a. apply EqBi. - apply Trans4_11. + specialize Trans4_11 with (R ∨ P) (R ∨ Q). + intros Trans4_11a. (*Not cited*) + apply Trans4_11a. replace (~(R∨Q)) with (~R∧~Q). reflexivity. apply EqBi. - apply n4_56. (*Not cited*) + specialize n4_56 with R Q. + intros n4_56a. (*Not cited*) + apply n4_56a. replace (~(R∨P)) with (~R∧~P). reflexivity. apply EqBi. - apply n4_56. + specialize n4_56 with R P. + intros n4_56b. (*Not cited*) + apply n4_56b. Qed. (*The proof sketch was indecipherable, but an easy proof was available through n5_32.*) @@ -4312,17 +4465,27 @@ Theorem n5_71 : ∀ P Q R : Prop, (((P∨Q)∧R)↔(P∧R)) in Sa. apply Sa. apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with ((P∨Q)∧R) (P∧R). + intros n4_21a. (*Not cited*) + apply n4_21a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with (P∨Q) R. + intros n4_3a. + apply n4_3a. (*Not cited*) apply EqBi. apply n4_4a. (*Not cited*) apply EqBi. - apply n4_31. (*Not cited*) + specialize n4_31 with (Q∧R) (P∧R). + intros n4_31a. (*Not cited*) + apply n4_31a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with Q R. + intros n4_3a. (*Not cited*) + apply n4_3a. apply EqBi. - apply n4_3. (*Not cited*) + specialize n4_3 with P R. + intros n4_3b. (*Not cited*) + apply n4_3b. apply Equiv4_01. apply EqBi. apply n4_51a. @@ -4355,7 +4518,9 @@ Theorem n5_74 : ∀ P Q R : Prop, ((P→(Q↔R))↔((P→Q)↔(P→R))) in n4_38a. apply n4_38a. apply EqBi. - apply n4_21. (*Not cited*) + specialize n4_21 with (P→Q↔R) ((P→Q)↔(P→R)). + intros n4_21a. (*Not cited*) + apply n4_21a. replace (P→Q↔R) with ((P→Q→R)∧(P→R→Q)). reflexivity. apply EqBi. |
