summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--PL.v505
1 files changed, 335 insertions, 170 deletions
diff --git a/PL.v b/PL.v
index 6d356df..9809b74 100644
--- a/PL.v
+++ b/PL.v
@@ -34,7 +34,7 @@ Axiom Assoc1_5 : ∀ P Q R : Prop,
Axiom Sum1_6: ∀ P Q R : Prop,
(Q → R) → (P ∨ Q → P ∨ R). (*Summation*)
- (*These are all the propositional axioms of Principia.*)
+(*These are all the propositional axioms of Principia.*)
End No1.
@@ -149,7 +149,7 @@ Proof. intros P.
specialize Perm1_4 with (~P) P.
intros Perm1_4.
specialize n2_1 with P.
- intros Abs2_01.
+ intros n2_1.
apply Perm1_4.
apply n2_1.
Qed.
@@ -160,7 +160,7 @@ Proof. intros P.
specialize n2_11 with (~P).
intros n2_11.
rewrite Impl1_01.
- assumption.
+ apply n2_11.
Qed.
Theorem n2_13 : ∀ P : Prop,
@@ -172,6 +172,8 @@ Proof. intros P.
intros n2_12.
apply Sum1_6.
apply n2_12.
+ specialize n2_11 with P.
+ intros n2_11.
apply n2_11.
Qed.
@@ -204,6 +206,8 @@ Proof. intros P Q.
intros Syll2_05d.
apply Syll2_05d.
apply Syll2_05b.
+ specialize n2_14 with P.
+ intros n2_14.
apply n2_14.
apply Syll2_05c.
apply n2_03.
@@ -381,8 +385,7 @@ Qed.
Axiom Abb2_33 : ∀ P Q R : Prop,
(P ∨ Q ∨ R) = ((P ∨ Q) ∨ R).
(*This definition makes the default left association.
- The default in Coq is right association, so this will
- need to be applied to underwrite some inferences.*)
+ The default in Coq is right association.*)
Theorem n2_36 : ∀ P Q R : Prop,
(Q → R) → ((P ∨ Q) → (R ∨ P)).
@@ -703,8 +706,8 @@ Proof. intros P Q.
intros Syll2_06a.
specialize Perm1_4 with P (~Q).
intros Perm1_4b.
- MP Syll2_05a Perm1_4b.
- Syll Syll2_05a Ha S.
+ MP Syll2_06a Perm1_4b.
+ Syll Syll2_06a Ha S.
apply S.
Qed.
@@ -1019,7 +1022,7 @@ Proof. intros P Q.
intros n3_11a.
specialize Trans2_15 with (~P∨~Q) (P∧Q).
intros Trans2_15a.
- MP Trans2_16a n3_11a.
+ MP Trans2_15a n3_11a.
apply Trans2_15a.
Qed.
@@ -1131,9 +1134,9 @@ Theorem Exp3_3 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize Trans2_15 with (~P∨~Q) R.
intros Trans2_15a.
- replace (~R→(~P∨~Q)) with (~R→(P→~Q)) in Trans2_15a.
specialize Comm2_04 with (~R) P (~Q).
intros Comm2_04a.
+ replace (P → ~Q) with (~P ∨ ~Q) in Comm2_04a.
Syll Trans2_15a Comm2_04a Sa.
specialize Trans2_17 with Q R.
intros Trans2_17a.
@@ -1141,13 +1144,15 @@ Proof. intros P Q R.
intros Syll2_05a.
MP Syll2_05a Trans2_17a.
Syll Sa Syll2_05a Sb.
- replace (~(~P∨~Q)) with (P∧Q) in Sb.
+ replace (~(~P ∨ ~Q)) with (P ∧ Q) in Sb.
apply Sb.
apply Prod3_01.
replace (~P∨~Q) with (P→~Q).
reflexivity.
apply Impl1_01.
Qed.
+(*The proof sketch cites n2_08, but
+ we did not seem to need it.*)
Theorem Imp3_31 : ∀ P Q R : Prop,
(P → (Q → R)) → (P ∧ Q) → R.
@@ -1165,6 +1170,8 @@ Proof. intros P Q R.
apply Impl1_01.
apply Impl1_01.
Qed.
+(*The proof sketch cites n2_08, but
+ we did not seem to need it.*)
Theorem Syll3_33 : ∀ P Q R : Prop,
((P → Q) ∧ (Q → R)) → (P → R).
@@ -1251,7 +1258,7 @@ Proof. intros P Q R.
intros Simp3_27a.
specialize Syll2_06 with (P∧Q) Q R.
intros Syll2_06a.
- MP Syll2_05a Simp3_27a.
+ MP Syll2_06a Simp3_27a.
apply Syll2_06a.
Qed.
@@ -1593,9 +1600,16 @@ Theorem n4_15 : ∀ P Q R : Prop,
intros Syll2_06b.
MP Syll2_06b n3_22b.
Syll Syll2_06b Simp3_27a Sb.
+ clear n4_14a. clear n3_22a. clear Syll2_06a.
+ clear n4_13a. clear Simp3_26a. clear n3_22b.
+ clear Simp3_27a. clear Syll2_06b.
+ Conj Sa Sb.
split.
apply Sa.
apply Sb.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
apply EqBi.
apply n4_13a.
Qed.
@@ -1619,11 +1633,7 @@ Theorem n4_21 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n3_22 with (P→Q) (Q→P).
intros n3_22a.
- specialize Equiv4_01 with P Q.
- intros Equiv4_01a.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in n3_22a.
- specialize Equiv4_01 with Q P.
- intros Equiv4_01b.
replace ((Q → P) ∧ (P → Q)) with (Q↔P) in n3_22a.
specialize n3_22 with (Q→P) (P→Q).
intros n3_22b.
@@ -1631,11 +1641,15 @@ Theorem n4_21 : ∀ P Q : Prop,
replace ((Q → P) ∧ (P → Q)) with (Q↔P) in n3_22b.
Conj n3_22a n3_22b.
split.
- apply Equiv4_01b.
- apply n3_22b.
- split.
apply n3_22a.
apply n3_22b.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
+ apply Equiv4_01.
+ apply Equiv4_01.
+ apply Equiv4_01.
+ apply Equiv4_01.
Qed.
Theorem n4_22 : ∀ P Q R : Prop,
@@ -1792,7 +1806,9 @@ Qed.
apply EqBi.
apply Trans4_1a.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with (Q ∧ R).
+ intros n4_13a.
+ apply n4_13a.
Qed.
(*Note that the actual proof uses n4_12, but
that transposition involves transforming a
@@ -1810,8 +1826,13 @@ Theorem n4_33 : ∀ P Q R : Prop,
intros n2_31a.
specialize n2_32 with P Q R.
intros n2_32a.
- split. apply n2_31a.
+ Conj n2_31a n2_32a.
+ split.
+ apply n2_31a.
apply n2_32a.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
Qed.
Axiom Abb4_34 : ∀ P Q R : Prop,
@@ -1868,9 +1889,13 @@ Proof. intros P Q R.
replace (R ∨ Q) with (Q ∨ R) in n3_47a.
apply n3_47a.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with Q R.
+ intros n4_31a.
+ apply n4_31a.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with P R.
+ intros n4_31b.
+ apply n4_31b.
apply Equiv4_01.
apply Equiv4_01.
Qed.
@@ -2092,7 +2117,7 @@ Proof. intros P Q R.
intros Sum1_6b.
MP Simp3_27a Sum1_6b.
clear Simp3_26a. clear Simp3_27a.
- Conj Sum1_6a Sum1_6b.
+ Conj Sum1_6a Sum1_6a.
split.
apply Sum1_6a.
apply Sum1_6b.
@@ -2116,9 +2141,16 @@ Proof. intros P Q R.
specialize n2_54 with P (Q∧R).
intros n2_54a.
Syll Sa n2_54a Sb.
+ clear Sum1_6a. clear Sum1_6b. clear H. clear n2_53a.
+ clear n2_53b. clear H0. clear n3_47a. clear Sa.
+ clear Comp3_43b. clear n2_54a.
+ Conj Comp3_43a Sb.
split.
apply Comp3_43a.
apply Sb.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
Qed.
Theorem n4_42 : ∀ P Q : Prop,
@@ -2187,7 +2219,9 @@ Proof. intros P Q.
apply H.
apply Equiv4_01.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with P.
+ intros n4_13a.
+ apply n4_13a.
Qed.
Theorem n4_44 : ∀ P Q : Prop,
@@ -2225,13 +2259,21 @@ Theorem n4_45 : ∀ P Q : Prop,
replace (P ∧ P) with P in n2_2a.
specialize Simp3_26 with P (P ∨ Q).
intros Simp3_26a.
+ Conj n2_2a Simp3_26a.
split.
apply n2_2a.
apply Simp3_26a.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
+ specialize n4_24 with P.
+ intros n4_24a.
apply EqBi.
- apply n4_24.
+ apply n4_24a.
+ specialize n4_4 with P P Q.
+ intros n4_4a.
apply EqBi.
- apply n4_4.
+ apply n4_4a.
Qed.
Theorem n4_5 : ∀ P Q : Prop,
@@ -2262,7 +2304,9 @@ Theorem n4_51 : ∀ P Q : Prop,
specialize n4_21 with (~(P ∧ Q)) (~P ∨ ~Q).
intros n4_21a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (~(P∧Q)) (~P ∨ ~Q).
+ intros n4_21b.
+ apply n4_21b.
apply EqBi.
apply EqBi.
Qed.
@@ -2347,7 +2391,9 @@ Theorem n4_56 : ∀ P Q : Prop,
replace (~~Q) with Q in n4_54a.
apply n4_54a.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with Q.
+ intros n4_13a.
+ apply n4_13a.
Qed.
Theorem n4_57 : ∀ P Q : Prop,
@@ -2406,7 +2452,10 @@ Theorem n4_61 : ∀ P Q : Prop,
apply EqBi.
apply Trans4_11a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (~(P→Q)↔~(~P∨Q))
+ ((P→Q)↔(~P∨Q)).
+ intros n4_21a.
+ apply n4_21a.
Qed.
Theorem n4_62 : ∀ P Q : Prop,
@@ -2479,7 +2528,10 @@ Theorem n4_65 : ∀ P Q : Prop,
apply EqBi.
apply Trans4_11a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (~(~P → Q)↔~(P ∨ Q))
+ ((~P → Q)↔(P ∨ Q)).
+ intros n4_21a.
+ apply n4_21a.
Qed.
Theorem n4_66 : ∀ P Q : Prop,
@@ -2510,7 +2562,10 @@ Theorem n4_67 : ∀ P Q : Prop,
apply EqBi.
apply Trans4_11a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (~(~P → ~Q)↔~(P ∨ ~Q))
+ ((~P → ~Q)↔(P ∨ ~Q)).
+ intros n4_21a.
+ apply n4_21a.
Qed.
Theorem n4_7 : ∀ P Q : Prop,
@@ -2529,7 +2584,7 @@ Theorem n4_7 : ∀ P Q : Prop,
intros Simp3_27a.
specialize Syll2_05 with P (P ∧ Q) Q.
intros Syll2_05a.
- MP Syll2_05a Simp3_26a.
+ MP Syll2_05a Simp3_27a.
clear n2_08a. clear Comp3_43a. clear Simp3_27a.
Conj Syll2_05a Exp3_3a.
split.
@@ -2624,7 +2679,9 @@ Theorem n4_72 : ∀ P Q : Prop,
(Q ∨ P ↔~(~Q ∧ ~P)) in n4_57a.
apply n4_57a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (Q ∨ P) (~(~Q ∧ ~P)).
+ intros n4_21b.
+ apply n4_21b.
Qed.
Theorem n4_73 : ∀ P Q : Prop,
@@ -2659,7 +2716,9 @@ Theorem n4_74 : ∀ P Q : Prop,
((Q ↔ P ∨ Q) ↔ (P → Q)) in n4_72a.
apply n4_72a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (Q↔(P ∨ Q)) (P → Q).
+ intros n4_21a.
+ apply n4_21a.
Qed.
Theorem n4_76 : ∀ P Q R : Prop,
@@ -2674,7 +2733,9 @@ Theorem n4_76 : ∀ P Q R : Prop,
((P → Q) ∧ (P → R) ↔ (P → Q ∧ R)) in n4_41a.
apply n4_41a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with ((P → Q) ∧ (P → R)) (P → Q ∧ R).
+ intros n4_21a.
+ apply n4_21a.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
@@ -2825,27 +2886,32 @@ Theorem n4_79 : ∀ P Q R : Prop,
intros n4_78a.
replace ((~P → ~Q) ∨ (~P → ~R)) with
(~P → ~Q ∨ ~R) in n4_39a.
- specialize Trans2_15 with P (~Q ∨ ~R).
- intros Trans2_15a.
+ specialize Trans4_1 with (~P) (~Q ∨ ~R).
+ intros Trans4_1c.
replace (~P → ~Q ∨ ~R) with
- (~(~Q ∨ ~R) → P) in n4_39a.
+ (~(~Q ∨ ~R) → ~~P) in n4_39a.
replace (~(~Q ∨ ~R)) with
(Q ∧ R) in n4_39a.
+ replace (~~P) with P in n4_39a.
apply n4_39a.
+ specialize n4_13 with P.
+ intros n4_13a.
+ apply EqBi.
+ apply n4_13a.
apply Prod3_01.
- replace (~(~Q ∨ ~R) → P) with
+ replace (~(~Q ∨ ~R) → ~~P) with
(~P → ~Q ∨ ~R).
reflexivity.
apply EqBi.
- split.
- apply Trans2_15a.
- apply Trans2_15.
+ apply Trans4_1c.
replace (~P → ~Q ∨ ~R) with
((~P → ~Q) ∨ (~P → ~R)).
reflexivity.
apply EqBi.
apply n4_78a.
Qed.
+ (*The proof sketch cites Trans2_15, but we did
+ not need Trans2_15 as a lemma here.*)
Theorem n4_8 : ∀ P : Prop,
(P → ~P) ↔ ~P.
@@ -2962,7 +3028,9 @@ Theorem n4_84 : ∀ P Q R : Prop,
((P→ R) ↔ (Q → R)) in n3_47a.
apply n3_47a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (P→R) (Q→R).
+ intros n4_21a.
+ apply n4_21a.
apply Equiv4_01.
apply Equiv4_01.
Qed.
@@ -2991,73 +3059,37 @@ Theorem n4_85 : ∀ P Q R : Prop,
Qed.
Theorem n4_86 : ∀ P Q R : Prop,
- (P ↔ Q) → ((P ↔ R) ↔ (Q ↔ R)).
+ (P ↔ Q) → ((P ↔ R) ↔ (Q ↔ R)).
Proof. intros P Q R.
- split.
- split.
- replace (P↔Q) with (Q↔P) in H.
- Conj H H0.
- split.
- apply H.
- apply H0.
specialize n4_22 with Q P R.
intros n4_22a.
- MP n4_22a H1.
- replace (Q ↔ R) with ((Q→R) ∧ (R→Q)) in n4_22a.
- specialize Simp3_26 with (Q→R) (R→Q).
- intros Simp3_26a.
- MP Simp3_26a n4_22a.
- apply Simp3_26a.
- apply Equiv4_01.
- apply EqBi.
- apply n4_21.
- replace (P↔R) with (R↔P) in H0.
- Conj H0 H.
+ specialize Exp3_3 with (Q↔P) (P↔R) (Q↔R).
+ intros Exp3_3a. (*Not cited*)
+ MP Exp3_3a n4_22a.
+ specialize n4_22 with P Q R.
+ intros n4_22b.
+ specialize Exp3_3 with (P↔Q) (Q↔R) (P↔R).
+ intros Exp3_3b.
+ MP Exp3_3b n4_22b.
+ clear n4_22a.
+ clear n4_22b.
+ replace (Q↔P) with (P↔Q) in Exp3_3a.
+ Conj Exp3_3a Exp3_3b.
split.
- apply H.
- apply H0.
- replace ((P ↔ Q) ∧ (R ↔ P)) with
- ((R ↔ P) ∧ (P ↔ Q)) in H1.
- specialize n4_22 with R P Q.
- intros n4_22a.
- MP n4_22a H1.
- replace (R ↔ Q) with ((R→Q) ∧ (Q→R)) in n4_22a.
- specialize Simp3_26 with (R→Q) (Q→R).
- intros Simp3_26a.
- MP Simp3_26a n4_22a.
- apply Simp3_26a.
+ apply Exp3_3a.
+ apply Exp3_3b.
+ specialize Comp3_43 with (P↔Q)
+ ((P↔R)→(Q↔R)) ((Q↔R)→(P↔R)).
+ intros Comp3_43a. (*Not cited*)
+ MP Comp3_43a H.
+ replace (((P↔R)→(Q↔R))∧((Q↔R)→(P↔R)))
+ with ((P↔R)↔(Q↔R)) in Comp3_43a.
+ apply Comp3_43a.
apply Equiv4_01.
apply EqBi.
- apply n4_3.
- apply EqBi.
- apply n4_21.
- split.
- Conj H H0.
- split.
- apply H.
- apply H0.
- specialize n4_22 with P Q R.
- intros n4_22a.
- MP n4_22a H1.
- replace (P↔R) with ((P→R)∧(R→P)) in n4_22a.
- specialize Simp3_26 with (P→R) (R→P).
- intros Simp3_26a.
- MP Simp3_26a n4_22a.
- apply Simp3_26a.
- apply Equiv4_01.
- Conj H H0.
- split.
- apply H.
- apply H0.
- specialize n4_22 with P Q R.
- intros n4_22a.
- MP n4_22a H1.
- replace (P↔R) with ((P→R)∧(R→P)) in n4_22a.
- specialize Simp3_27 with (P→R) (R→P).
- intros Simp3_27a.
- MP Simp3_27a n4_22a.
- apply Simp3_27a.
- apply Equiv4_01.
+ specialize n4_21 with P Q.
+ intros n4_21a.
+ apply n4_21a.
Qed.
Theorem n4_87 : ∀ P Q R : Prop,
@@ -3164,6 +3196,8 @@ Theorem n5_11 : ∀ P Q : Prop,
MP n2_54a n2_5a.
apply n2_54a.
Qed.
+ (*The proof sketch cites n2_51,
+ but this may be a misprint.*)
Theorem n5_12 : ∀ P Q : Prop,
(P → Q) ∨ (P → ~Q).
@@ -3175,6 +3209,8 @@ Theorem n5_12 : ∀ P Q : Prop,
MP n2_54a n2_5a.
apply n2_54a.
Qed.
+ (*The proof sketch cites n2_52,
+ but this may be a misprint.*)
Theorem n5_13 : ∀ P Q : Prop,
(P → Q) ∨ (Q → P).
@@ -3186,7 +3222,9 @@ Theorem n5_13 : ∀ P Q : Prop,
replace (~~(P→Q)) with (P→Q) in n2_521a.
apply n2_521a.
apply EqBi.
- apply n4_13. (*Not cited*)
+ specialize n4_13 with (P→Q).
+ intros n4_13a. (*Not cited*)
+ apply n4_13a.
replace (~~(P → Q) ∨ (Q → P)) with
(~(P → Q) → Q → P).
reflexivity.
@@ -3209,7 +3247,9 @@ Theorem n5_14 : ∀ P Q R : Prop,
replace (~~(P→Q)) with (P→Q) in Sa.
apply Sa.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with (P→Q).
+ intros n4_13a.
+ apply n4_13a.
replace (~~(P→Q)∨(Q→R)) with
(~(P→Q)→(Q→R)).
reflexivity.
@@ -3285,13 +3325,17 @@ Theorem n5_15 : ∀ P Q : Prop,
apply EqBi.
apply n4_31.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with (Q→P).
+ intros n4_13a.
+ apply n4_13a.
replace (~~(Q → P) ∨ (P ↔ ~Q)) with
(~(Q → P) → (P ↔ ~Q)).
reflexivity.
apply Impl1_01.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with (P→Q).
+ intros n4_13b.
+ apply n4_13b.
replace (~~(P → Q) ∨ (P ↔ ~Q)) with
(~(P → Q) → P ↔ ~Q).
reflexivity.
@@ -3385,24 +3429,34 @@ Theorem n5_16 : ∀ P Q : Prop,
apply EqBi.
apply n4_65a.
apply EqBi.
- apply n4_3.
+ specialize n4_3 with (~P) (~Q).
+ intros n4_3a.
+ apply n4_3a.
apply Equiv4_01.
apply EqBi.
- apply n4_32.
+ specialize n4_32 with (P→Q) (Q→P) (P→~Q).
+ intros n4_32a.
+ apply n4_32a.
replace (~P) with ((P → Q) ∧ (P → ~Q)).
reflexivity.
apply EqBi.
apply n4_82a.
apply Equiv4_01.
apply EqBi.
- apply n4_32.
+ specialize n4_32 with (P→Q) (Q→P) (P→~Q).
+ intros n4_32b.
+ apply n4_32b.
apply EqBi.
- apply n4_3.
+ specialize n4_3 with (Q→P) (P→~Q).
+ intros n4_3b.
+ apply n4_3b.
replace ((P → Q) ∧ (P → ~Q) ∧ (Q → P)) with
(((P → Q) ∧ (P → ~Q)) ∧ (Q → P)).
reflexivity.
apply EqBi.
- apply n4_32.
+ specialize n4_32 with (P→Q) (P→~Q) (Q→P).
+ intros n4_32a.
+ apply n4_32a.
Qed.
Theorem n5_17 : ∀ P Q : Prop,
@@ -3449,11 +3503,17 @@ Theorem n5_17 : ∀ P Q : Prop,
apply EqBi.
apply Trans4_11a.
apply EqBi.
- apply n4_13.
+ specialize n4_13 with (P→~Q).
+ intros n4_13a.
+ apply n4_13a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (P ∧ Q) (~(P→~Q)).
+ intros n4_21b.
+ apply n4_21b.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with P Q.
+ intros n4_31a.
+ apply n4_31a.
apply EqBi.
apply n4_21a.
Qed.
@@ -3546,7 +3606,9 @@ Theorem n5_23 : ∀ P Q : Prop,
replace (~Q ∧ ~P) with (~P ∧ ~Q) in n5_18a.
apply n5_18a.
apply EqBi.
- apply n4_3. (*with (~P) (~Q)*)
+ specialize n4_3 with (~P) (~Q).
+ intros n4_3a.
+ apply n4_3a. (*with (~P) (~Q)*)
apply EqBi.
apply n4_13a.
replace (P∧~~Q∨~Q∧~P) with (~(P↔~Q)).
@@ -3687,7 +3749,10 @@ Theorem n5_32 : ∀ P Q R : Prop,
apply n4_76a.
apply Equiv4_01.
apply EqBi.
- apply n4_3. (*to commute the biconditional*)
+ specialize n4_21 with
+ (P→((Q→R)∧(R→Q))) ((P∧Q)↔(P∧R)).
+ intros n4_21a.
+ apply n4_21a. (*to commute the biconditional*)
apply Equiv4_01.
replace (P ∧ R → P ∧ Q) with (P ∧ R → Q).
reflexivity.
@@ -3720,8 +3785,7 @@ Theorem n5_33 : ∀ P Q R : Prop,
specialize Simp3_26 with
((P→(Q→R)↔(P∧Q→R))→(P∧(Q→R)↔P∧(P∧Q→R)))
((P∧(Q→R)↔P∧(P∧Q→R)→(P→(Q→R)↔(P∧Q→R)))).
- (*Not cited*)
- intros Simp3_26a.
+ intros Simp3_26a. (*Not cited*)
MP Simp3_26a n5_32a.
specialize n4_73 with Q P.
intros n4_73a.
@@ -3732,7 +3796,9 @@ Theorem n5_33 : ∀ P Q R : Prop,
MP Simp3_26a Sa.
apply Simp3_26a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with P Q.
+ intros n4_3a.
+ apply n4_3a. (*Not cited*)
apply Equiv4_01.
Qed.
@@ -3763,9 +3829,13 @@ Theorem n5_36 : ∀ P Q : Prop,
replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in n2_08a.
apply n2_08a.
apply EqBi.
- apply n4_3.
+ specialize n4_3 with Q (P↔Q).
+ intros n4_3a.
+ apply n4_3a.
apply EqBi.
- apply n4_3.
+ specialize n4_3 with P (P↔Q).
+ intros n4_3b.
+ apply n4_3b.
replace ((P ↔ Q) ∧ P ↔ (P ↔ Q) ∧ Q) with
(P ↔ Q → P ↔ Q).
reflexivity.
@@ -3899,7 +3969,9 @@ Theorem n5_44 : ∀ P Q R : Prop,
apply EqBi.
apply n4_76b.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with (P→R) (P→Q).
+ intros n4_3a.
+ apply n4_3a. (*Not cited*)
apply Equiv4_01.
Qed.
@@ -3933,7 +4005,9 @@ Theorem n5_5 : ∀ P Q : Prop,
apply n3_47a.
apply Equiv4_01.
apply EqBi.
- apply n4_24. (*with P.*)
+ specialize n4_24 with P.
+ intros n4_24a. (*Not cited*)
+ apply n4_24a.
Qed.
Theorem n5_501 : ∀ P Q : Prop,
@@ -3979,7 +4053,9 @@ Theorem n5_501 : ∀ P Q : Prop,
((P∧(P→Q))∧(Q→P)).
reflexivity.
apply EqBi.
- apply n4_32. (*Not cited*)
+ specialize n4_32 with P (P→Q) (Q→P).
+ intros n4_32a. (*Not cited*)
+ apply n4_32a.
Qed.
Theorem n5_53 : ∀ P Q R S : Prop,
@@ -3997,7 +4073,10 @@ Theorem n5_53 : ∀ P Q R S : Prop,
in n4_77a.
apply n4_77a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_21 with ((P ∨ Q) ∨ R → S)
+ (((P → S) ∧ (Q → S)) ∧ (R → S)).
+ intros n4_21a.
+ apply n4_21a. (*Not cited*)
apply EqBi.
apply n4_77b.
Qed.
@@ -4033,19 +4112,27 @@ Theorem n5_54 : ∀ P Q : Prop,
replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa.
apply Sa.
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with (P∧Q) P.
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (P∧Q) Q.
+ intros n4_21b. (*Not cited*)
+ apply n4_21b.
apply EqBi.
apply Trans4_11b.
apply EqBi.
- apply n4_13. (*Not cited*)
+ specialize n4_13 with (P ↔ (P∧Q)).
+ intros n4_13a. (*Not cited*)
+ apply n4_13a.
replace (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) with
(~(P↔P∧Q)→~Q↔~(P∧Q)).
reflexivity.
apply Impl1_01. (*Not cited*)
apply EqBi.
- apply n4_56. (*Not cited*)
+ specialize n4_56 with Q (P∧Q).
+ intros n4_56a. (*Not cited*)
+ apply n4_56a.
replace (~(Q∨P∧Q)) with (~Q).
reflexivity.
apply EqBi.
@@ -4055,7 +4142,9 @@ Theorem n5_54 : ∀ P Q : Prop,
apply EqBi.
apply Trans4_11a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with P Q.
+ intros n4_3a. (*Not cited*)
+ apply n4_3a.
Qed.
Theorem n5_55 : ∀ P Q : Prop,
@@ -4084,31 +4173,49 @@ Theorem n5_55 : ∀ P Q : Prop,
((P∨Q↔P)∨(P∨Q↔Q)) in Sb.
apply Sb.
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with (P ∨ Q ↔ P) (P ∨ Q ↔ Q).
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with (P ∨ Q) P.
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
apply EqBi.
- apply n4_21.
+ specialize n4_21 with (P ∨ Q) Q.
+ intros n4_21b. (*Not cited*)
+ apply n4_21b.
apply EqBi.
- apply n4_13. (*Not cited*)
+ specialize n4_13 with (Q ↔ P ∨ Q).
+ intros n4_13a. (*Not cited*)
+ apply n4_13a.
replace (~~(Q↔P∨Q)∨(P↔P∨Q)) with
(~(Q↔P∨Q)→P↔P∨Q).
reflexivity.
apply Impl1_01.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with P Q.
+ intros n4_31b.
+ apply n4_31b.
apply EqBi.
- apply n4_25. (*Not cited*)
+ specialize n4_25 with P.
+ intros n4_25a. (*Not cited*)
+ apply n4_25a.
replace ((P∨P)∧(Q∨P)) with ((P∧Q)∨P).
reflexivity.
replace ((P∧Q)∨P) with (P∨(P∧Q)).
replace (Q∨P) with (P∨Q).
apply EqBi.
- apply n4_41. (*Not cited*)
+ specialize n4_41 with P P Q.
+ intros n4_41a. (*Not cited*)
+ apply n4_41a.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with P Q.
+ intros n4_31c.
+ apply n4_31c.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with P (P ∧ Q).
+ intros n4_31d. (*Not cited*)
+ apply n4_31d.
Qed.
Theorem n5_6 : ∀ P Q R : Prop,
@@ -4167,13 +4274,21 @@ Theorem n5_61 : ∀ P Q : Prop,
((P ∨ Q) ∧ ~Q ↔ P ∧ ~Q) in n4_74a.
apply n4_74a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_21 with ((P∨Q)∧~Q) (P∧~Q).
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with P Q.
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with (Q∨P) (~Q).
+ intros n4_3a. (*Not cited*)
+ apply n4_3a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with P (~Q).
+ intros n4_3b. (*Not cited*)
+ apply n4_3b.
replace (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) with
(~Q → P ↔ Q ∨ P).
reflexivity.
@@ -4195,21 +4310,33 @@ Theorem n5_62 : ∀ P Q : Prop,
(P ∧ Q ∨ ~Q ↔ P ∨ ~Q) in n4_7a.
apply n4_7a.
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with (P ∧ Q ∨ ~Q) (P ∨ ~Q).
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with P Q.
+ intros n4_3a. (*Not cited*)
+ apply n4_3a.
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with P (~Q).
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with (Q ∧ P) (~Q).
+ intros n4_31b. (*Not cited*)
+ apply n4_31b.
replace (~Q ∨ Q ∧ P) with (Q → Q ∧ P).
reflexivity.
apply EqBi.
- apply n4_6. (*Not cited*)
+ specialize n4_6 with Q (Q∧P).
+ intros n4_6a. (*Not cited*)
+ apply n4_6a.
replace (~Q ∨ P) with (Q → P).
reflexivity.
apply EqBi.
- apply n4_6. (*Not cited*)
+ specialize n4_6 with Q P.
+ intros n4_6b. (*Not cited*)
+ apply n4_6b.
Qed.
Theorem n5_63 : ∀ P Q : Prop,
@@ -4225,15 +4352,25 @@ Theorem n5_63 : ∀ P Q : Prop,
replace (Q∧~P) with (~P∧Q) in n5_62a.
apply n5_62a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with (~P) Q.
+ intros n4_3a.
+ apply n4_3a. (*Not cited*)
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with (P∨Q) (P∨(Q∧~P)).
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with P (Q∧~P).
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with P Q.
+ intros n4_31b. (*Not cited*)
+ apply n4_31b.
apply EqBi.
- apply n4_13. (*Not cited*)
+ specialize n4_13 with P.
+ intros n4_13a. (*Not cited*)
+ apply n4_13a.
Qed.
Theorem n5_7 : ∀ P Q R : Prop,
@@ -4255,28 +4392,44 @@ Theorem n5_7 : ∀ P Q R : Prop,
((P∨R↔Q∨R)↔(R∨(P↔Q))) in n5_32a.
apply n5_32a. (*Not cited*)
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with ((P∨R)↔(Q∨R)) (R∨(P↔Q)).
+ intros n4_21a.
+ apply n4_21a. (*Not cited*)
apply EqBi.
- apply n4_31.
+ specialize n4_31 with Q R.
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
apply EqBi.
- apply n4_31.
+ specialize n4_31 with P R.
+ intros n4_31b. (*Not cited*)
+ apply n4_31b.
apply EqBi.
- apply n4_13. (*Not cited*)
+ specialize n4_13 with R.
+ intros n4_13a. (*Not cited*)
+ apply n4_13a.
replace (~~R∨(P↔Q)) with (~R→P↔Q).
reflexivity.
apply Impl1_01. (*Not cited*)
apply EqBi.
- apply Trans4_11. (*Not cited*)
+ specialize Trans4_11 with P Q.
+ intros Trans4_11a. (*Not cited*)
+ apply Trans4_11a.
apply EqBi.
- apply Trans4_11.
+ specialize Trans4_11 with (R ∨ P) (R ∨ Q).
+ intros Trans4_11a. (*Not cited*)
+ apply Trans4_11a.
replace (~(R∨Q)) with (~R∧~Q).
reflexivity.
apply EqBi.
- apply n4_56. (*Not cited*)
+ specialize n4_56 with R Q.
+ intros n4_56a. (*Not cited*)
+ apply n4_56a.
replace (~(R∨P)) with (~R∧~P).
reflexivity.
apply EqBi.
- apply n4_56.
+ specialize n4_56 with R P.
+ intros n4_56b. (*Not cited*)
+ apply n4_56b.
Qed.
(*The proof sketch was indecipherable, but an
easy proof was available through n5_32.*)
@@ -4312,17 +4465,27 @@ Theorem n5_71 : ∀ P Q R : Prop,
(((P∨Q)∧R)↔(P∧R)) in Sa.
apply Sa.
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with ((P∨Q)∧R) (P∧R).
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with (P∨Q) R.
+ intros n4_3a.
+ apply n4_3a. (*Not cited*)
apply EqBi.
apply n4_4a. (*Not cited*)
apply EqBi.
- apply n4_31. (*Not cited*)
+ specialize n4_31 with (Q∧R) (P∧R).
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with Q R.
+ intros n4_3a. (*Not cited*)
+ apply n4_3a.
apply EqBi.
- apply n4_3. (*Not cited*)
+ specialize n4_3 with P R.
+ intros n4_3b. (*Not cited*)
+ apply n4_3b.
apply Equiv4_01.
apply EqBi.
apply n4_51a.
@@ -4355,7 +4518,9 @@ Theorem n5_74 : ∀ P Q R : Prop,
((P→(Q↔R))↔((P→Q)↔(P→R))) in n4_38a.
apply n4_38a.
apply EqBi.
- apply n4_21. (*Not cited*)
+ specialize n4_21 with (P→Q↔R) ((P→Q)↔(P→R)).
+ intros n4_21a. (*Not cited*)
+ apply n4_21a.
replace (P→Q↔R) with ((P→Q→R)∧(P→R→Q)).
reflexivity.
apply EqBi.