summaryrefslogtreecommitdiff
path: root/PL.v
diff options
context:
space:
mode:
authorLandon D. C. Elkind2021-02-14 18:50:50 -0700
committerGitHub2021-02-14 18:50:50 -0700
commitd2cf655a8a37fb83b1c407a10054be4f6839587c (patch)
treeb4423de954cc286f7e326a2755f2b55b5eaec1bf /PL.v
parent3b834485e5a3627c4bc07f47c7a5e8b9ab27bea6 (diff)
Proof of *5.7 now follows PM sketch
Diffstat (limited to 'PL.v')
-rw-r--r--PL.v1894
1 files changed, 997 insertions, 897 deletions
diff --git a/PL.v b/PL.v
index 1313a73..bbb7f97 100644
--- a/PL.v
+++ b/PL.v
@@ -6,9 +6,9 @@ Import Unicode.Utf8.
for the propositional calculus in *1.*)
Axiom Impl1_01 : ∀ P Q : Prop,
- (P → Q) = (~P ∨ Q).
+ (P → Q) = (¬P ∨ Q).
(*This is a definition in Principia: there → is a
- defined sign and ∨, ~ are primitive ones. So
+ defined sign and ∨, ¬ are primitive ones. So
we will use this axiom to switch between
disjunction and implication.*)
@@ -44,10 +44,10 @@ Import No1.
(*We proceed to the deductions of of Principia.*)
Theorem Abs2_01 : ∀ P : Prop,
- (P → ~P) → ~P.
+ (P → ¬P) → ¬P.
Proof. intros P.
- specialize Taut1_2 with (~P).
- replace (~P ∨ ~P) with (P → ~P).
+ specialize Taut1_2 with (¬P).
+ replace (¬P ∨ ¬P) with (P → ¬P).
apply MP1_1.
apply Impl1_01.
Qed.
@@ -55,19 +55,19 @@ Qed.
Theorem Simp2_02 : ∀ P Q : Prop,
Q → (P → Q).
Proof. intros P Q.
- specialize Add1_3 with (~P) Q.
- replace (~P ∨ Q) with (P → Q).
+ specialize Add1_3 with (¬P) Q.
+ replace (¬P ∨ Q) with (P → Q).
apply (MP1_1 Q (P → Q)).
apply Impl1_01.
Qed.
Theorem Transp2_03 : ∀ P Q : Prop,
- (P → ~Q) → (Q → ~P).
+ (P → ¬Q) → (Q → ¬P).
Proof. intros P Q.
- specialize Perm1_4 with (~P) (~Q).
- replace (~P ∨ ~Q) with (P → ~Q).
- replace (~Q ∨ ~P) with (Q → ~P).
- apply (MP1_1 (P → ~Q) (Q → ~P)).
+ specialize Perm1_4 with (¬P) (¬Q).
+ replace (¬P ∨ ¬Q) with (P → ¬Q).
+ replace (¬Q ∨ ¬P) with (Q → ¬P).
+ apply (MP1_1 (P → ¬Q) (Q → ¬P)).
apply Impl1_01.
apply Impl1_01.
Qed.
@@ -75,11 +75,11 @@ Qed.
Theorem Comm2_04 : ∀ P Q R : Prop,
(P → (Q → R)) → (Q → (P → R)).
Proof. intros P Q R.
- specialize Assoc1_5 with (~P) (~Q) R.
- replace (~Q ∨ R) with (Q → R).
- replace (~P ∨ (Q → R)) with (P → (Q → R)).
- replace (~P ∨ R) with (P → R).
- replace (~Q ∨ (P → R)) with (Q → (P → R)).
+ specialize Assoc1_5 with (¬P) (¬Q) R.
+ replace (¬Q ∨ R) with (Q → R).
+ replace (¬P ∨ (Q → R)) with (P → (Q → R)).
+ replace (¬P ∨ R) with (P → R).
+ replace (¬Q ∨ (P → R)) with (Q → (P → R)).
apply (MP1_1 (P → Q → R) (Q → P → R)).
apply Impl1_01.
apply Impl1_01.
@@ -90,9 +90,9 @@ Qed.
Theorem Syll2_05 : ∀ P Q R : Prop,
(Q → R) → ((P → Q) → (P → R)).
Proof. intros P Q R.
- specialize Sum1_6 with (~P) Q R.
- replace (~P ∨ Q) with (P → Q).
- replace (~P ∨ R) with (P → R).
+ specialize Sum1_6 with (¬P) Q R.
+ replace (¬P ∨ Q) with (P → Q).
+ replace (¬P ∨ R) with (P → R).
apply (MP1_1 (Q → R) ((P → Q) → (P → R))).
apply Impl1_01.
apply Impl1_01.
@@ -135,41 +135,43 @@ Proof. intros P.
Qed.
Theorem n2_1 : ∀ P : Prop,
- (~P) ∨ P.
+ (¬P) ∨ P.
Proof. intros P.
specialize Id2_08 with P.
- replace (~P ∨ P) with (P → P).
+ replace (¬P ∨ P) with (P → P).
apply MP1_1.
apply Impl1_01.
Qed.
Theorem n2_11 : ∀ P : Prop,
- P ∨ ~P.
+ P ∨ ¬P.
Proof. intros P.
- specialize Perm1_4 with (~P) P.
+ specialize Perm1_4 with (¬P) P.
intros Perm1_4.
specialize n2_1 with P.
intros n2_1.
+ apply (MP1_1 (¬P∨P) (P∨¬P)).
apply Perm1_4.
apply n2_1.
Qed.
Theorem n2_12 : ∀ P : Prop,
- P → ~~P.
+ P → ¬¬P.
Proof. intros P.
- specialize n2_11 with (~P).
+ specialize n2_11 with (¬P).
intros n2_11.
rewrite Impl1_01.
apply n2_11.
Qed.
Theorem n2_13 : ∀ P : Prop,
- P ∨ ~~~P.
+ P ∨ ¬¬¬P.
Proof. intros P.
- specialize Sum1_6 with P (~P) (~~~P).
+ specialize Sum1_6 with P (¬P) (¬¬¬P).
intros Sum1_6.
- specialize n2_12 with (~P).
+ specialize n2_12 with (¬P).
intros n2_12.
+ apply (MP1_1 (¬P→¬¬¬P) ((P∨¬P)→(P∨¬¬¬P))).
apply Sum1_6.
apply n2_12.
specialize n2_11 with P.
@@ -178,31 +180,32 @@ Proof. intros P.
Qed.
Theorem n2_14 : ∀ P : Prop,
- ~~P → P.
+ ¬¬P → P.
Proof. intros P.
- specialize Perm1_4 with P (~~~P).
+ specialize Perm1_4 with P (¬¬¬P).
intros Perm1_4.
specialize n2_13 with P.
intros n2_13.
rewrite Impl1_01.
+ apply (MP1_1 (P∨¬¬¬P) (¬¬¬P∨P)).
apply Perm1_4.
apply n2_13.
Qed.
Theorem Transp2_15 : ∀ P Q : Prop,
- (~P → Q) → (~Q → P).
+ (¬P → Q) → (¬Q → P).
Proof. intros P Q.
- specialize Syll2_05 with (~P) Q (~~Q).
+ specialize Syll2_05 with (¬P) Q (¬¬Q).
intros Syll2_05a.
specialize n2_12 with Q.
intros n2_12.
- specialize Transp2_03 with (~P) (~Q).
+ specialize Transp2_03 with (¬P) (¬Q).
intros Transp2_03.
- specialize Syll2_05 with (~Q) (~~P) P.
+ specialize Syll2_05 with (¬Q) (¬¬P) P.
intros Syll2_05b.
- specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P).
+ specialize Syll2_05 with (¬P → Q) (¬P → ¬¬Q) (¬Q → ¬¬P).
intros Syll2_05c.
- specialize Syll2_05 with (~P → Q) (~Q → ~~P) (~Q → P).
+ specialize Syll2_05 with (¬P → Q) (¬Q → ¬¬P) (¬Q → P).
intros Syll2_05d.
apply Syll2_05d.
apply Syll2_05b.
@@ -211,6 +214,7 @@ Proof. intros P Q.
apply n2_14.
apply Syll2_05c.
apply Transp2_03.
+ apply (MP1_1 (Q→¬¬Q) ((¬P→Q)→(¬P→¬¬Q))).
apply Syll2_05a.
apply n2_12.
Qed.
@@ -227,13 +231,13 @@ Ltac MP H1 H2 :=
end.
Theorem Transp2_16 : ∀ P Q : Prop,
- (P → Q) → (~Q → ~P).
+ (P → Q) → (¬Q → ¬P).
Proof. intros P Q.
specialize n2_12 with Q.
intros n2_12a.
- specialize Syll2_05 with P Q (~~Q).
+ specialize Syll2_05 with P Q (¬¬Q).
intros Syll2_05a.
- specialize Transp2_03 with P (~Q).
+ specialize Transp2_03 with P (¬Q).
intros Transp2_03a.
MP n2_12a Syll2_05a.
Syll Syll2_05a Transp2_03a S.
@@ -241,13 +245,13 @@ Proof. intros P Q.
Qed.
Theorem Transp2_17 : ∀ P Q : Prop,
- (~Q → ~P) → (P → Q).
+ (¬Q → ¬P) → (P → Q).
Proof. intros P Q.
- specialize Transp2_03 with (~Q) P.
+ specialize Transp2_03 with (¬Q) P.
intros Transp2_03a.
specialize n2_14 with Q.
intros n2_14a.
- specialize Syll2_05 with P (~~Q) Q.
+ specialize Syll2_05 with P (¬¬Q) Q.
intros Syll2_05a.
MP n2_14a Syll2_05a.
Syll Transp2_03a Syll2_05a S.
@@ -255,14 +259,14 @@ Proof. intros P Q.
Qed.
Theorem n2_18 : ∀ P : Prop,
- (~P → P) → P.
+ (¬P → P) → P.
Proof. intros P.
specialize n2_12 with P.
intro n2_12a.
- specialize Syll2_05 with (~P) P (~~P).
+ specialize Syll2_05 with (¬P) P (¬¬P).
intro Syll2_05a.
MP Syll2_05a n2_12.
- specialize Abs2_01 with (~P).
+ specialize Abs2_01 with (¬P).
intros Abs2_01a.
Syll Syll2_05a Abs2_01a Sa.
specialize n2_14 with P.
@@ -283,22 +287,22 @@ Proof. intros P Q.
Qed.
Theorem n2_21 : ∀ P Q : Prop,
- ~P → (P → Q).
+ ¬P → (P → Q).
Proof. intros P Q.
- specialize n2_2 with (~P) Q.
+ specialize n2_2 with (¬P) Q.
intros n2_2a.
specialize Impl1_01 with P Q.
intros Impl1_01a.
- replace (~P∨Q) with (P→Q) in n2_2a.
+ replace (¬P∨Q) with (P→Q) in n2_2a.
apply n2_2a.
Qed.
Theorem n2_24 : ∀ P Q : Prop,
- P → (~P → Q).
+ P → (¬P → Q).
Proof. intros P Q.
specialize n2_21 with P Q.
intros n2_21a.
- specialize Comm2_04 with (~P) P Q.
+ specialize Comm2_04 with (¬P) P Q.
intros Comm2_04a.
apply Comm2_04a.
apply n2_21a.
@@ -309,20 +313,20 @@ Theorem n2_25 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_1 with (P ∨ Q).
intros n2_1a.
- specialize Assoc1_5 with (~(P∨Q)) P Q.
+ specialize Assoc1_5 with (¬(P∨Q)) P Q.
intros Assoc1_5a.
MP Assoc1_5a n2_1a.
- replace (~(P∨Q)∨Q) with (P∨Q→Q) in Assoc1_5a.
+ replace (¬(P∨Q)∨Q) with (P∨Q→Q) in Assoc1_5a.
apply Assoc1_5a.
apply Impl1_01.
Qed.
Theorem n2_26 : ∀ P Q : Prop,
- ~P ∨ ((P → Q) → Q).
+ ¬P ∨ ((P → Q) → Q).
Proof. intros P Q.
- specialize n2_25 with (~P) Q.
+ specialize n2_25 with (¬P) Q.
intros n2_25a.
- replace (~P∨Q) with (P→Q) in n2_25a.
+ replace (¬P∨Q) with (P→Q) in n2_25a.
apply n2_25a.
apply Impl1_01.
Qed.
@@ -332,7 +336,7 @@ Theorem n2_27 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_26 with P Q.
intros n2_26a.
- replace (~P∨((P→Q)→Q)) with (P→(P→Q)→Q) in n2_26a.
+ replace (¬P∨((P→Q)→Q)) with (P→(P→Q)→Q) in n2_26a.
apply n2_26a.
apply Impl1_01.
Qed.
@@ -464,11 +468,11 @@ Proof. intros P Q.
Qed.
Theorem n2_42 : ∀ P Q : Prop,
- (~P ∨ (P → Q)) → (P → Q).
+ (¬P ∨ (P → Q)) → (P → Q).
Proof. intros P Q.
- specialize n2_4 with (~P) Q.
+ specialize n2_4 with (¬P) Q.
intros n2_4a.
- replace (~P∨Q) with (P→Q) in n2_4a.
+ replace (¬P∨Q) with (P→Q) in n2_4a.
apply n2_4a. apply Impl1_01.
Qed.
@@ -477,13 +481,13 @@ Theorem n2_43 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_42 with P Q.
intros n2_42a.
- replace (~P ∨ (P→Q)) with (P→(P→Q)) in n2_42a.
+ replace (¬P ∨ (P→Q)) with (P→(P→Q)) in n2_42a.
apply n2_42a.
apply Impl1_01.
Qed.
Theorem n2_45 : ∀ P Q : Prop,
- ~(P ∨ Q) → ~P.
+ ¬(P ∨ Q) → ¬P.
Proof. intros P Q.
specialize n2_2 with P Q.
intros n2_2a.
@@ -494,7 +498,7 @@ Proof. intros P Q.
Qed.
Theorem n2_46 : ∀ P Q : Prop,
- ~(P ∨ Q) → ~Q.
+ ¬(P ∨ Q) → ¬Q.
Proof. intros P Q.
specialize Add1_3 with P Q.
intros Add1_3a.
@@ -505,76 +509,76 @@ Proof. intros P Q.
Qed.
Theorem n2_47 : ∀ P Q : Prop,
- ~(P ∨ Q) → (~P ∨ Q).
+ ¬(P ∨ Q) → (¬P ∨ Q).
Proof. intros P Q.
specialize n2_45 with P Q.
intros n2_45a.
- specialize n2_2 with (~P) Q.
+ specialize n2_2 with (¬P) Q.
intros n2_2a.
Syll n2_45a n2_2a S.
apply S.
Qed.
Theorem n2_48 : ∀ P Q : Prop,
- ~(P ∨ Q) → (P ∨ ~Q).
+ ¬(P ∨ Q) → (P ∨ ¬Q).
Proof. intros P Q.
specialize n2_46 with P Q.
intros n2_46a.
- specialize Add1_3 with P (~Q).
+ specialize Add1_3 with P (¬Q).
intros Add1_3a.
Syll n2_46a Add1_3a S.
apply S.
Qed.
Theorem n2_49 : ∀ P Q : Prop,
- ~(P ∨ Q) → (~P ∨ ~Q).
+ ¬(P ∨ Q) → (¬P ∨ ¬Q).
Proof. intros P Q.
specialize n2_45 with P Q.
intros n2_45a.
- specialize n2_2 with (~P) (~Q).
+ specialize n2_2 with (¬P) (¬Q).
intros n2_2a.
Syll n2_45a n2_2a S.
apply S.
Qed.
Theorem n2_5 : ∀ P Q : Prop,
- ~(P → Q) → (~P → Q).
+ ¬(P → Q) → (¬P → Q).
Proof. intros P Q.
- specialize n2_47 with (~P) Q.
+ specialize n2_47 with (¬P) Q.
intros n2_47a.
- replace (~P∨Q) with (P→Q) in n2_47a.
- replace (~~P∨Q) with (~P→Q) in n2_47a.
+ replace (¬P∨Q) with (P→Q) in n2_47a.
+ replace (¬¬P∨Q) with (¬P→Q) in n2_47a.
apply n2_47a.
apply Impl1_01.
apply Impl1_01.
Qed.
Theorem n2_51 : ∀ P Q : Prop,
- ~(P → Q) → (P → ~Q).
+ ¬(P → Q) → (P → ¬Q).
Proof. intros P Q.
- specialize n2_48 with (~P) Q.
+ specialize n2_48 with (¬P) Q.
intros n2_48a.
- replace (~P∨Q) with (P→Q) in n2_48a.
- replace (~P∨~Q) with (P→~Q) in n2_48a.
+ replace (¬P∨Q) with (P→Q) in n2_48a.
+ replace (¬P∨¬Q) with (P→¬Q) in n2_48a.
apply n2_48a.
apply Impl1_01.
apply Impl1_01.
Qed.
Theorem n2_52 : ∀ P Q : Prop,
- ~(P → Q) → (~P → ~Q).
+ ¬(P → Q) → (¬P → ¬Q).
Proof. intros P Q.
- specialize n2_49 with (~P) Q.
+ specialize n2_49 with (¬P) Q.
intros n2_49a.
- replace (~P∨Q) with (P→Q) in n2_49a.
- replace (~~P∨~Q) with (~P→~Q) in n2_49a.
+ replace (¬P∨Q) with (P→Q) in n2_49a.
+ replace (¬¬P∨¬Q) with (¬P→¬Q) in n2_49a.
apply n2_49a.
apply Impl1_01.
apply Impl1_01.
Qed.
Theorem n2_521 : ∀ P Q : Prop,
- ~(P→Q)→(Q→P).
+ ¬(P→Q)→(Q→P).
Proof. intros P Q.
specialize n2_52 with P Q.
intros n2_52a.
@@ -585,44 +589,44 @@ Proof. intros P Q.
Qed.
Theorem n2_53 : ∀ P Q : Prop,
- (P ∨ Q) → (~P → Q).
+ (P ∨ Q) → (¬P → Q).
Proof. intros P Q.
specialize n2_12 with P.
intros n2_12a.
- specialize n2_38 with Q P (~~P).
+ specialize n2_38 with Q P (¬¬P).
intros n2_38a.
MP n2_38a n2_12a.
- replace (~~P∨Q) with (~P→Q) in n2_38a.
+ replace (¬¬P∨Q) with (¬P→Q) in n2_38a.
apply n2_38a.
apply Impl1_01.
Qed.
Theorem n2_54 : ∀ P Q : Prop,
- (~P → Q) → (P ∨ Q).
+ (¬P → Q) → (P ∨ Q).
Proof. intros P Q.
specialize n2_14 with P.
intros n2_14a.
- specialize n2_38 with Q (~~P) P.
+ specialize n2_38 with Q (¬¬P) P.
intros n2_38a.
MP n2_38a n2_12a.
- replace (~~P∨Q) with (~P→Q) in n2_38a.
+ replace (¬¬P∨Q) with (¬P→Q) in n2_38a.
apply n2_38a.
apply Impl1_01.
Qed.
Theorem n2_55 : ∀ P Q : Prop,
- ~P → ((P ∨ Q) → Q).
+ ¬P → ((P ∨ Q) → Q).
Proof. intros P Q.
specialize n2_53 with P Q.
intros n2_53a.
- specialize Comm2_04 with (P∨Q) (~P) Q.
+ specialize Comm2_04 with (P∨Q) (¬P) Q.
intros Comm2_04a.
MP n2_53a Comm2_04a.
apply Comm2_04a.
Qed.
Theorem n2_56 : ∀ P Q : Prop,
- ~Q → ((P ∨ Q) → P).
+ ¬Q → ((P ∨ Q) → P).
Proof. intros P Q.
specialize n2_55 with Q P.
intros n2_55a.
@@ -636,27 +640,27 @@ Proof. intros P Q.
Qed.
Theorem n2_6 : ∀ P Q : Prop,
- (~P→Q) → ((P → Q) → Q).
+ (¬P→Q) → ((P → Q) → Q).
Proof. intros P Q.
- specialize n2_38 with Q (~P) Q.
+ specialize n2_38 with Q (¬P) Q.
intros n2_38a.
specialize Taut1_2 with Q.
intros Taut1_2a.
- specialize Syll2_05 with (~P∨Q) (Q∨Q) Q.
+ specialize Syll2_05 with (¬P∨Q) (Q∨Q) Q.
intros Syll2_05a.
MP Syll2_05a Taut1_2a.
Syll n2_38a Syll2_05a S.
- replace (~P∨Q) with (P→Q) in S.
+ replace (¬P∨Q) with (P→Q) in S.
apply S.
apply Impl1_01.
Qed.
Theorem n2_61 : ∀ P Q : Prop,
- (P → Q) → ((~P → Q) → Q).
+ (P → Q) → ((¬P → Q) → Q).
Proof. intros P Q.
specialize n2_6 with P Q.
intros n2_6a.
- specialize Comm2_04 with (~P→Q) (P→Q) Q.
+ specialize Comm2_04 with (¬P→Q) (P→Q) Q.
intros Comm2_04a.
MP Comm2_04a n2_6a.
apply Comm2_04a.
@@ -685,26 +689,26 @@ Proof. intros P Q.
Qed.
Theorem n2_63 : ∀ P Q : Prop,
- (P ∨ Q) → ((~P ∨ Q) → Q).
+ (P ∨ Q) → ((¬P ∨ Q) → Q).
Proof. intros P Q.
specialize n2_62 with P Q.
intros n2_62a.
- replace (~P∨Q) with (P→Q).
+ replace (¬P∨Q) with (P→Q).
apply n2_62a.
apply Impl1_01.
Qed.
Theorem n2_64 : ∀ P Q : Prop,
- (P ∨ Q) → ((P ∨ ~Q) → P).
+ (P ∨ Q) → ((P ∨ ¬Q) → P).
Proof. intros P Q.
specialize n2_63 with Q P.
intros n2_63a.
specialize Perm1_4 with P Q.
intros Perm1_4a.
Syll n2_63a Perm1_4a Ha.
- specialize Syll2_06 with (P∨~Q) (~Q∨P) P.
+ specialize Syll2_06 with (P∨¬Q) (¬Q∨P) P.
intros Syll2_06a.
- specialize Perm1_4 with P (~Q).
+ specialize Perm1_4 with P (¬Q).
intros Perm1_4b.
MP Syll2_06a Perm1_4b.
Syll Syll2_06a Ha S.
@@ -712,12 +716,12 @@ Proof. intros P Q.
Qed.
Theorem n2_65 : ∀ P Q : Prop,
- (P → Q) → ((P → ~Q) → ~P).
+ (P → Q) → ((P → ¬Q) → ¬P).
Proof. intros P Q.
- specialize n2_64 with (~P) Q.
+ specialize n2_64 with (¬P) Q.
intros n2_64a.
- replace (~P∨Q) with (P→Q) in n2_64a.
- replace (~P∨~Q) with (P→~Q) in n2_64a.
+ replace (¬P∨Q) with (P→Q) in n2_64a.
+ replace (¬P∨¬Q) with (P→¬Q) in n2_64a.
apply n2_64a.
apply Impl1_01.
apply Impl1_01.
@@ -728,12 +732,12 @@ Theorem n2_67 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_54 with P Q.
intros n2_54a.
- specialize Syll2_06 with (~P→Q) (P∨Q) Q.
+ specialize Syll2_06 with (¬P→Q) (P∨Q) Q.
intros Syll2_06a.
MP Syll2_06a n2_54a.
specialize n2_24 with P Q.
intros n2_24.
- specialize Syll2_06 with P (~P→Q) Q.
+ specialize Syll2_06 with P (¬P→Q) Q.
intros Syll2_06b.
MP Syll2_06b n2_24a.
Syll Syll2_06b Syll2_06a S.
@@ -743,9 +747,9 @@ Qed.
Theorem n2_68 : ∀ P Q : Prop,
((P → Q) → Q) → (P ∨ Q).
Proof. intros P Q.
- specialize n2_67 with (~P) Q.
+ specialize n2_67 with (¬P) Q.
intros n2_67a.
- replace (~P∨Q) with (P→Q) in n2_67a.
+ replace (¬P∨Q) with (P→Q) in n2_67a.
specialize n2_54 with P Q.
intros n2_54a.
Syll n2_67a n2_54a S.
@@ -801,21 +805,21 @@ Qed.
Theorem n2_75 : ∀ P Q R : Prop,
(P ∨ Q) → ((P ∨ (Q → R)) → (P ∨ R)).
Proof. intros P Q R.
- specialize n2_74 with P (~Q) R.
+ specialize n2_74 with P (¬Q) R.
intros n2_74a.
specialize n2_53 with Q P.
intros n2_53a.
Syll n2_53a n2_74a Sa.
- specialize n2_31 with P (~Q) R.
+ specialize n2_31 with P (¬Q) R.
intros n2_31a.
- specialize Syll2_06 with (P∨(~Q)∨R)((P∨(~Q))∨R) (P∨R).
+ specialize Syll2_06 with (P∨(¬Q)∨R)((P∨(¬Q))∨R) (P∨R).
intros Syll2_06a.
MP Syll2_06a n2_31a.
Syll Sa Syll2_06a Sb.
specialize Perm1_4 with P Q.
intros Perm1_4a. (*not cited*)
Syll Perm1_4a Sb Sc.
- replace (~Q∨R) with (Q→R) in Sc.
+ replace (¬Q∨R) with (Q→R) in Sc.
apply Sc.
apply Impl1_01.
Qed.
@@ -834,11 +838,11 @@ Qed.
Theorem n2_77 : ∀ P Q R : Prop,
(P → (Q → R)) → ((P → Q) → (P → R)).
Proof. intros P Q R.
- specialize n2_76 with (~P) Q R.
+ specialize n2_76 with (¬P) Q R.
intros n2_76a.
- replace (~P∨(Q→R)) with (P→Q→R) in n2_76a.
- replace (~P∨Q) with (P→Q) in n2_76a.
- replace (~P∨R) with (P→R) in n2_76a.
+ replace (¬P∨(Q→R)) with (P→Q→R) in n2_76a.
+ replace (¬P∨Q) with (P→Q) in n2_76a.
+ replace (¬P∨R) with (P→R) in n2_76a.
apply n2_76a.
apply Impl1_01.
apply Impl1_01.
@@ -846,14 +850,14 @@ Proof. intros P Q R.
Qed.
Theorem n2_8 : ∀ Q R S : Prop,
- (Q ∨ R) → ((~R ∨ S) → (Q ∨ S)).
+ (Q ∨ R) → ((¬R ∨ S) → (Q ∨ S)).
Proof. intros Q R S.
specialize n2_53 with R Q.
intros n2_53a.
specialize Perm1_4 with Q R.
intros Perm1_4a.
Syll Perm1_4a n2_53a Ha.
- specialize n2_38 with S (~R) Q.
+ specialize n2_38 with S (¬R) Q.
intros n2_38a.
Syll H n2_38a Hb.
apply Hb.
@@ -874,11 +878,11 @@ Proof. intros P Q R S.
Qed.
Theorem n2_82 : ∀ P Q R S : Prop,
- (P ∨ Q ∨ R)→((P ∨ ~R ∨ S)→(P ∨ Q ∨ S)).
+ (P ∨ Q ∨ R)→((P ∨ ¬R ∨ S)→(P ∨ Q ∨ S)).
Proof. intros P Q R S.
specialize n2_8 with Q R S.
intros n2_8a.
- specialize n2_81 with P (Q∨R) (~R∨S) (Q∨S).
+ specialize n2_81 with P (Q∨R) (¬R∨S) (Q∨S).
intros n2_81a.
MP n2_81a n2_8a.
apply n2_81a.
@@ -887,15 +891,15 @@ Qed.
Theorem n2_83 : ∀ P Q R S : Prop,
(P→(Q→R))→((P→(R→S))→(P→(Q→S))).
Proof. intros P Q R S.
- specialize n2_82 with (~P) (~Q) R S.
+ specialize n2_82 with (¬P) (¬Q) R S.
intros n2_82a.
- replace (~Q∨R) with (Q→R) in n2_82a.
- replace (~P∨(Q→R)) with (P→Q→R) in n2_82a.
- replace (~R∨S) with (R→S) in n2_82a.
- replace (~P∨(R→S)) with (P→R→S) in n2_82a.
- replace (~Q∨S) with (Q→S) in n2_82a.
- replace (~Q∨S) with (Q→S) in n2_82a.
- replace (~P∨(Q→S)) with (P→Q→S) in n2_82a.
+ replace (¬Q∨R) with (Q→R) in n2_82a.
+ replace (¬P∨(Q→R)) with (P→Q→R) in n2_82a.
+ replace (¬R∨S) with (R→S) in n2_82a.
+ replace (¬P∨(R→S)) with (P→R→S) in n2_82a.
+ replace (¬Q∨S) with (Q→S) in n2_82a.
+ replace (¬Q∨S) with (Q→S) in n2_82a.
+ replace (¬P∨(Q→S)) with (P→Q→S) in n2_82a.
apply n2_82a.
apply Impl1_01.
apply Impl1_01.
@@ -919,15 +923,15 @@ Proof. intros P Q R.
specialize Syll2_05 with (P∨Q) (P∨R) R.
intros Syll2_05a.
Syll n2_55a Syll2_05a Ha.
- specialize n2_83 with (~P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R).
+ specialize n2_83 with (¬P) ((P∨Q)→(P∨R)) ((P∨Q)→R) (Q→R).
intros n2_83a.
MP n2_83a Ha.
- specialize Comm2_04 with (~P) (P∨Q→P∨R) (Q→R).
+ specialize Comm2_04 with (¬P) (P∨Q→P∨R) (Q→R).
intros Comm2_04a.
Syll Ha Comm2_04a Hb.
specialize n2_54 with P (Q→R).
intros n2_54a.
- specialize Simp2_02 with (~P) ((P∨Q→R)→(Q→R)).
+ specialize Simp2_02 with (¬P) ((P∨Q→R)→(Q→R)).
intros Simp2_02a. (*Not cited*)
(*Greg's suggestion per the BRS list on June 25, 2017.*)
MP Syll2_06a Simp2_02a.
@@ -939,11 +943,11 @@ Qed.
Theorem n2_86 : ∀ P Q R : Prop,
((P → Q) → (P → R)) → (P → (Q → R)).
Proof. intros P Q R.
- specialize n2_85 with (~P) Q R.
+ specialize n2_85 with (¬P) Q R.
intros n2_85a.
- replace (~P∨Q) with (P→Q) in n2_85a.
- replace (~P∨R) with (P→R) in n2_85a.
- replace (~P∨(Q→R)) with (P→Q→R) in n2_85a.
+ replace (¬P∨Q) with (P→Q) in n2_85a.
+ replace (¬P∨R) with (P→R) in n2_85a.
+ replace (¬P∨(Q→R)) with (P→Q→R) in n2_85a.
apply n2_85a.
apply Impl1_01.
apply Impl1_01.
@@ -958,19 +962,19 @@ Import No1.
Import No2.
Axiom Prod3_01 : ∀ P Q : Prop,
- (P ∧ Q) = ~(~P ∨ ~Q).
+ (P ∧ Q) = ¬(¬P ∨ ¬Q).
Axiom Abb3_02 : ∀ P Q R : Prop,
(P → Q → R) = (P → Q) ∧ (Q → R).
Theorem Conj3_03 : ∀ P Q : Prop, P → Q → (P∧Q).
Proof. intros P Q.
- specialize n2_11 with (~P∨~Q). intros n2_11a.
- specialize n2_32 with (~P) (~Q) (~(~P ∨ ~Q)). intros n2_32a.
+ specialize n2_11 with (¬P∨¬Q). intros n2_11a.
+ specialize n2_32 with (¬P) (¬Q) (¬(¬P ∨ ¬Q)). intros n2_32a.
MP n2_32a n2_11a.
- replace (~(~P∨~Q)) with (P∧Q) in n2_32a.
- replace (~Q ∨ (P∧Q)) with (Q→(P∧Q)) in n2_32a.
- replace (~P ∨ (Q → (P∧Q))) with (P→Q→(P∧Q)) in n2_32a.
+ replace (¬(¬P∨¬Q)) with (P∧Q) in n2_32a.
+ replace (¬Q ∨ (P∧Q)) with (Q→(P∧Q)) in n2_32a.
+ replace (¬P ∨ (Q → (P∧Q))) with (P→Q→(P∧Q)) in n2_32a.
apply n2_32a.
apply Impl1_01.
apply Impl1_01.
@@ -986,9 +990,9 @@ Ltac Conj H1 H2 :=
end.
Theorem n3_1 : ∀ P Q : Prop,
- (P ∧ Q) → ~(~P ∨ ~Q).
+ (P ∧ Q) → ¬(¬P ∨ ¬Q).
Proof. intros P Q.
- replace (~(~P∨~Q)) with (P∧Q).
+ replace (¬(¬P∨¬Q)) with (P∧Q).
specialize Id2_08 with (P∧Q).
intros Id2_08a.
apply Id2_08a.
@@ -996,9 +1000,9 @@ Proof. intros P Q.
Qed.
Theorem n3_11 : ∀ P Q : Prop,
- ~(~P ∨ ~Q) → (P ∧ Q).
+ ¬(¬P ∨ ¬Q) → (P ∧ Q).
Proof. intros P Q.
- replace (~(~P∨~Q)) with (P∧Q).
+ replace (¬(¬P∨¬Q)) with (P∧Q).
specialize Id2_08 with (P∧Q).
intros Id2_08a.
apply Id2_08a.
@@ -1006,35 +1010,35 @@ Proof. intros P Q.
Qed.
Theorem n3_12 : ∀ P Q : Prop,
- (~P ∨ ~Q) ∨ (P ∧ Q).
+ (¬P ∨ ¬Q) ∨ (P ∧ Q).
Proof. intros P Q.
- specialize n2_11 with (~P∨~Q).
+ specialize n2_11 with (¬P∨¬Q).
intros n2_11a.
- replace (~(~P∨~Q)) with (P∧Q) in n2_11a.
+ replace (¬(¬P∨¬Q)) with (P∧Q) in n2_11a.
apply n2_11a.
apply Prod3_01.
Qed.
Theorem n3_13 : ∀ P Q : Prop,
- ~(P ∧ Q) → (~P ∨ ~Q).
+ ¬(P ∧ Q) → (¬P ∨ ¬Q).
Proof. intros P Q.
specialize n3_11 with P Q.
intros n3_11a.
- specialize Transp2_15 with (~P∨~Q) (P∧Q).
+ specialize Transp2_15 with (¬P∨¬Q) (P∧Q).
intros Transp2_15a.
MP Transp2_15a n3_11a.
apply Transp2_15a.
Qed.
Theorem n3_14 : ∀ P Q : Prop,
- (~P ∨ ~Q) → ~(P ∧ Q).
+ (¬P ∨ ¬Q) → ¬(P ∧ Q).
Proof. intros P Q.
specialize n3_1 with P Q.
intros n3_1a.
- specialize Transp2_16 with (P∧Q) (~(~P∨~Q)).
+ specialize Transp2_16 with (P∧Q) (¬(¬P∨¬Q)).
intros Transp2_16a.
MP Transp2_16a n3_1a.
- specialize n2_12 with (~P∨~Q).
+ specialize n2_12 with (¬P∨¬Q).
intros n2_12a.
Syll n2_12a Transp2_16a S.
apply S.
@@ -1045,11 +1049,11 @@ Theorem n3_2 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n3_12 with P Q.
intros n3_12a.
- specialize n2_32 with (~P) (~Q) (P∧Q).
+ specialize n2_32 with (¬P) (¬Q) (P∧Q).
intros n2_32a.
MP n3_32a n3_12a.
- replace (~Q ∨ P ∧ Q) with (Q→P∧Q) in n2_32a.
- replace (~P ∨ (Q → P ∧ Q)) with (P→Q→P∧Q) in n2_32a.
+ replace (¬Q ∨ P ∧ Q) with (Q→P∧Q) in n2_32a.
+ replace (¬P ∨ (Q → P ∧ Q)) with (P→Q→P∧Q) in n2_32a.
apply n2_32a.
apply Impl1_01.
apply Impl1_01.
@@ -1071,7 +1075,7 @@ Theorem n3_22 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n3_13 with Q P.
intros n3_13a.
- specialize Perm1_4 with (~Q) (~P).
+ specialize Perm1_4 with (¬Q) (¬P).
intros Perm1_4a.
Syll n3_13a Perm1_4a Ha.
specialize n3_14 with P Q.
@@ -1084,11 +1088,11 @@ Proof. intros P Q.
Qed.
Theorem n3_24 : ∀ P : Prop,
- ~(P ∧ ~P).
+ ¬(P ∧ ¬P).
Proof. intros P.
- specialize n2_11 with (~P).
+ specialize n2_11 with (¬P).
intros n2_11a.
- specialize n3_14 with P (~P).
+ specialize n3_14 with P (¬P).
intros n3_14a.
MP n3_14a n2_11a.
apply n3_14a.
@@ -1099,23 +1103,21 @@ Theorem Simp3_26 : ∀ P Q : Prop,
Proof. intros P Q.
specialize Simp2_02 with Q P.
intros Simp2_02a.
- replace (P→(Q→P)) with (~P∨(Q→P)) in Simp2_02a.
- replace (Q→P) with (~Q∨P) in Simp2_02a.
- specialize n2_31 with (~P) (~Q) P.
+ replace (P→(Q→P)) with (¬P∨(Q→P)) in Simp2_02a.
+ replace (Q→P) with (¬Q∨P) in Simp2_02a.
+ specialize n2_31 with (¬P) (¬Q) P.
intros n2_31a.
MP n2_31a Simp2_02a.
- specialize n2_53 with (~P∨~Q) P.
+ specialize n2_53 with (¬P∨¬Q) P.
intros n2_53a.
MP n2_53a Simp2_02a.
- replace (~(~P∨~Q)) with (P∧Q) in n2_53a.
+ replace (¬(¬P∨¬Q)) with (P∧Q) in n2_53a.
apply n2_53a.
apply Prod3_01.
- replace (~Q∨P) with (Q→P).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
- replace (~P∨(Q→P)) with (P→Q→P).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
Qed.
Theorem Simp3_27 : ∀ P Q : Prop,
@@ -1132,43 +1134,55 @@ Qed.
Theorem Exp3_3 : ∀ P Q R : Prop,
((P ∧ Q) → R) → (P → (Q → R)).
Proof. intros P Q R.
- specialize Transp2_15 with (~P∨~Q) R.
+ specialize Id2_08 with ((P∧Q)→R).
+ intros Id2_08a. (*This theorem isn't needed.*)
+ replace (((P ∧ Q) → R) → ((P ∧ Q) → R)) with
+ (((P ∧ Q) → R) → (¬(¬P ∨ ¬Q) → R)) in Id2_08a.
+ specialize Transp2_15 with (¬P∨¬Q) R.
intros Transp2_15a.
- specialize Comm2_04 with (~R) P (~Q).
+ Syll Id2_08a Transp2_15a Sa.
+ specialize Id2_08 with (¬R → (¬P ∨ ¬Q)).
+ intros Id2_08b. (*This theorem isn't needed.*)
+ Syll Sa Id2_08b Sb.
+ replace (¬P ∨ ¬Q) with (P → ¬Q) in Sb.
+ specialize Comm2_04 with (¬R) P (¬Q).
intros Comm2_04a.
- replace (P → ~Q) with (~P ∨ ~Q) in Comm2_04a.
- Syll Transp2_15a Comm2_04a Sa.
+ Syll Sb Comm2_04a Sc.
specialize Transp2_17 with Q R.
intros Transp2_17a.
- specialize Syll2_05 with P (~R→~Q) (Q→R).
+ specialize Syll2_05 with P (¬R → ¬Q) (Q → R).
intros Syll2_05a.
MP Syll2_05a Transp2_17a.
- Syll Sa Syll2_05a Sb.
- replace (~(~P ∨ ~Q)) with (P ∧ Q) in Sb.
- apply Sb.
- apply Prod3_01.
- replace (~P∨~Q) with (P→~Q).
+ Syll Sa Syll2_05a Sd.
+ apply Sd.
+ rewrite <- Impl1_01.
+ reflexivity.
+ rewrite Prod3_01.
reflexivity.
- apply Impl1_01.
Qed.
-(*The proof sketch cites Id2_08, but
- we did not seem to need it.*)
Theorem Imp3_31 : ∀ P Q R : Prop,
(P → (Q → R)) → (P ∧ Q) → R.
Proof. intros P Q R.
- specialize n2_31 with (~P) (~Q) R.
+ specialize Id2_08 with (P → (Q → R)).
+ intros Id2_08a. (*This use of Id2_08 is redundant.*)
+ replace ((P → (Q → R))→(P → (Q → R))) with
+ ((P → (Q → R))→(¬P ∨ (Q → R))) in Id2_08a.
+ replace (¬P ∨ (Q → R)) with
+ (¬P ∨ (¬Q ∨ R)) in Id2_08a.
+ specialize n2_31 with (¬P) (¬Q) R.
intros n2_31a.
- specialize n2_53 with (~P∨~Q) R.
+ Syll Id2_08a n2_31a Sa.
+ specialize n2_53 with (¬P∨¬Q) R.
intros n2_53a.
- Syll n2_31a n2_53a S.
- replace (~Q∨R) with (Q→R) in S.
- replace (~P∨(Q→R)) with (P→Q→R) in S.
- replace (~(~P∨~Q)) with (P∧Q) in S.
- apply S.
+ replace (¬(¬P∨¬Q)) with (P∧Q) in n2_53a.
+ Syll n2_31a n2_53a Sb.
+ apply Sb.
apply Prod3_01.
- apply Impl1_01.
- apply Impl1_01.
+ rewrite Impl1_01.
+ reflexivity.
+ rewrite <- Impl1_01.
+ reflexivity.
Qed.
(*The proof sketch cites Id2_08, but
we did not seem to need it.*)
@@ -1207,17 +1221,17 @@ Proof. intros P Q.
Qed.
Theorem Transp3_37 : ∀ P Q R : Prop,
- (P ∧ Q → R) → (P ∧ ~R → ~Q).
+ (P ∧ Q → R) → (P ∧ ¬R → ¬Q).
Proof. intros P Q R.
specialize Transp2_16 with Q R.
intros Transp2_16a.
- specialize Syll2_05 with P (Q→R) (~R→~Q).
+ specialize Syll2_05 with P (Q→R) (¬R→¬Q).
intros Syll2_05a.
MP Syll2_05a Transp2_16a.
specialize Exp3_3 with P Q R.
intros Exp3_3a.
Syll Exp3_3a Syll2_05a Sa.
- specialize Imp3_31 with P (~R) (~Q).
+ specialize Imp3_31 with P (¬R) (¬Q).
intros Imp3_31a.
Syll Sa Imp3_31a Sb.
apply Sb.
@@ -1228,16 +1242,15 @@ Theorem n3_4 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_51 with P Q.
intros n2_51a.
- specialize Transp2_15 with (P→Q) (P→~Q).
+ specialize Transp2_15 with (P→Q) (P→¬Q).
intros Transp2_15a.
MP Transp2_15a n2_51a.
- replace (P→~Q) with (~P∨~Q) in Transp2_15a.
- replace (~(~P∨~Q)) with (P∧Q) in Transp2_15a.
+ replace (P→¬Q) with (¬P∨¬Q) in Transp2_15a.
+ replace (¬(¬P∨¬Q)) with (P∧Q) in Transp2_15a.
apply Transp2_15a.
apply Prod3_01.
- replace (~P∨~Q) with (P→~Q).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
Qed.
Theorem n3_41 : ∀ P Q R : Prop,
@@ -1282,12 +1295,12 @@ Qed.
Theorem n3_44 : ∀ P Q R : Prop,
(Q → P) ∧ (R → P) → (Q ∨ R → P).
Proof. intros P Q R.
- specialize Syll3_33 with (~Q) R P.
+ specialize Syll3_33 with (¬Q) R P.
intros Syll3_33a.
specialize n2_6 with Q P.
intros n2_6a.
Syll Syll3_33a n2_6a Sa.
- specialize Exp3_3 with (~Q→R) (R→P) ((Q→P)→P).
+ specialize Exp3_3 with (¬Q→R) (R→P) ((Q→P)→P).
intros Exp3_3a.
MP Exp3_3a Sa.
specialize Comm2_04 with (R→P) (Q→P) P.
@@ -1296,12 +1309,12 @@ Proof. intros P Q R.
specialize Imp3_31 with (Q→P) (R→P) P.
intros Imp3_31a.
Syll Sb Imp3_31a Sc.
- specialize Comm2_04 with (~Q→R) ((Q→P)∧(R→P)) P.
+ specialize Comm2_04 with (¬Q→R) ((Q→P)∧(R→P)) P.
intros Comm2_04b.
MP Comm2_04b Sc.
specialize n2_53 with Q R.
intros n2_53a.
- specialize Syll2_06 with (Q∨R) (~Q→R) P.
+ specialize Syll2_06 with (Q∨R) (¬Q→R) P.
intros Syll2_06a.
MP Syll2_06a n2_53a.
Syll Comm2_04b Syll2_06a Sd.
@@ -1311,24 +1324,25 @@ Qed.
Theorem Fact3_45 : ∀ P Q R : Prop,
(P → Q) → (P ∧ R) → (Q ∧ R).
Proof. intros P Q R.
- specialize Syll2_06 with P Q (~R).
+ specialize Syll2_06 with P Q (¬R).
intros Syll2_06a.
- specialize Transp2_16 with (Q→~R) (P→~R).
+ specialize Transp2_16 with (Q→¬R) (P→¬R).
intros Transp2_16a.
- Syll Syll2_06a Transp2_16a S.
- replace (P→~R) with (~P∨~R) in S.
- replace (Q→~R) with (~Q∨~R) in S.
- replace (~(~P∨~R)) with (P∧R) in S.
- replace (~(~Q∨~R)) with (Q∧R) in S.
- apply S.
+ Syll Syll2_06a Transp2_16a Sa.
+ specialize Id2_08 with (¬(P→R)→¬(Q→¬R)).
+ intros Id2_08a.
+ Syll Sa Id2_08a Sb.
+ replace (P→¬R) with (¬P∨¬R) in Sb.
+ replace (Q→¬R) with (¬Q∨¬R) in Sb.
+ replace (¬(¬P∨¬R)) with (P∧R) in Sb.
+ replace (¬(¬Q∨¬R)) with (Q∧R) in Sb.
+ apply Sb.
apply Prod3_01.
apply Prod3_01.
- replace (~Q∨~R) with (Q→~R).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
- replace (~P∨~R) with (P→~R).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
Qed.
Theorem n3_47 : ∀ P Q R S : Prop,
@@ -1356,11 +1370,23 @@ Proof. intros P Q R S.
intros Syll2_05b.
MP Syll2_05b n3_22b.
Syll Sc Syll2_05b Sd.
+ clear Simp3_26a. clear Fact3_45a. clear Sa.
+ clear n3_22a. clear Fact3_45b.
+ clear Syll2_05a. clear Simp3_27a.
+ clear Sc. clear n3_22b. clear Syll2_05b.
+ Conj Sb Sd.
+ split.
+ apply Sb.
+ apply Sd.
specialize n2_83 with ((P→R)∧(Q→S)) (P∧Q) (Q∧R) (R∧S).
- intros n2_83a.
- MP n2_83a Sb.
- MP n2_83 Sd.
- apply n2_83a.
+ intros n2_83a. (*This with MP works, but it omits Conj3_03.*)
+ specialize Imp3_31 with (((P→R)∧(Q→S))→((P∧Q)→(Q∧R)))
+ (((P→R)∧(Q→S))→((Q∧R)→(R∧S)))
+ (((P→R)∧(Q→S))→((P∧Q)→(R∧S))).
+ intros Imp3_31a.
+ MP Imp3_31a n2_83a.
+ MP Imp3_31a H.
+ apply Imp3_31a.
Qed.
Theorem n3_48 : ∀ P Q R S : Prop,
@@ -1419,7 +1445,7 @@ Ltac Equiv H1 :=
end.
Theorem Transp4_1 : ∀ P Q : Prop,
- (P → Q) ↔ (~Q → ~P).
+ (P → Q) ↔ (¬Q → ¬P).
Proof. intros P Q.
specialize Transp2_16 with P Q.
intros Transp2_16a.
@@ -1435,7 +1461,7 @@ Proof. intros P Q.
Qed.
Theorem Transp4_11 : ∀ P Q : Prop,
- (P ↔ Q) ↔ (~P ↔ ~Q).
+ (P ↔ Q) ↔ (¬P ↔ ¬Q).
Proof. intros P Q.
specialize Transp2_16 with P Q.
intros Transp2_16a.
@@ -1445,16 +1471,16 @@ Proof. intros P Q.
split.
apply Transp2_16a.
apply Transp2_16b.
- specialize n3_47 with (P→Q) (Q→P) (~Q→~P) (~P→~Q).
+ specialize n3_47 with (P→Q) (Q→P) (¬Q→¬P) (¬P→¬Q).
intros n3_47a.
MP n3_47 H.
- specialize n3_22 with (~Q → ~P) (~P → ~Q).
+ specialize n3_22 with (¬Q → ¬P) (¬P → ¬Q).
intros n3_22a.
Syll n3_47a n3_22a Sa.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sa.
- replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sa.
+ replace ((¬P → ¬Q) ∧ (¬Q → ¬P)) with (¬P↔¬Q) in Sa.
clear Transp2_16a. clear H. clear Transp2_16b.
- clear n3_22a. clear n3_47a.
+ clear n3_22a. clear n3_47a.
specialize Transp2_17 with Q P.
intros Transp2_17a.
specialize Transp2_17 with P Q.
@@ -1463,7 +1489,7 @@ Proof. intros P Q.
split.
apply Transp2_17a.
apply Transp2_17b.
- specialize n3_47 with (~P→~Q) (~Q→~P) (Q→P) (P→Q).
+ specialize n3_47 with (¬P→¬Q) (¬Q→¬P) (Q→P) (P→Q).
intros n3_47a.
MP n3_47a H.
specialize n3_22 with (Q→P) (P→Q).
@@ -1472,7 +1498,7 @@ Proof. intros P Q.
clear Transp2_17a. clear Transp2_17b. clear H.
clear n3_47a. clear n3_22a.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sb.
- replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sb.
+ replace ((¬P → ¬Q) ∧ (¬Q → ¬P)) with (¬P↔¬Q) in Sb.
Conj Sa Sb.
split.
apply Sa.
@@ -1487,7 +1513,7 @@ Proof. intros P Q.
Qed.
Theorem n4_12 : ∀ P Q : Prop,
- (P ↔ ~Q) ↔ (Q ↔ ~P).
+ (P ↔ ¬Q) ↔ (Q ↔ ¬P).
Proof. intros P Q.
specialize Transp2_03 with P Q.
intros Transp2_03a.
@@ -1497,7 +1523,7 @@ Theorem n4_12 : ∀ P Q : Prop,
split.
apply Transp2_03a.
apply Transp2_15a.
- specialize n3_47 with (P→~Q) (~Q→P) (Q→~P) (~P→Q).
+ specialize n3_47 with (P→¬Q) (¬Q→P) (Q→¬P) (¬P→Q).
intros n3_47a.
MP n3_47a H.
specialize Transp2_03 with Q P.
@@ -1508,30 +1534,23 @@ Theorem n4_12 : ∀ P Q : Prop,
split.
apply Transp2_03b.
apply Transp2_15b.
- specialize n3_47 with (Q→~P) (~P→Q) (P→~Q) (~Q→P).
+ specialize n3_47 with (Q→¬P) (¬P→Q) (P→¬Q) (¬Q→P).
intros n3_47b.
MP n3_47b H0.
- clear Transp2_03a. clear Transp2_15a. clear H. clear
- Transp2_03b. clear Transp2_15b. clear H0.
- replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47a.
- replace ((Q → ~P) ∧ (~P → Q)) with (Q↔~P) in n3_47a.
- replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47b.
- replace ((Q → ~P) ∧ (~P → Q)) with (Q↔~P) in n3_47b.
+ clear Transp2_03a. clear Transp2_15a. clear H.
+ clear Transp2_03b. clear Transp2_15b. clear H0.
Conj n3_47a n3_47b.
split.
apply n3_47a.
apply n3_47b.
- Equiv H.
+ rewrite <- Equiv4_01 in H.
+ rewrite <- Equiv4_01 in H.
+ rewrite <- Equiv4_01 in H.
apply H.
- apply Equiv4_01.
- apply Equiv4_01.
- apply Equiv4_01.
- apply Equiv4_01.
- apply Equiv4_01.
Qed.
Theorem n4_13 : ∀ P : Prop,
- P ↔ ~~P.
+ P ↔ ¬¬P.
Proof. intros P.
specialize n2_12 with P.
intros n2_12a.
@@ -1547,11 +1566,11 @@ Theorem n4_13 : ∀ P : Prop,
Qed.
Theorem n4_14 : ∀ P Q R : Prop,
- ((P ∧ Q) → R) ↔ ((P ∧ ~R) → ~Q).
+ ((P ∧ Q) → R) ↔ ((P ∧ ¬R) → ¬Q).
Proof. intros P Q R.
specialize Transp3_37 with P Q R.
intros Transp3_37a.
-specialize Transp3_37 with P (~R) (~Q).
+specialize Transp3_37 with P (¬R) (¬Q).
intros Transp3_37b.
Conj Transp3_37a Transp3_37b.
split. apply Transp3_37a.
@@ -1560,8 +1579,8 @@ specialize n4_13 with Q.
intros n4_13a.
specialize n4_13 with R.
intros n4_13b.
-replace (~~Q) with Q in H.
-replace (~~R) with R in H.
+replace (¬¬Q) with Q in H.
+replace (¬¬R) with R in H.
Equiv H.
apply H.
apply Equiv4_01.
@@ -1572,31 +1591,31 @@ apply n4_13a.
Qed.
Theorem n4_15 : ∀ P Q R : Prop,
- ((P ∧ Q) → ~R) ↔ ((Q ∧ R) → ~P).
+ ((P ∧ Q) → ¬R) ↔ ((Q ∧ R) → ¬P).
Proof. intros P Q R.
- specialize n4_14 with Q P (~R).
+ specialize n4_14 with Q P (¬R).
intros n4_14a.
specialize n3_22 with Q P.
intros n3_22a.
- specialize Syll2_06 with (Q∧P) (P∧Q) (~R).
+ specialize Syll2_06 with (Q∧P) (P∧Q) (¬R).
intros Syll2_06a.
MP Syll2_06a n3_22a.
specialize n4_13 with R.
intros n4_13a.
- replace (~~R) with R in n4_14a.
+ replace (¬¬R) with R in n4_14a.
rewrite Equiv4_01 in n4_14a.
- specialize Simp3_26 with ((Q ∧ P → ~R) → Q ∧ R → ~P)
- ((Q ∧ R → ~P) → Q ∧ P → ~R).
+ specialize Simp3_26 with ((Q ∧ P → ¬R) → Q ∧ R → ¬P)
+ ((Q ∧ R → ¬P) → Q ∧ P → ¬R).
intros Simp3_26a.
MP Simp3_26a n4_14a.
Syll Syll2_06a Simp3_26a Sa.
- specialize Simp3_27 with ((Q ∧ P → ~R) → Q ∧ R → ~P)
- ((Q ∧ R → ~P) → Q ∧ P → ~R).
+ specialize Simp3_27 with ((Q ∧ P → ¬R) → Q ∧ R → ¬P)
+ ((Q ∧ R → ¬P) → Q ∧ P → ¬R).
intros Simp3_27a.
MP Simp3_27a n4_14a.
specialize n3_22 with P Q.
intros n3_22b.
- specialize Syll2_06 with (P∧Q) (Q∧P) (~R).
+ specialize Syll2_06 with (P∧Q) (Q∧P) (¬R).
intros Syll2_06b.
MP Syll2_06b n3_22b.
Syll Syll2_06b Simp3_27a Sb.
@@ -1775,21 +1794,21 @@ Qed.
Proof. intros P Q R.
specialize n4_15 with P Q R.
intros n4_15a.
- specialize Transp4_1 with P (~(Q ∧ R)).
+ specialize Transp4_1 with P (¬(Q ∧ R)).
intros Transp4_1a.
- replace (~~(Q ∧ R)) with (Q ∧ R) in Transp4_1a.
- replace (Q ∧ R→~P) with (P→~(Q ∧ R)) in n4_15a.
- specialize Transp4_11 with (P ∧ Q → ~R) (P → ~(Q ∧ R)).
+ replace (¬¬(Q ∧ R)) with (Q ∧ R) in Transp4_1a.
+ replace (Q ∧ R→¬P) with (P→¬(Q ∧ R)) in n4_15a.
+ specialize Transp4_11 with (P ∧ Q → ¬R) (P → ¬(Q ∧ R)).
intros Transp4_11a.
- replace ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))) with
- (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) in n4_15a.
- replace (P ∧ Q → ~R) with
- (~(P ∧ Q ) ∨ ~R) in n4_15a.
- replace (P → ~(Q ∧ R)) with
- (~P ∨ ~(Q ∧ R)) in n4_15a.
- replace (~(~(P ∧ Q) ∨ ~R)) with
+ replace ((P ∧ Q → ¬R) ↔ (P → ¬(Q ∧ R))) with
+ (¬(P ∧ Q → ¬R) ↔ ¬(P → ¬(Q ∧ R))) in n4_15a.
+ replace (P ∧ Q → ¬R) with
+ (¬(P ∧ Q ) ∨ ¬R) in n4_15a.
+ replace (P → ¬(Q ∧ R)) with
+ (¬P ∨ ¬(Q ∧ R)) in n4_15a.
+ replace (¬(¬(P ∧ Q) ∨ ¬R)) with
((P ∧ Q) ∧ R) in n4_15a.
- replace (~(~P ∨ ~(Q ∧ R))) with
+ replace (¬(¬P ∨ ¬(Q ∧ R))) with
(P ∧ (Q ∧ R )) in n4_15a.
apply n4_15a.
apply Prod3_01.
@@ -1798,8 +1817,8 @@ Qed.
reflexivity.
rewrite Impl1_01.
reflexivity.
- replace (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) with
- ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))).
+ replace (¬(P ∧ Q → ¬R) ↔ ¬(P → ¬(Q ∧ R))) with
+ ((P ∧ Q → ¬R) ↔ (P → ¬(Q ∧ R))).
reflexivity.
apply EqBi.
apply Transp4_11a.
@@ -1812,12 +1831,10 @@ Qed.
Qed.
(*Note that the actual proof uses n4_12, but
that transposition involves transforming a
- biconditional into a conditional. This way
- of doing it - using Transp4_1 to transpose a
- conditional and then applying n4_13 to
- double negate - is easier without a derived
- rule for replacing a biconditional with one
- of its equivalent implications.*)
+ biconditional into a conditional. This theorem
+ may be a misprint. Using Transp4_1 to transpose
+ a conditional and then applying n4_13 to double
+ negate does secure the desired formula, though.*)
Theorem n4_33 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) ↔ ((P ∨ Q) ∨ R).
@@ -2132,10 +2149,10 @@ Proof. intros P Q R.
split.
apply n2_53a.
apply n2_53b.
- specialize n3_47 with (P ∨ Q) (P ∨ R) (~P → Q) (~P → R).
+ specialize n3_47 with (P ∨ Q) (P ∨ R) (¬P → Q) (¬P → R).
intros n3_47a.
MP n3_47a H0.
- specialize Comp3_43 with (~P) Q R.
+ specialize Comp3_43 with (¬P) Q R.
intros Comp3_43b.
Syll n3_47a Comp3_43b Sa.
specialize n2_54 with P (Q∧R).
@@ -2154,23 +2171,23 @@ Proof. intros P Q R.
Qed.
Theorem n4_42 : ∀ P Q : Prop,
- P ↔ ((P ∧ Q) ∨ (P ∧ ~Q)).
+ P ↔ ((P ∧ Q) ∨ (P ∧ ¬Q)).
Proof. intros P Q.
- specialize n3_21 with P (Q ∨ ~Q).
+ specialize n3_21 with P (Q ∨ ¬Q).
intros n3_21a.
specialize n2_11 with Q.
intros n2_11a.
MP n3_21a n2_11a.
- specialize Simp3_26 with P (Q ∨ ~Q).
+ specialize Simp3_26 with P (Q ∨ ¬Q).
intros Simp3_26a. clear n2_11a.
Conj n3_21a Simp3_26a.
split.
apply n3_21a.
apply Simp3_26a.
Equiv H.
- specialize n4_4 with P Q (~Q).
+ specialize n4_4 with P Q (¬Q).
intros n4_4a.
- replace (P ∧ (Q ∨ ~Q)) with P in n4_4a.
+ replace (P ∧ (Q ∨ ¬Q)) with P in n4_4a.
apply n4_4a.
apply EqBi.
apply H.
@@ -2178,39 +2195,40 @@ Proof. intros P Q.
Qed.
Theorem n4_43 : ∀ P Q : Prop,
- P ↔ ((P ∨ Q) ∧ (P ∨ ~Q)).
+ P ↔ ((P ∨ Q) ∧ (P ∨ ¬Q)).
Proof. intros P Q.
specialize n2_2 with P Q.
intros n2_2a.
- specialize n2_2 with P (~Q).
+ specialize n2_2 with P (¬Q).
intros n2_2b.
Conj n2_2a n2_2b.
split.
apply n2_2a.
apply n2_2b.
- specialize Comp3_43 with P (P∨Q) (P∨~Q).
+ specialize Comp3_43 with P (P∨Q) (P∨¬Q).
intros Comp3_43a.
MP Comp3_43a H.
specialize n2_53 with P Q.
intros n2_53a.
- specialize n2_53 with P (~Q).
+ specialize n2_53 with P (¬Q).
intros n2_53b.
Conj n2_53a n2_53b.
split.
apply n2_53a.
apply n2_53b.
- specialize n3_47 with (P∨Q) (P∨~Q) (~P→Q) (~P→~Q).
+ specialize n3_47 with (P∨Q) (P∨¬Q) (¬P→Q) (¬P→¬Q).
intros n3_47a.
MP n3_47a H0.
- specialize n2_65 with (~P) Q.
+ specialize n2_65 with (¬P) Q.
intros n2_65a.
- replace (~~P) with P in n2_65a.
- specialize Imp3_31 with (~P → Q) (~P → ~Q) (P).
+ replace (¬¬P) with P in n2_65a.
+ specialize Imp3_31 with (¬P → Q) (¬P → ¬Q) (P).
intros Imp3_31a.
MP Imp3_31a n2_65a.
Syll n3_47a Imp3_31a Sa.
- clear n2_2a. clear n2_2b. clear H. clear n2_53a. clear n2_53b.
- clear H0. clear n2_65a. clear n3_47a. clear Imp3_31a.
+ clear n2_2a. clear n2_2b. clear H. clear n2_53a.
+ clear n2_53b. clear H0. clear n2_65a.
+ clear n3_47a. clear Imp3_31a.
Conj Comp3_43a Sa.
split.
apply Comp3_43a.
@@ -2277,34 +2295,34 @@ Theorem n4_45 : ∀ P Q : Prop,
Qed.
Theorem n4_5 : ∀ P Q : Prop,
- P ∧ Q ↔ ~(~P ∨ ~Q).
+ P ∧ Q ↔ ¬(¬P ∨ ¬Q).
Proof. intros P Q.
specialize n4_2 with (P ∧ Q).
intros n4_2a.
rewrite Prod3_01.
- replace (~(~P ∨ ~Q)) with (P ∧ Q).
+ replace (¬(¬P ∨ ¬Q)) with (P ∧ Q).
apply n4_2a.
apply Prod3_01.
Qed.
Theorem n4_51 : ∀ P Q : Prop,
- ~(P ∧ Q) ↔ (~P ∨ ~Q).
+ ¬(P ∧ Q) ↔ (¬P ∨ ¬Q).
Proof. intros P Q.
specialize n4_5 with P Q.
intros n4_5a.
- specialize n4_12 with (P ∧ Q) (~P ∨ ~Q).
+ specialize n4_12 with (P ∧ Q) (¬P ∨ ¬Q).
intros n4_12a.
- replace ((P∧Q ↔ ~(~P∨~Q))↔(~P∨~Q ↔ ~(P∧Q))) with
- ((P∧Q ↔ ~(~P∨~Q)) = (~P∨~Q ↔ ~(P∧Q))) in n4_12a.
- replace (P ∧ Q ↔ ~(~P ∨ ~Q)) with
- (~P ∨ ~Q ↔ ~(P ∧ Q)) in n4_5a.
- replace (~P ∨ ~Q ↔ ~(P ∧ Q)) with
- (~(P ∧ Q) ↔ (~P ∨ ~Q)) in n4_5a.
+ replace ((P∧Q ↔ ¬(¬P∨¬Q))↔(¬P∨¬Q ↔ ¬(P∧Q))) with
+ ((P∧Q ↔ ¬(¬P∨¬Q)) = (¬P∨¬Q ↔ ¬(P∧Q))) in n4_12a.
+ replace (P ∧ Q ↔ ¬(¬P ∨ ¬Q)) with
+ (¬P ∨ ¬Q ↔ ¬(P ∧ Q)) in n4_5a.
+ replace (¬P ∨ ¬Q ↔ ¬(P ∧ Q)) with
+ (¬(P ∧ Q) ↔ (¬P ∨ ¬Q)) in n4_5a.
apply n4_5a.
- specialize n4_21 with (~(P ∧ Q)) (~P ∨ ~Q).
+ specialize n4_21 with (¬(P ∧ Q)) (¬P ∨ ¬Q).
intros n4_21a.
apply EqBi.
- specialize n4_21 with (~(P∧Q)) (~P ∨ ~Q).
+ specialize n4_21 with (¬(P∧Q)) (¬P ∨ ¬Q).
intros n4_21b.
apply n4_21b.
apply EqBi.
@@ -2312,11 +2330,11 @@ Theorem n4_51 : ∀ P Q : Prop,
Qed.
Theorem n4_52 : ∀ P Q : Prop,
- (P ∧ ~Q) ↔ ~(~P ∨ Q).
+ (P ∧ ¬Q) ↔ ¬(¬P ∨ Q).
Proof. intros P Q.
- specialize n4_5 with P (~Q).
+ specialize n4_5 with P (¬Q).
intros n4_5a.
- replace (~~Q) with Q in n4_5a.
+ replace (¬¬Q) with Q in n4_5a.
apply n4_5a.
specialize n4_13 with Q.
intros n4_13a.
@@ -2325,20 +2343,20 @@ Theorem n4_52 : ∀ P Q : Prop,
Qed.
Theorem n4_53 : ∀ P Q : Prop,
- ~(P ∧ ~Q) ↔ (~P ∨ Q).
+ ¬(P ∧ ¬Q) ↔ (¬P ∨ Q).
Proof. intros P Q.
specialize n4_52 with P Q.
intros n4_52a.
- specialize n4_12 with (P ∧ ~Q) ((~P ∨ Q)).
+ specialize n4_12 with (P ∧ ¬Q) ((¬P ∨ Q)).
intros n4_12a.
- replace ((P∧~Q ↔ ~(~P∨Q))↔(~P∨Q ↔ ~(P∧~Q))) with
- ((P∧~Q ↔ ~(~P∨Q)) = (~P∨Q ↔ ~(P∧~Q))) in n4_12a.
- replace (P ∧ ~Q ↔ ~(~P ∨ Q)) with
- (~P ∨ Q ↔ ~(P ∧ ~Q)) in n4_52a.
- replace (~P ∨ Q ↔ ~(P ∧ ~Q)) with
- (~(P ∧ ~Q) ↔ (~P ∨ Q)) in n4_52a.
+ replace ((P∧¬Q ↔ ¬(¬P∨Q))↔(¬P∨Q ↔ ¬(P∧¬Q))) with
+ ((P∧¬Q ↔ ¬(¬P∨Q)) = (¬P∨Q ↔ ¬(P∧¬Q))) in n4_12a.
+ replace (P ∧ ¬Q ↔ ¬(¬P ∨ Q)) with
+ (¬P ∨ Q ↔ ¬(P ∧ ¬Q)) in n4_52a.
+ replace (¬P ∨ Q ↔ ¬(P ∧ ¬Q)) with
+ (¬(P ∧ ¬Q) ↔ (¬P ∨ Q)) in n4_52a.
apply n4_52a.
- specialize n4_21 with (~(P ∧ ~Q)) (~P ∨ Q).
+ specialize n4_21 with (¬(P ∧ ¬Q)) (¬P ∨ Q).
intros n4_21a.
apply EqBi.
apply n4_21a.
@@ -2347,48 +2365,51 @@ Theorem n4_53 : ∀ P Q : Prop,
Qed.
Theorem n4_54 : ∀ P Q : Prop,
- (~P ∧ Q) ↔ ~(P ∨ ~Q).
+ (¬P ∧ Q) ↔ ¬(P ∨ ¬Q).
Proof. intros P Q.
- specialize n4_5 with (~P) Q.
+ specialize n4_5 with (¬P) Q.
intros n4_5a.
specialize n4_13 with P.
intros n4_13a.
- replace (~~P) with P in n4_5a.
+ replace (¬¬P) with P in n4_5a.
apply n4_5a.
apply EqBi.
apply n4_13a.
Qed.
Theorem n4_55 : ∀ P Q : Prop,
- ~(~P ∧ Q) ↔ (P ∨ ~Q).
+ ¬(¬P ∧ Q) ↔ (P ∨ ¬Q).
Proof. intros P Q.
specialize n4_54 with P Q.
intros n4_54a.
- specialize n4_12 with (~P ∧ Q) (P ∨ ~Q).
+ specialize n4_12 with (¬P ∧ Q) (P ∨ ¬Q).
intros n4_12a.
- replace (~P ∧ Q ↔ ~(P ∨ ~Q)) with
- (P ∨ ~Q ↔ ~(~P ∧ Q)) in n4_54a.
- replace (P ∨ ~Q ↔ ~(~P ∧ Q)) with
- (~(~P ∧ Q) ↔ (P ∨ ~Q)) in n4_54a.
+ replace (¬P ∧ Q ↔ ¬(P ∨ ¬Q)) with
+ (P ∨ ¬Q ↔ ¬(¬P ∧ Q)) in n4_54a.
+ replace (P ∨ ¬Q ↔ ¬(¬P ∧ Q)) with
+ (¬(¬P ∧ Q) ↔ (P ∨ ¬Q)) in n4_54a.
apply n4_54a.
- specialize n4_21 with (~(~P ∧ Q)) (P ∨ ~Q).
- intros n4_21a.
+ specialize n4_21 with (¬(¬P ∧ Q)) (P ∨ ¬Q).
+ intros n4_21a. (*Not cited*)
apply EqBi.
apply n4_21a.
- replace ((~P ∧ Q ↔ ~(P ∨ ~Q)) ↔ (P ∨ ~Q ↔ ~(~P ∧ Q))) with
- ((~P ∧ Q ↔ ~(P ∨ ~Q)) = (P ∨ ~Q ↔ ~(~P ∧ Q))) in n4_12a.
- rewrite n4_12a.
- reflexivity.
apply EqBi.
+ replace ((P∨¬Q↔¬(¬P∧Q))↔(¬P∧Q↔¬(P∨¬Q)))
+ with ((¬P∧Q↔¬(P∨¬Q))↔(P∨¬Q↔¬(¬P∧Q))).
+ apply n4_12a.
apply EqBi.
+ specialize n4_21 with (P∨¬Q↔¬(¬P∧Q))
+ (¬P∧Q↔¬(P∨¬Q)).
+ intros n4_21b.
+ apply n4_21.
Qed.
Theorem n4_56 : ∀ P Q : Prop,
- (~P ∧ ~Q) ↔ ~(P ∨ Q).
+ (¬P ∧ ¬Q) ↔ ¬(P ∨ Q).
Proof. intros P Q.
- specialize n4_54 with P (~Q).
+ specialize n4_54 with P (¬Q).
intros n4_54a.
- replace (~~Q) with Q in n4_54a.
+ replace (¬¬Q) with Q in n4_54a.
apply n4_54a.
apply EqBi.
specialize n4_13 with Q.
@@ -2397,94 +2418,94 @@ Theorem n4_56 : ∀ P Q : Prop,
Qed.
Theorem n4_57 : ∀ P Q : Prop,
- ~(~P ∧ ~Q) ↔ (P ∨ Q).
+ ¬(¬P ∧ ¬Q) ↔ (P ∨ Q).
Proof. intros P Q.
specialize n4_56 with P Q.
intros n4_56a.
- specialize n4_12 with (~P ∧ ~Q) (P ∨ Q).
+ specialize n4_12 with (¬P ∧ ¬Q) (P ∨ Q).
intros n4_12a.
- replace (~P ∧ ~Q ↔ ~(P ∨ Q)) with
- (P ∨ Q ↔ ~(~P ∧ ~Q)) in n4_56a.
- replace (P ∨ Q ↔ ~(~P ∧ ~Q)) with
- (~(~P ∧ ~Q) ↔ P ∨ Q) in n4_56a.
+ replace (¬P ∧ ¬Q ↔ ¬(P ∨ Q)) with
+ (P ∨ Q ↔ ¬(¬P ∧ ¬Q)) in n4_56a.
+ replace (P ∨ Q ↔ ¬(¬P ∧ ¬Q)) with
+ (¬(¬P ∧ ¬Q) ↔ P ∨ Q) in n4_56a.
apply n4_56a.
- specialize n4_21 with (~(~P ∧ ~Q)) (P ∨ Q).
+ specialize n4_21 with (¬(¬P ∧ ¬Q)) (P ∨ Q).
intros n4_21a.
apply EqBi.
apply n4_21a.
- replace ((~P∧~Q↔~(P∨Q))↔(P∨Q↔~(~P∧~Q))) with
- ((P∨Q↔~(~P∧~Q))↔(~P∧~Q↔~(P∨Q))) in n4_12a.
+ replace ((¬P∧¬Q↔¬(P∨Q))↔(P∨Q↔¬(¬P∧¬Q))) with
+ ((P∨Q↔¬(¬P∧¬Q))↔(¬P∧¬Q↔¬(P∨Q))) in n4_12a.
apply EqBi.
apply n4_12a.
apply EqBi.
specialize n4_21 with
- (P ∨ Q ↔ ~(~P ∧ ~Q)) (~P ∧ ~Q ↔ ~(P ∨ Q)).
+ (P ∨ Q ↔ ¬(¬P ∧ ¬Q)) (¬P ∧ ¬Q ↔ ¬(P ∨ Q)).
intros n4_21b.
apply n4_21b.
Qed.
Theorem n4_6 : ∀ P Q : Prop,
- (P → Q) ↔ (~P ∨ Q).
+ (P → Q) ↔ (¬P ∨ Q).
Proof. intros P Q.
- specialize n4_2 with (~P∨ Q).
+ specialize n4_2 with (¬P∨ Q).
intros n4_2a.
rewrite Impl1_01.
apply n4_2a.
Qed.
Theorem n4_61 : ∀ P Q : Prop,
- ~(P → Q) ↔ (P ∧ ~Q).
+ ¬(P → Q) ↔ (P ∧ ¬Q).
Proof. intros P Q.
specialize n4_6 with P Q.
intros n4_6a.
- specialize Transp4_11 with (P→Q) (~P∨Q).
+ specialize Transp4_11 with (P→Q) (¬P∨Q).
intros Transp4_11a.
specialize n4_52 with P Q.
intros n4_52a.
- replace ((P → Q) ↔ ~P ∨ Q) with
- (~(P → Q) ↔ ~(~P ∨ Q)) in n4_6a.
- replace (~(~P ∨ Q)) with (P ∧ ~Q) in n4_6a.
+ replace ((P → Q) ↔ ¬P ∨ Q) with
+ (¬(P → Q) ↔ ¬(¬P ∨ Q)) in n4_6a.
+ replace (¬(¬P ∨ Q)) with (P ∧ ¬Q) in n4_6a.
apply n4_6a.
apply EqBi.
apply n4_52a.
- replace (((P→Q)↔~P∨Q)↔(~(P→Q)↔~(~P∨Q))) with
- ((~(P→Q)↔~(~P∨Q))↔((P→Q)↔~P∨Q)) in Transp4_11a.
+ replace (((P→Q)↔¬P∨Q)↔(¬(P→Q)↔¬(¬P∨Q))) with
+ ((¬(P→Q)↔¬(¬P∨Q))↔((P→Q)↔¬P∨Q)) in Transp4_11a.
apply EqBi.
apply Transp4_11a.
apply EqBi.
- specialize n4_21 with (~(P→Q)↔~(~P∨Q))
- ((P→Q)↔(~P∨Q)).
+ specialize n4_21 with (¬(P→Q)↔¬(¬P∨Q))
+ ((P→Q)↔(¬P∨Q)).
intros n4_21a.
apply n4_21a.
Qed.
Theorem n4_62 : ∀ P Q : Prop,
- (P → ~Q) ↔ (~P ∨ ~Q).
+ (P → ¬Q) ↔ (¬P ∨ ¬Q).
Proof. intros P Q.
- specialize n4_6 with P (~Q).
+ specialize n4_6 with P (¬Q).
intros n4_6a.
apply n4_6a.
Qed.
Theorem n4_63 : ∀ P Q : Prop,
- ~(P → ~Q) ↔ (P ∧ Q).
+ ¬(P → ¬Q) ↔ (P ∧ Q).
Proof. intros P Q.
specialize n4_62 with P Q.
intros n4_62a.
- specialize Transp4_11 with (P → ~Q) (~P ∨ ~Q).
+ specialize Transp4_11 with (P → ¬Q) (¬P ∨ ¬Q).
intros Transp4_11a.
specialize n4_5 with P Q.
intros n4_5a.
- replace (~(~P ∨ ~Q)) with (P ∧ Q) in Transp4_11a.
- replace ((P → ~Q) ↔ ~P ∨ ~Q) with
- ((~(P → ~Q) ↔ P ∧ Q)) in n4_62a.
+ replace (¬(¬P ∨ ¬Q)) with (P ∧ Q) in Transp4_11a.
+ replace ((P → ¬Q) ↔ ¬P ∨ ¬Q) with
+ ((¬(P → ¬Q) ↔ P ∧ Q)) in n4_62a.
apply n4_62a.
- replace (((P→~Q)↔~P∨~Q)↔(~(P→~Q)↔P∧Q)) with
- ((~(P→~Q)↔P∧Q)↔((P→~Q)↔~P∨~Q)) in Transp4_11a.
+ replace (((P→¬Q)↔¬P∨¬Q)↔(¬(P→¬Q)↔P∧Q)) with
+ ((¬(P→¬Q)↔P∧Q)↔((P→¬Q)↔¬P∨¬Q)) in Transp4_11a.
apply EqBi.
apply Transp4_11a.
specialize n4_21 with
- (~(P → ~Q) ↔ P ∧ Q) ((P → ~Q) ↔ ~P ∨ ~Q).
+ (¬(P → ¬Q) ↔ P ∧ Q) ((P → ¬Q) ↔ ¬P ∨ ¬Q).
intros n4_21a.
apply EqBi.
apply n4_21a.
@@ -2493,7 +2514,7 @@ Theorem n4_63 : ∀ P Q : Prop,
Qed.
Theorem n4_64 : ∀ P Q : Prop,
- (~P → Q) ↔ (P ∨ Q).
+ (¬P → Q) ↔ (P ∨ Q).
Proof. intros P Q.
specialize n2_54 with P Q.
intros n2_54a.
@@ -2509,65 +2530,67 @@ Theorem n4_64 : ∀ P Q : Prop,
Qed.
Theorem n4_65 : ∀ P Q : Prop,
- ~(~P → Q) ↔ (~P ∧ ~Q).
+ ¬(¬P → Q) ↔ (¬P ∧ ¬Q).
Proof. intros P Q.
specialize n4_64 with P Q.
intros n4_64a.
- specialize Transp4_11 with(~P → Q) (P ∨ Q).
+ specialize Transp4_11 with(¬P → Q) (P ∨ Q).
intros Transp4_11a.
specialize n4_56 with P Q.
intros n4_56a.
- replace (((~P→Q)↔P∨Q)↔(~(~P→Q)↔~(P∨Q))) with
- ((~(~P→Q)↔~(P∨Q))↔((~P→Q)↔P∨Q)) in Transp4_11a.
- replace ((~P → Q) ↔ P ∨ Q) with
- (~(~P → Q) ↔ ~(P ∨ Q)) in n4_64a.
- replace (~(P ∨ Q)) with (~P ∧ ~Q) in n4_64a.
+ replace (((¬P→Q)↔P∨Q)↔(¬(¬P→Q)↔¬(P∨Q))) with
+ ((¬(¬P→Q)↔¬(P∨Q))↔((¬P→Q)↔P∨Q)) in Transp4_11a.
+ replace ((¬P → Q) ↔ P ∨ Q) with
+ (¬(¬P → Q) ↔ ¬(P ∨ Q)) in n4_64a.
+ replace (¬(P ∨ Q)) with (¬P ∧ ¬Q) in n4_64a.
apply n4_64a.
apply EqBi.
apply n4_56a.
apply EqBi.
apply Transp4_11a.
apply EqBi.
- specialize n4_21 with (~(~P → Q)↔~(P ∨ Q))
- ((~P → Q)↔(P ∨ Q)).
+ specialize n4_21 with (¬(¬P → Q)↔¬(P ∨ Q))
+ ((¬P → Q)↔(P ∨ Q)).
intros n4_21a.
apply n4_21a.
Qed.
Theorem n4_66 : ∀ P Q : Prop,
- (~P → ~Q) ↔ (P ∨ ~Q).
+ (¬P → ¬Q) ↔ (P ∨ ¬Q).
Proof. intros P Q.
- specialize n4_64 with P (~Q).
+ specialize n4_64 with P (¬Q).
intros n4_64a.
apply n4_64a.
Qed.
Theorem n4_67 : ∀ P Q : Prop,
- ~(~P → ~Q) ↔ (~P ∧ Q).
+ ¬(¬P → ¬Q) ↔ (¬P ∧ Q).
Proof. intros P Q.
specialize n4_66 with P Q.
intros n4_66a.
- specialize Transp4_11 with (~P → ~Q) (P ∨ ~Q).
+ specialize Transp4_11 with (¬P → ¬Q) (P ∨ ¬Q).
intros Transp4_11a.
- replace ((~P → ~Q) ↔ P ∨ ~Q) with
- (~(~P → ~Q) ↔ ~(P ∨ ~Q)) in n4_66a.
+ replace ((¬P → ¬Q) ↔ P ∨ ¬Q) with
+ (¬(¬P → ¬Q) ↔ ¬(P ∨ ¬Q)) in n4_66a.
specialize n4_54 with P Q.
intros n4_54a.
- replace (~(P ∨ ~Q)) with (~P ∧ Q) in n4_66a.
+ replace (¬(P ∨ ¬Q)) with (¬P ∧ Q) in n4_66a.
apply n4_66a.
apply EqBi.
apply n4_54a.
- replace (((~P→~Q)↔P∨~Q)↔(~(~P→~Q)↔~(P∨~Q))) with
- ((~(~P→~Q)↔~(P∨~Q))↔((~P→~Q)↔P∨~Q)) in Transp4_11a.
+ replace (((¬P→¬Q)↔P∨¬Q)↔(¬(¬P→¬Q)↔¬(P∨¬Q))) with
+ ((¬(¬P→¬Q)↔¬(P∨¬Q))↔((¬P→¬Q)↔P∨¬Q)) in Transp4_11a.
apply EqBi.
apply Transp4_11a.
apply EqBi.
- specialize n4_21 with (~(~P → ~Q)↔~(P ∨ ~Q))
- ((~P → ~Q)↔(P ∨ ~Q)).
+ specialize n4_21 with (¬(¬P → ¬Q)↔¬(P ∨ ¬Q))
+ ((¬P → ¬Q)↔(P ∨ ¬Q)).
intros n4_21a.
apply n4_21a.
Qed.
+ (*Return to this proof.*)
+ (*We did get one half of the ↔.*)
Theorem n4_7 : ∀ P Q : Prop,
(P → Q) ↔ (P → (P ∧ Q)).
Proof. intros P Q.
@@ -2635,39 +2658,39 @@ Theorem n4_72 : ∀ P Q : Prop,
Proof. intros P Q.
specialize Transp4_1 with P Q.
intros Transp4_1a.
- specialize n4_71 with (~Q) (~P).
+ specialize n4_71 with (¬Q) (¬P).
intros n4_71a.
Conj Transp4_1a n4_71a.
split.
apply Transp4_1a.
apply n4_71a.
specialize n4_22 with
- (P→Q) (~Q→~P) (~Q↔~Q ∧ ~P).
+ (P→Q) (¬Q→¬P) (¬Q↔¬Q ∧ ¬P).
intros n4_22a.
MP n4_22a H.
- specialize n4_21 with (~Q) (~Q ∧ ~P).
+ specialize n4_21 with (¬Q) (¬Q ∧ ¬P).
intros n4_21a.
Conj n4_22a n4_21a.
split.
apply n4_22a.
apply n4_21a.
specialize n4_22 with
- (P→Q) (~Q ↔ ~Q ∧ ~P) (~Q ∧ ~P ↔ ~Q).
+ (P→Q) (¬Q ↔ ¬Q ∧ ¬P) (¬Q ∧ ¬P ↔ ¬Q).
intros n4_22b.
MP n4_22b H0.
- specialize n4_12 with (~Q ∧ ~P) (Q).
+ specialize n4_12 with (¬Q ∧ ¬P) (Q).
intros n4_12a.
Conj n4_22b n4_12a.
split.
apply n4_22b.
apply n4_12a.
specialize n4_22 with
- (P → Q) ((~Q ∧ ~P) ↔ ~Q) (Q ↔ ~(~Q ∧ ~P)).
+ (P → Q) ((¬Q ∧ ¬P) ↔ ¬Q) (Q ↔ ¬(¬Q ∧ ¬P)).
intros n4_22c.
MP n4_22b H0.
specialize n4_57 with Q P.
intros n4_57a.
- replace (~(~Q ∧ ~P)) with (Q ∨ P) in n4_22c.
+ replace (¬(¬Q ∧ ¬P)) with (Q ∨ P) in n4_22c.
specialize n4_31 with P Q.
intros n4_31a.
replace (Q ∨ P) with (P ∨ Q) in n4_22c.
@@ -2675,11 +2698,11 @@ Theorem n4_72 : ∀ P Q : Prop,
apply EqBi.
apply n4_31a.
apply EqBi.
- replace (~(~Q ∧ ~P) ↔ Q ∨ P) with
- (Q ∨ P ↔~(~Q ∧ ~P)) in n4_57a.
+ replace (¬(¬Q ∧ ¬P) ↔ Q ∨ P) with
+ (Q ∨ P ↔¬(¬Q ∧ ¬P)) in n4_57a.
apply n4_57a.
apply EqBi.
- specialize n4_21 with (Q ∨ P) (~(~Q ∧ ~P)).
+ specialize n4_21 with (Q ∨ P) (¬(¬Q ∧ ¬P)).
intros n4_21b.
apply n4_21b.
Qed.
@@ -2703,7 +2726,7 @@ Theorem n4_73 : ∀ P Q : Prop,
Qed.
Theorem n4_74 : ∀ P Q : Prop,
- ~P → (Q ↔ (P ∨ Q)).
+ ¬P → (Q ↔ (P ∨ Q)).
Proof. intros P Q.
specialize n2_21 with P Q.
intros n2_21a.
@@ -2724,11 +2747,11 @@ Theorem n4_74 : ∀ P Q : Prop,
Theorem n4_76 : ∀ P Q R : Prop,
((P → Q) ∧ (P → R)) ↔ (P → (Q ∧ R)).
Proof. intros P Q R.
- specialize n4_41 with (~P) Q R.
+ specialize n4_41 with (¬P) Q R.
intros n4_41a.
- replace (~P ∨ Q) with (P→Q) in n4_41a.
- replace (~P ∨ R) with (P→R) in n4_41a.
- replace (~P ∨ Q ∧ R) with (P → Q ∧ R) in n4_41a.
+ replace (¬P ∨ Q) with (P→Q) in n4_41a.
+ replace (¬P ∨ R) with (P→R) in n4_41a.
+ replace (¬P ∨ Q ∧ R) with (P → Q ∧ R) in n4_41a.
replace ((P → Q ∧ R) ↔ (P → Q) ∧ (P → R)) with
((P → Q) ∧ (P → R) ↔ (P → Q ∧ R)) in n4_41a.
apply n4_41a.
@@ -2746,61 +2769,34 @@ Theorem n4_77 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize n3_44 with P Q R.
intros n3_44a.
- specialize Id2_08 with (Q ∨ R → P).
- intros Id2_08a. (*Not cited*)
- replace ((Q ∨ R → P) → (Q ∨ R → P)) with
- ((Q ∨ R → P) → (~(Q ∨ R) ∨ P)) in Id2_08a.
- replace (~(Q ∨ R)) with (~Q ∧ ~R) in Id2_08a.
- replace (~Q ∧ ~R ∨ P) with
- ((~Q ∨ P) ∧ (~R ∨ P)) in Id2_08a.
- replace (~Q ∨ P) with (Q → P) in Id2_08a.
- replace (~R ∨ P) with (R → P) in Id2_08a.
- Conj n3_44a Id2_08a.
+ specialize n2_2 with Q R.
+ intros n2_2a.
+ specialize Add1_3 with Q R.
+ intros Add1_3a.
+ specialize Syll2_06 with Q (Q ∨ R) P.
+ intros Syll2_06a.
+ MP Syll2_06a n2_2a.
+ specialize Syll2_06 with R (Q ∨ R) P.
+ intros Syll2_06b.
+ MP Syll2_06b Add1_3a.
+ Conj Syll2_06a Syll2_06b.
+ split.
+ apply Syll2_06a.
+ apply Syll2_06b.
+ specialize Comp3_43 with ((Q ∨ R)→P)
+ (Q→P) (R→P).
+ intros Comp3_43a.
+ MP Comp3_43a H.
+ clear n2_2a. clear Add1_3a. clear H.
+ clear Syll2_06a. clear Syll2_06b.
+ Conj n3_44a Comp3_43a.
split.
apply n3_44a.
- apply Id2_08a.
+ apply Comp3_43a.
Equiv H.
apply H.
apply Equiv4_01.
- apply Impl1_01.
- apply Impl1_01.
- specialize n4_41 with P (~Q) (~R).
- intros n4_41a. (*Not cited*)
- replace (P ∨ ~Q) with
- (~Q ∨ P) in n4_41a.
- replace (P ∨ ~R) with
- (~R ∨ P) in n4_41a.
- replace (P ∨ ~Q ∧ ~R) with (~Q ∧ ~R ∨ P) in n4_41a.
- replace (~Q ∧ ~R ∨ P ↔ (~Q ∨ P) ∧ (~R ∨ P)) with
- ((~Q ∨ P) ∧ (~R ∨ P) ↔ ~Q ∧ ~R ∨ P) in n4_41a.
- apply EqBi.
- apply n4_41a.
- apply EqBi.
- specialize n4_21
- with ((~Q ∨ P) ∧ (~R ∨ P)) (~Q ∧ ~R ∨ P).
- intros n4_21a. (*Not cited*)
- apply n4_21a.
- specialize n4_31 with (~Q ∧ ~R) P.
- intros n4_31a. (*Not cited*)
- apply EqBi.
- apply n4_31a.
- specialize n4_31 with (~R) P.
- intros n4_31b. (*Not cited*)
- apply EqBi.
- apply n4_31b.
- specialize n4_31 with (~Q) P.
- intros n4_31c. (*Not cited*)
- apply EqBi.
- apply n4_31c. (*Not cited*)
- apply EqBi.
- specialize n4_56 with Q R.
- intros n4_56a. (*Not cited*)
- apply n4_56a.
- replace (~(Q ∨ R) ∨ P) with (Q∨R→P).
- reflexivity.
- apply Impl1_01. (*Not cited*)
Qed.
- (*Proof sketch cites Add1_3 + n2_2.*)
Theorem n4_78 : ∀ P Q R : Prop,
((P → Q) ∨ (P → R)) ↔ (P → (Q ∨ R)).
@@ -2808,63 +2804,61 @@ Theorem n4_78 : ∀ P Q R : Prop,
specialize n4_2 with ((P→Q) ∨ (P → R)).
intros n4_2a.
replace (((P→Q)∨(P→R))↔((P→Q)∨(P→R))) with
- (((P → Q) ∨ (P → R))↔((~P ∨ Q) ∨ ~P ∨ R)) in n4_2a.
- specialize n4_33 with (~P) Q (~P ∨ R).
+ (((P → Q) ∨ (P → R))↔((¬P ∨ Q) ∨ ¬P ∨ R)) in n4_2a.
+ specialize n4_33 with (¬P) Q (¬P ∨ R).
intros n4_33a.
- replace ((~P ∨ Q) ∨ ~P ∨ R) with
- (~P ∨ Q ∨ ~P ∨ R) in n4_2a.
- specialize n4_31 with (~P) Q.
+ replace ((¬P ∨ Q) ∨ ¬P ∨ R) with
+ (¬P ∨ Q ∨ ¬P ∨ R) in n4_2a.
+ specialize n4_31 with (¬P) Q.
intros n4_31a.
- specialize n4_37 with (~P∨Q) (Q ∨ ~P) R.
+ specialize n4_37 with (¬P∨Q) (Q ∨ ¬P) R.
intros n4_37a.
MP n4_37a n4_31a.
- replace (Q ∨ ~P ∨ R) with
- ((Q ∨ ~P) ∨ R) in n4_2a.
- replace ((Q ∨ ~P) ∨ R) with
- ((~P ∨ Q) ∨ R) in n4_2a.
- specialize n4_33 with (~P) (~P∨Q) R.
+ replace (Q ∨ ¬P ∨ R) with
+ ((Q ∨ ¬P) ∨ R) in n4_2a.
+ replace ((Q ∨ ¬P) ∨ R) with
+ ((¬P ∨ Q) ∨ R) in n4_2a.
+ specialize n4_33 with (¬P) (¬P∨Q) R.
intros n4_33b.
- replace (~P ∨ (~P ∨ Q) ∨ R) with
- ((~P ∨ (~P ∨ Q)) ∨ R) in n4_2a.
- specialize n4_25 with (~P).
+ replace (¬P ∨ (¬P ∨ Q) ∨ R) with
+ ((¬P ∨ (¬P ∨ Q)) ∨ R) in n4_2a.
+ specialize n4_25 with (¬P).
intros n4_25a.
specialize n4_37 with
- (~P) (~P ∨ ~P) (Q ∨ R).
+ (¬P) (¬P ∨ ¬P) (Q ∨ R).
intros n4_37b.
MP n4_37b n4_25a.
- replace (~P ∨ ~P ∨ Q) with
- ((~P ∨ ~P) ∨ Q) in n4_2a.
- replace (((~P ∨ ~P) ∨ Q) ∨ R) with
- ((~P ∨ ~P) ∨ Q ∨ R) in n4_2a.
- replace ((~P ∨ ~P) ∨ Q ∨ R) with
- ((~P) ∨ (Q ∨ R)) in n4_2a.
- replace (~P ∨ Q ∨ R) with
+ replace (¬P ∨ ¬P ∨ Q) with
+ ((¬P ∨ ¬P) ∨ Q) in n4_2a.
+ replace (((¬P ∨ ¬P) ∨ Q) ∨ R) with
+ ((¬P ∨ ¬P) ∨ Q ∨ R) in n4_2a.
+ replace ((¬P ∨ ¬P) ∨ Q ∨ R) with
+ ((¬P) ∨ (Q ∨ R)) in n4_2a.
+ replace (¬P ∨ Q ∨ R) with
(P → (Q ∨ R)) in n4_2a.
apply n4_2a.
apply Impl1_01.
apply EqBi.
apply n4_37b.
apply Abb2_33.
- replace ((~P ∨ ~P) ∨ Q) with (~P ∨ ~P ∨ Q).
+ replace ((¬P ∨ ¬P) ∨ Q) with (¬P ∨ ¬P ∨ Q).
reflexivity.
apply Abb2_33.
- replace ((~P ∨ ~P ∨ Q) ∨ R) with
- (~P ∨ (~P ∨ Q) ∨ R).
+ replace ((¬P ∨ ¬P ∨ Q) ∨ R) with
+ (¬P ∨ (¬P ∨ Q) ∨ R).
reflexivity.
apply EqBi.
apply n4_33b.
apply EqBi.
apply n4_37a.
- replace ((Q ∨ ~P) ∨ R) with (Q ∨ ~P ∨ R).
+ replace ((Q ∨ ¬P) ∨ R) with (Q ∨ ¬P ∨ R).
reflexivity.
apply Abb2_33.
apply EqBi.
apply n4_33a.
- replace (~P ∨ Q) with (P→Q).
- replace (~P ∨ R) with (P→R).
+ rewrite <- Impl1_01.
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
- apply Impl1_01.
Qed.
Theorem n4_79 : ∀ P Q R : Prop,
@@ -2879,46 +2873,74 @@ Theorem n4_79 : ∀ P Q R : Prop,
apply Transp4_1a.
apply Transp4_1b.
specialize n4_39 with
- (Q→P) (R→P) (~P→~Q) (~P→~R).
+ (Q→P) (R→P) (¬P→¬Q) (¬P→¬R).
intros n4_39a.
MP n4_39a H.
- specialize n4_78 with (~P) (~Q) (~R).
+ specialize n4_78 with (¬P) (¬Q) (¬R).
intros n4_78a.
- replace ((~P → ~Q) ∨ (~P → ~R)) with
- (~P → ~Q ∨ ~R) in n4_39a.
- specialize Transp4_1 with (~P) (~Q ∨ ~R).
- intros Transp4_1c.
- replace (~P → ~Q ∨ ~R) with
- (~(~Q ∨ ~R) → ~~P) in n4_39a.
- replace (~(~Q ∨ ~R)) with
- (Q ∧ R) in n4_39a.
- replace (~~P) with P in n4_39a.
+ rewrite Equiv4_01 in n4_78a.
+ specialize Simp3_26 with
+ (((¬P→¬Q)∨(¬P→¬R))→(¬P→(¬Q∨¬R)))
+ ((¬P→(¬Q∨¬R))→((¬P→¬Q)∨(¬P→¬R))).
+ intros Simp3_26a.
+ MP Simp3_26a n4_78a.
+ specialize Transp2_15 with P (¬Q∨¬R).
+ intros Transp2_15a.
+ specialize Simp3_27 with
+ (((¬P→¬Q)∨(¬P→¬R))→(¬P→(¬Q∨¬R)))
+ ((¬P→(¬Q∨¬R))→((¬P→¬Q)∨(¬P→¬R))).
+ intros Simp3_27a.
+ MP Simp3_27a n4_78a.
+ specialize Transp2_15 with (¬Q∨¬R) P.
+ intros Transp2_15b.
+ specialize Syll2_06 with ((¬P→¬Q)∨(¬P→¬R))
+ (¬P→(¬Q∨¬R)) (¬(¬Q∨¬R)→P).
+ intros Syll2_06a.
+ MP Syll2_06a Simp3_26a.
+ MP Syll2_06a Transp2_15a.
+ specialize Syll2_06 with (¬(¬Q∨¬R)→P)
+ (¬P→(¬Q∨¬R)) ((¬P→¬Q)∨(¬P→¬R)).
+ intros Syll2_06b.
+ MP Syll2_06b Trans2_15b.
+ MP Syll2_06b Simp3_27a.
+ Conj Syll2_06a Syll2_06b.
+ split.
+ apply Syll2_06a.
+ apply Syll2_06b.
+ Equiv H0.
+ clear Transp4_1a. clear Transp4_1b. clear H.
+ clear Simp3_26a. clear Syll2_06b. clear n4_78a.
+ clear Transp2_15a. clear Simp3_27a.
+ clear Transp2_15b. clear Syll2_06a.
+ Conj n4_39a H0.
+ split.
apply n4_39a.
- specialize n4_13 with P.
- intros n4_13a.
- apply EqBi.
- apply n4_13a.
- apply Prod3_01.
- replace (~(~Q ∨ ~R) → ~~P) with
- (~P → ~Q ∨ ~R).
- reflexivity.
- apply EqBi.
- apply Transp4_1c.
- replace (~P → ~Q ∨ ~R) with
- ((~P → ~Q) ∨ (~P → ~R)).
- reflexivity.
- apply EqBi.
- apply n4_78a.
+ apply H0.
+ specialize n4_22 with ((Q→P)∨(R→P))
+ ((¬P→¬Q)∨(¬P→¬R)) (¬(¬Q∨¬R)→P).
+ intros n4_22a.
+ MP n4_22a H.
+ specialize n4_2 with (¬(¬Q∨¬R)→P).
+ intros n4_2a.
+ Conj n4_22a n4_2a.
+ split.
+ apply n4_22a.
+ apply n4_2a.
+ specialize n4_22 with ((Q→P)∨(R→P))
+ (¬(¬Q∨¬R)→P) (¬(¬Q∨¬R)→P).
+ intros n4_22b.
+ MP n4_22b H1.
+ rewrite <- Prod3_01 in n4_22b.
+ apply n4_22b.
+ apply Equiv4_01.
Qed.
- (*The proof sketch cites Transp2_15, but we did
- not need Transp2_15 as a lemma here.*)
Theorem n4_8 : ∀ P : Prop,
- (P → ~P) ↔ ~P.
+ (P → ¬P) ↔ ¬P.
Proof. intros P.
specialize Abs2_01 with P.
intros Abs2_01a.
- specialize Simp2_02 with P (~P).
+ specialize Simp2_02 with P (¬P).
intros Simp2_02a.
Conj Abs2_01a Simp2_02a.
split.
@@ -2930,11 +2952,11 @@ Theorem n4_8 : ∀ P : Prop,
Qed.
Theorem n4_81 : ∀ P : Prop,
- (~P → P) ↔ P.
+ (¬P → P) ↔ P.
Proof. intros P.
specialize n2_18 with P.
intros n2_18a.
- specialize Simp2_02 with (~P) P.
+ specialize Simp2_02 with (¬P) P.
intros Simp2_02a.
Conj n2_18a Simp2_02a.
split.
@@ -2946,26 +2968,26 @@ Theorem n4_81 : ∀ P : Prop,
Qed.
Theorem n4_82 : ∀ P Q : Prop,
- ((P → Q) ∧ (P → ~Q)) ↔ ~P.
+ ((P → Q) ∧ (P → ¬Q)) ↔ ¬P.
Proof. intros P Q.
specialize n2_65 with P Q.
intros n2_65a.
- specialize Imp3_31 with (P→Q) (P→~Q) (~P).
+ specialize Imp3_31 with (P→Q) (P→¬Q) (¬P).
intros Imp3_31a.
MP Imp3_31a n2_65a.
specialize n2_21 with P Q.
intros n2_21a.
- specialize n2_21 with P (~Q).
+ specialize n2_21 with P (¬Q).
intros n2_21b.
Conj n2_21a n2_21b.
split.
apply n2_21a.
apply n2_21b.
- specialize Comp3_43 with (~P) (P→Q) (P→~Q).
+ specialize Comp3_43 with (¬P) (P→Q) (P→¬Q).
intros Comp3_43a.
MP Comp3_43a H.
- clear n2_65a. clear n2_21a. clear n2_21b.
- clear H.
+ clear n2_65a. clear n2_21a.
+ clear n2_21b. clear H.
Conj Imp3_31a Comp3_43a.
split.
apply Imp3_31a.
@@ -2976,26 +2998,26 @@ Theorem n4_82 : ∀ P Q : Prop,
Qed.
Theorem n4_83 : ∀ P Q : Prop,
- ((P → Q) ∧ (~P → Q)) ↔ Q.
+ ((P → Q) ∧ (¬P → Q)) ↔ Q.
Proof. intros P Q.
specialize n2_61 with P Q.
intros n2_61a.
- specialize Imp3_31 with (P→Q) (~P→Q) (Q).
+ specialize Imp3_31 with (P→Q) (¬P→Q) (Q).
intros Imp3_31a.
MP Imp3_31a n2_61a.
specialize Simp2_02 with P Q.
intros Simp2_02a.
- specialize Simp2_02 with (~P) Q.
+ specialize Simp2_02 with (¬P) Q.
intros Simp2_02b.
Conj Simp2_02a Simp2_02b.
split.
apply Simp2_02a.
apply Simp2_02b.
- specialize Comp3_43 with Q (P→Q) (~P→Q).
+ specialize Comp3_43 with Q (P→Q) (¬P→Q).
intros Comp3_43a.
MP Comp3_43a H.
- clear n2_61a. clear Simp2_02a. clear Simp2_02b.
- clear H.
+ clear n2_61a. clear Simp2_02a.
+ clear Simp2_02b. clear H.
Conj Imp3_31a Comp3_43a.
split.
apply Imp3_31a.
@@ -3071,8 +3093,7 @@ Theorem n4_86 : ∀ P Q R : Prop,
specialize Exp3_3 with (P↔Q) (Q↔R) (P↔R).
intros Exp3_3b.
MP Exp3_3b n4_22b.
- clear n4_22a.
- clear n4_22b.
+ clear n4_22a. clear n4_22b.
replace (Q↔P) with (P↔Q) in Exp3_3a.
Conj Exp3_3a Exp3_3b.
split.
@@ -3187,11 +3208,11 @@ Theorem n5_1 : ∀ P Q : Prop,
Qed.
Theorem n5_11 : ∀ P Q : Prop,
- (P → Q) ∨ (~P → Q).
+ (P → Q) ∨ (¬P → Q).
Proof. intros P Q.
specialize n2_5 with P Q.
intros n2_5a.
- specialize n2_54 with ((P → Q)) (~P → Q).
+ specialize n2_54 with (P → Q) (¬P → Q).
intros n2_54a.
MP n2_54a n2_5a.
apply n2_54a.
@@ -3200,11 +3221,11 @@ Theorem n5_11 : ∀ P Q : Prop,
but this may be a misprint.*)
Theorem n5_12 : ∀ P Q : Prop,
- (P → Q) ∨ (P → ~Q).
+ (P → Q) ∨ (P → ¬Q).
Proof. intros P Q.
specialize n2_51 with P Q.
intros n2_51a.
- specialize n2_54 with ((P → Q)) (P → ~Q).
+ specialize n2_54 with ((P → Q)) (P → ¬Q).
intros n2_54a.
MP n2_54a n2_5a.
apply n2_54a.
@@ -3217,18 +3238,16 @@ Theorem n5_13 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_521 with P Q.
intros n2_521a.
- replace (~(P → Q) → Q → P) with
- (~~(P → Q) ∨ (Q → P)) in n2_521a.
- replace (~~(P→Q)) with (P→Q) in n2_521a.
+ replace (¬(P → Q) → Q → P) with
+ (¬¬(P → Q) ∨ (Q → P)) in n2_521a.
+ replace (¬¬(P→Q)) with (P→Q) in n2_521a.
apply n2_521a.
apply EqBi.
specialize n4_13 with (P→Q).
intros n4_13a. (*Not cited*)
apply n4_13a.
- replace (~~(P → Q) ∨ (Q → P)) with
- (~(P → Q) → Q → P).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
Qed.
Theorem n5_14 : ∀ P Q R : Prop,
@@ -3242,78 +3261,76 @@ Theorem n5_14 : ∀ P Q R : Prop,
specialize n2_21 with Q R.
intros n2_21a.
Syll Transp2_16a n2_21a Sa.
- replace (~(P→Q)→(Q→R)) with
- (~~(P→Q)∨(Q→R)) in Sa.
- replace (~~(P→Q)) with (P→Q) in Sa.
+ replace (¬(P→Q)→(Q→R)) with
+ (¬¬(P→Q)∨(Q→R)) in Sa.
+ replace (¬¬(P→Q)) with (P→Q) in Sa.
apply Sa.
apply EqBi.
specialize n4_13 with (P→Q).
intros n4_13a.
apply n4_13a.
- replace (~~(P→Q)∨(Q→R)) with
- (~(P→Q)→(Q→R)).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
Qed.
Theorem n5_15 : ∀ P Q : Prop,
- (P ↔ Q) ∨ (P ↔ ~Q).
+ (P ↔ Q) ∨ (P ↔ ¬Q).
Proof. intros P Q.
specialize n4_61 with P Q.
intros n4_61a.
- replace (~(P → Q) ↔ P ∧ ~Q) with
- ((~(P→Q)→P∧~Q)∧((P∧~Q)→~(P→Q))) in n4_61a.
+ replace (¬(P → Q) ↔ P ∧ ¬Q) with
+ ((¬(P→Q)→P∧¬Q)∧((P∧¬Q)→¬(P→Q))) in n4_61a.
specialize Simp3_26 with
- (~(P → Q) → P ∧ ~Q) ((P ∧ ~Q) → ~(P → Q)).
+ (¬(P → Q) → P ∧ ¬Q) ((P ∧ ¬Q) → ¬(P → Q)).
intros Simp3_26a.
MP Simp3_26a n4_61a.
- specialize n5_1 with P (~Q).
+ specialize n5_1 with P (¬Q).
intros n5_1a.
Syll Simp3_26a n5_1a Sa.
- specialize n2_54 with (P→Q) (P ↔ ~Q).
+ specialize n2_54 with (P→Q) (P ↔ ¬Q).
intros n2_54a.
MP n2_54a Sa.
specialize n4_61 with Q P.
intros n4_61b.
- replace ((~(Q → P)) ↔ (Q ∧ ~P)) with
- (((~(Q→P))→(Q∧~P))∧((Q∧~P)→(~(Q→P)))) in n4_61b.
+ replace ((¬(Q → P)) ↔ (Q ∧ ¬P)) with
+ (((¬(Q→P))→(Q∧¬P))∧((Q∧¬P)→(¬(Q→P)))) in n4_61b.
specialize Simp3_26 with
- (~(Q → P)→ (Q ∧ ~P)) ((Q ∧ ~P)→ (~(Q → P))).
+ (¬(Q → P)→ (Q ∧ ¬P)) ((Q ∧ ¬P)→ (¬(Q → P))).
intros Simp3_26b.
MP Simp3_26b n4_61b.
- specialize n5_1 with Q (~P).
+ specialize n5_1 with Q (¬P).
intros n5_1b.
Syll Simp3_26b n5_1b Sb.
specialize n4_12 with P Q.
intros n4_12a.
- replace (Q↔~P) with (P↔~Q) in Sb.
- specialize n2_54 with (Q→P) (P↔~Q).
+ replace (Q↔¬P) with (P↔¬Q) in Sb.
+ specialize n2_54 with (Q→P) (P↔¬Q).
intros n2_54b.
MP n2_54b Sb.
clear n4_61a. clear Simp3_26a. clear n5_1a.
clear n2_54a. clear n4_61b. clear Simp3_26b.
clear n5_1b. clear n4_12a. clear n2_54b.
- replace (~(P → Q) → P ↔ ~Q) with
- (~~(P → Q) ∨ (P ↔ ~Q)) in Sa.
- replace (~~(P→Q)) with (P→Q) in Sa.
- replace (~(Q → P) → (P ↔ ~Q)) with
- (~~(Q → P) ∨ (P ↔ ~Q)) in Sb.
- replace (~~(Q→P)) with (Q→P) in Sb.
+ replace (¬(P → Q) → P ↔ ¬Q) with
+ (¬¬(P → Q) ∨ (P ↔ ¬Q)) in Sa.
+ replace (¬¬(P→Q)) with (P→Q) in Sa.
+ replace (¬(Q → P) → (P ↔ ¬Q)) with
+ (¬¬(Q → P) ∨ (P ↔ ¬Q)) in Sb.
+ replace (¬¬(Q→P)) with (Q→P) in Sb.
Conj Sa Sb.
split.
apply Sa.
apply Sb.
- specialize n4_41 with (P↔~Q) (P→Q) (Q→P).
+ specialize n4_41 with (P↔¬Q) (P→Q) (Q→P).
intros n4_41a.
- replace ((P → Q) ∨ (P ↔ ~Q)) with
- ((P ↔ ~Q) ∨ (P → Q)) in H.
- replace ((Q → P) ∨ (P ↔ ~Q)) with
- ((P ↔ ~Q) ∨ (Q → P)) in H.
- replace (((P↔~Q)∨(P→Q))∧((P↔~Q)∨(Q→P))) with
- ((P ↔ ~Q) ∨ (P → Q) ∧ (Q → P)) in H.
+ replace ((P → Q) ∨ (P ↔ ¬Q)) with
+ ((P ↔ ¬Q) ∨ (P → Q)) in H.
+ replace ((Q → P) ∨ (P ↔ ¬Q)) with
+ ((P ↔ ¬Q) ∨ (Q → P)) in H.
+ replace (((P↔¬Q)∨(P→Q))∧((P↔¬Q)∨(Q→P))) with
+ ((P ↔ ¬Q) ∨ (P → Q) ∧ (Q → P)) in H.
replace ((P→Q) ∧ (Q → P)) with (P↔Q) in H.
- replace ((P ↔ ~Q) ∨ (P ↔ Q)) with
- ((P ↔ Q) ∨ (P ↔ ~Q)) in H.
+ replace ((P ↔ ¬Q) ∨ (P ↔ Q)) with
+ ((P ↔ Q) ∨ (P ↔ ¬Q)) in H.
apply H.
apply EqBi.
apply n4_31.
@@ -3328,18 +3345,14 @@ Theorem n5_15 : ∀ P Q : Prop,
specialize n4_13 with (Q→P).
intros n4_13a.
apply n4_13a.
- replace (~~(Q → P) ∨ (P ↔ ~Q)) with
- (~(Q → P) → (P ↔ ~Q)).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
apply EqBi.
specialize n4_13 with (P→Q).
intros n4_13b.
apply n4_13b.
- replace (~~(P → Q) ∨ (P ↔ ~Q)) with
- (~(P → Q) → P ↔ ~Q).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
apply EqBi.
apply n4_12a.
apply Equiv4_01.
@@ -3347,32 +3360,32 @@ Theorem n5_15 : ∀ P Q : Prop,
Qed.
Theorem n5_16 : ∀ P Q : Prop,
- ~((P ↔ Q) ∧ (P ↔ ~Q)).
+ ¬((P ↔ Q) ∧ (P ↔ ¬Q)).
Proof. intros P Q.
- specialize Simp3_26 with ((P→Q)∧ (P → ~Q)) (Q→P).
+ specialize Simp3_26 with ((P→Q)∧ (P → ¬Q)) (Q→P).
intros Simp3_26a.
- specialize Id2_08 with ((P ↔ Q) ∧ (P → ~Q)).
+ specialize Id2_08 with ((P ↔ Q) ∧ (P → ¬Q)).
intros Id2_08a.
- replace (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)) with
- ((P→Q)∧((P→~Q)∧(Q→P))) in Simp3_26a.
- replace ((P → ~Q) ∧ (Q → P)) with
- ((Q → P) ∧ (P → ~Q)) in Simp3_26a.
- replace ((P→Q) ∧ (Q → P)∧ (P → ~Q)) with
- (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_26a.
+ replace (((P → Q) ∧ (P → ¬Q)) ∧ (Q → P)) with
+ ((P→Q)∧((P→¬Q)∧(Q→P))) in Simp3_26a.
+ replace ((P → ¬Q) ∧ (Q → P)) with
+ ((Q → P) ∧ (P → ¬Q)) in Simp3_26a.
+ replace ((P→Q) ∧ (Q → P)∧ (P → ¬Q)) with
+ (((P→Q) ∧ (Q → P)) ∧ (P → ¬Q)) in Simp3_26a.
replace ((P → Q) ∧ (Q → P)) with
(P↔Q) in Simp3_26a.
Syll Id2_08a Simp3_26a Sa.
specialize n4_82 with P Q.
intros n4_82a.
- replace ((P → Q) ∧ (P → ~Q)) with (~P) in Sa.
+ replace ((P → Q) ∧ (P → ¬Q)) with (¬P) in Sa.
specialize Simp3_27 with
- (P→Q) ((Q→P)∧ (P → ~Q)).
+ (P→Q) ((Q→P)∧ (P → ¬Q)).
intros Simp3_27a.
- replace ((P→Q) ∧ (Q → P)∧ (P → ~Q)) with
- (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_27a.
+ replace ((P→Q) ∧ (Q → P)∧ (P → ¬Q)) with
+ (((P→Q) ∧ (Q → P)) ∧ (P → ¬Q)) in Simp3_27a.
replace ((P → Q) ∧ (Q → P)) with
(P↔Q) in Simp3_27a.
- specialize Syll3_33 with Q P (~Q).
+ specialize Syll3_33 with Q P (¬Q).
intros Syll3_33a.
Syll Simp3_27a Syll2_06a Sb.
specialize Abs2_01 with Q.
@@ -3386,128 +3399,124 @@ Theorem n5_16 : ∀ P Q : Prop,
apply Sa.
apply Sc.
specialize Comp3_43 with
- ((P ↔ Q) ∧ (P → ~Q)) (~P) (~Q).
+ ((P ↔ Q) ∧ (P → ¬Q)) (¬P) (¬Q).
intros Comp3_43a.
MP Comp3_43a H.
specialize n4_65 with Q P.
intros n4_65a.
- replace (~Q ∧ ~P) with (~P ∧ ~Q) in n4_65a.
- replace (~P ∧ ~Q) with
- (~(~Q→P)) in Comp3_43a.
+ replace (¬Q ∧ ¬P) with (¬P ∧ ¬Q) in n4_65a.
+ replace (¬P ∧ ¬Q) with
+ (¬(¬Q→P)) in Comp3_43a.
specialize Exp3_3 with
- (P↔Q) (P→~Q) (~(~Q→P)).
+ (P↔Q) (P→¬Q) (¬(¬Q→P)).
intros Exp3_3a.
MP Exp3_3a Comp3_43a.
- replace ((P→~Q)→~(~Q→P)) with
- (~(P→~Q)∨~(~Q→P)) in Exp3_3a.
- specialize n4_51 with (P→~Q) (~Q→P).
+ replace ((P→¬Q)→¬(¬Q→P)) with
+ (¬(P→¬Q)∨¬(¬Q→P)) in Exp3_3a.
+ specialize n4_51 with (P→¬Q) (¬Q→P).
intros n4_51a.
- replace (~(P → ~Q) ∨ ~(~Q → P)) with
- (~((P → ~Q) ∧ (~Q → P))) in Exp3_3a.
- replace ((P→~Q) ∧ (~Q → P)) with
- (P↔~Q) in Exp3_3a.
- replace ((P↔Q)→~(P↔~Q)) with
- (~(P↔Q)∨~(P↔~Q)) in Exp3_3a.
- specialize n4_51 with (P↔Q) (P↔~Q).
+ replace (¬(P → ¬Q) ∨ ¬(¬Q → P)) with
+ (¬((P → ¬Q) ∧ (¬Q → P))) in Exp3_3a.
+ replace ((P→¬Q) ∧ (¬Q → P)) with
+ (P↔¬Q) in Exp3_3a.
+ replace ((P↔Q)→¬(P↔¬Q)) with
+ (¬(P↔Q)∨¬(P↔¬Q)) in Exp3_3a.
+ specialize n4_51 with (P↔Q) (P↔¬Q).
intros n4_51b.
- replace (~(P ↔ Q) ∨ ~(P ↔ ~Q)) with
- (~((P ↔ Q) ∧ (P ↔ ~Q))) in Exp3_3a.
+ replace (¬(P ↔ Q) ∨ ¬(P ↔ ¬Q)) with
+ (¬((P ↔ Q) ∧ (P ↔ ¬Q))) in Exp3_3a.
apply Exp3_3a.
apply EqBi.
apply n4_51b.
- replace (~(P ↔ Q) ∨ ~(P ↔ ~Q)) with
- (P ↔ Q → ~(P ↔ ~Q)).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
apply Equiv4_01.
apply EqBi.
apply n4_51a.
- replace (~(P → ~Q) ∨ ~(~Q → P)) with
- ((P → ~Q) → ~(~Q → P)).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
apply EqBi.
apply n4_65a.
apply EqBi.
- specialize n4_3 with (~P) (~Q).
+ specialize n4_3 with (¬P) (¬Q).
intros n4_3a.
apply n4_3a.
apply Equiv4_01.
apply EqBi.
- specialize n4_32 with (P→Q) (Q→P) (P→~Q).
+ specialize n4_32 with (P→Q) (Q→P) (P→¬Q).
intros n4_32a.
apply n4_32a.
- replace (~P) with ((P → Q) ∧ (P → ~Q)).
+ replace (¬P) with ((P → Q) ∧ (P → ¬Q)).
reflexivity.
apply EqBi.
apply n4_82a.
apply Equiv4_01.
apply EqBi.
- specialize n4_32 with (P→Q) (Q→P) (P→~Q).
+ specialize n4_32 with (P→Q) (Q→P) (P→¬Q).
intros n4_32b.
apply n4_32b.
apply EqBi.
- specialize n4_3 with (Q→P) (P→~Q).
+ specialize n4_3 with (Q→P) (P→¬Q).
intros n4_3b.
apply n4_3b.
- replace ((P → Q) ∧ (P → ~Q) ∧ (Q → P)) with
- (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)).
+ replace ((P → Q) ∧ (P → ¬Q) ∧ (Q → P)) with
+ (((P → Q) ∧ (P → ¬Q)) ∧ (Q → P)).
reflexivity.
apply EqBi.
- specialize n4_32 with (P→Q) (P→~Q) (Q→P).
+ specialize n4_32 with (P→Q) (P→¬Q) (Q→P).
intros n4_32a.
apply n4_32a.
Qed.
Theorem n5_17 : ∀ P Q : Prop,
- ((P ∨ Q) ∧ ~(P ∧ Q)) ↔ (P ↔ ~Q).
+ ((P ∨ Q) ∧ ¬(P ∧ Q)) ↔ (P ↔ ¬Q).
Proof. intros P Q.
specialize n4_64 with Q P.
intros n4_64a.
- specialize n4_21 with (Q∨P) (~Q→P).
+ specialize n4_21 with (Q∨P) (¬Q→P).
intros n4_21a.
- replace ((~Q→P)↔(Q∨P)) with
- ((Q∨P)↔(~Q→P)) in n4_64a.
+ replace ((¬Q→P)↔(Q∨P)) with
+ ((Q∨P)↔(¬Q→P)) in n4_64a.
replace (Q∨P) with (P∨Q) in n4_64a.
specialize n4_63 with P Q.
intros n4_63a.
- replace (~(P → ~Q) ↔ P ∧ Q) with
- (P ∧ Q ↔ ~(P → ~Q)) in n4_63a.
- specialize Transp4_11 with (P∧Q) (~(P→~Q)).
+ replace (¬(P → ¬Q) ↔ P ∧ Q) with
+ (P ∧ Q ↔ ¬(P → ¬Q)) in n4_63a.
+ specialize Transp4_11 with (P∧Q) (¬(P→¬Q)).
intros Transp4_11a.
- replace (~~(P→~Q)) with
- (P→~Q) in Transp4_11a.
- replace (P ∧ Q ↔ ~(P → ~Q)) with
- (~(P ∧ Q) ↔ (P → ~Q)) in n4_63a.
+ replace (¬¬(P→¬Q)) with
+ (P→¬Q) in Transp4_11a.
+ replace (P ∧ Q ↔ ¬(P → ¬Q)) with
+ (¬(P ∧ Q) ↔ (P → ¬Q)) in n4_63a.
clear Transp4_11a. clear n4_21a.
Conj n4_64a n4_63a.
split.
apply n4_64a.
apply n4_63a.
specialize n4_38 with
- (P ∨ Q) (~(P ∧ Q)) (~Q → P) (P → ~Q).
+ (P ∨ Q) (¬(P ∧ Q)) (¬Q → P) (P → ¬Q).
intros n4_38a.
MP n4_38a H.
- replace ((~Q→P) ∧ (P → ~Q)) with
- (~Q↔P) in n4_38a.
- specialize n4_21 with P (~Q).
+ replace ((¬Q→P) ∧ (P → ¬Q)) with
+ (¬Q↔P) in n4_38a.
+ specialize n4_21 with P (¬Q).
intros n4_21b.
- replace (~Q↔P) with (P↔~Q) in n4_38a.
+ replace (¬Q↔P) with (P↔¬Q) in n4_38a.
apply n4_38a.
apply EqBi.
apply n4_21b.
apply Equiv4_01.
- replace (~(P ∧ Q) ↔ (P → ~Q)) with
- (P ∧ Q ↔ ~(P → ~Q)).
+ replace (¬(P ∧ Q) ↔ (P → ¬Q)) with
+ (P ∧ Q ↔ ¬(P → ¬Q)).
reflexivity.
apply EqBi.
apply Transp4_11a.
apply EqBi.
- specialize n4_13 with (P→~Q).
+ specialize n4_13 with (P→¬Q).
intros n4_13a.
apply n4_13a.
apply EqBi.
- specialize n4_21 with (P ∧ Q) (~(P→~Q)).
+ specialize n4_21 with (P ∧ Q) (¬(P→¬Q)).
intros n4_21b.
apply n4_21b.
apply EqBi.
@@ -3519,7 +3528,7 @@ Theorem n5_17 : ∀ P Q : Prop,
Qed.
Theorem n5_18 : ∀ P Q : Prop,
- (P ↔ Q) ↔ ~(P ↔ ~Q).
+ (P ↔ Q) ↔ ¬(P ↔ ¬Q).
Proof. intros P Q.
specialize n5_15 with P Q.
intros n5_15a.
@@ -3529,43 +3538,43 @@ Theorem n5_18 : ∀ P Q : Prop,
split.
apply n5_15a.
apply n5_16a.
- specialize n5_17 with (P↔Q) (P↔~Q).
+ specialize n5_17 with (P↔Q) (P↔¬Q).
intros n5_17a.
- replace ((P ↔ Q) ↔ ~(P ↔ ~Q)) with
- (((P↔Q)∨(P↔~Q))∧~((P↔Q)∧(P↔~Q))).
+ replace ((P ↔ Q) ↔ ¬(P ↔ ¬Q)) with
+ (((P↔Q)∨(P↔¬Q))∧¬((P↔Q)∧(P↔¬Q))).
apply H.
apply EqBi.
apply n5_17a.
Qed.
Theorem n5_19 : ∀ P : Prop,
- ~(P ↔ ~P).
+ ¬(P ↔ ¬P).
Proof. intros P.
specialize n5_18 with P P.
intros n5_18a.
specialize n4_2 with P.
intros n4_2a.
- replace (~(P↔~P)) with (P↔P).
+ replace (¬(P↔¬P)) with (P↔P).
apply n4_2a.
apply EqBi.
apply n5_18a.
Qed.
Theorem n5_21 : ∀ P Q : Prop,
- (~P ∧ ~Q) → (P ↔ Q).
+ (¬P ∧ ¬Q) → (P ↔ Q).
Proof. intros P Q.
- specialize n5_1 with (~P) (~Q).
+ specialize n5_1 with (¬P) (¬Q).
intros n5_1a.
specialize Transp4_11 with P Q.
intros Transp4_11a.
- replace (~P↔~Q) with (P↔Q) in n5_1a.
+ replace (¬P↔¬Q) with (P↔Q) in n5_1a.
apply n5_1a.
apply EqBi.
apply Transp4_11a.
Qed.
Theorem n5_22 : ∀ P Q : Prop,
- ~(P ↔ Q) ↔ ((P ∧ ~Q) ∨ (Q ∧ ~P)).
+ ¬(P ↔ Q) ↔ ((P ∧ ¬Q) ∨ (Q ∧ ¬P)).
Proof. intros P Q.
specialize n4_61 with P Q.
intros n4_61a.
@@ -3576,13 +3585,13 @@ Theorem n5_22 : ∀ P Q : Prop,
apply n4_61a.
apply n4_61b.
specialize n4_39 with
- (~(P → Q)) (~(Q → P)) (P ∧ ~Q) (Q ∧ ~P).
+ (¬(P → Q)) (¬(Q → P)) (P ∧ ¬Q) (Q ∧ ¬P).
intros n4_39a.
MP n4_39a H.
specialize n4_51 with (P→Q) (Q→P).
intros n4_51a.
- replace (~(P → Q) ∨ ~(Q → P)) with
- (~((P → Q) ∧ (Q → P))) in n4_39a.
+ replace (¬(P → Q) ∨ ¬(Q → P)) with
+ (¬((P → Q) ∧ (Q → P))) in n4_39a.
replace ((P → Q) ∧ (Q → P)) with
(P↔Q) in n4_39a.
apply n4_39a.
@@ -3592,54 +3601,56 @@ Theorem n5_22 : ∀ P Q : Prop,
Qed.
Theorem n5_23 : ∀ P Q : Prop,
- (P ↔ Q) ↔ ((P ∧ Q) ∨ (~P ∧ ~Q)).
+ (P ↔ Q) ↔ ((P ∧ Q) ∨ (¬P ∧ ¬Q)).
Proof. intros P Q.
specialize n5_18 with P Q.
intros n5_18a.
- specialize n5_22 with P (~Q).
+ specialize n5_22 with P (¬Q).
intros n5_22a.
- specialize n4_13 with Q.
- intros n4_13a.
- replace (~(P↔~Q)) with
- ((P ∧ ~~Q) ∨ (~Q ∧ ~P)) in n5_18a.
- replace (~~Q) with Q in n5_18a.
- replace (~Q ∧ ~P) with (~P ∧ ~Q) in n5_18a.
+ Conj n5_18a n5_22a.
+ split.
apply n5_18a.
+ apply n5_22a.
+ specialize n4_22 with (P↔Q) (¬(P↔¬Q))
+ (P ∧ ¬¬Q ∨ ¬Q ∧ ¬P).
+ intros n4_22a.
+ MP n4_22a H.
+ replace (¬¬Q) with Q in n4_22a.
+ replace (¬Q ∧ ¬P) with (¬P ∧ ¬Q) in n4_22a.
+ apply n4_22a.
apply EqBi.
- specialize n4_3 with (~P) (~Q).
+ specialize n4_3 with (¬P) (¬Q).
intros n4_3a.
- apply n4_3a. (*with (~P) (~Q)*)
+ apply n4_3a. (*with (¬P) (¬Q)*)
apply EqBi.
+ specialize n4_13 with Q.
+ intros n4_13a.
apply n4_13a.
- replace (P∧~~Q∨~Q∧~P) with (~(P↔~Q)).
- reflexivity.
- apply EqBi.
- apply n5_22a.
Qed.
- (*The proof sketch in Principia offers n4_36,
- but we found it far simpler to to use n4_3.*)
+ (*The proof sketch in Principia offers n4_36.
+ This seems to be a misprint. We used n4_3.*)
Theorem n5_24 : ∀ P Q : Prop,
- ~((P ∧ Q) ∨ (~P ∧ ~Q)) ↔ ((P ∧ ~Q) ∨ (Q ∧ ~P)).
+ ¬((P ∧ Q) ∨ (¬P ∧ ¬Q)) ↔ ((P ∧ ¬Q) ∨ (Q ∧ ¬P)).
Proof. intros P Q.
specialize n5_22 with P Q.
intros n5_22a.
specialize n5_23 with P Q.
intros n5_23a.
- replace ((P↔Q)↔((P∧ Q) ∨(~P ∧ ~Q))) with
- ((~(P↔Q)↔~((P∧ Q)∨(~P ∧ ~Q)))) in n5_23a.
- replace (~(P↔Q)) with
- (~((P ∧ Q) ∨ (~P ∧ ~Q))) in n5_22a.
+ replace ((P↔Q)↔((P∧ Q) ∨(¬P ∧ ¬Q))) with
+ ((¬(P↔Q)↔¬((P∧ Q)∨(¬P ∧ ¬Q)))) in n5_23a.
+ replace (¬(P↔Q)) with
+ (¬((P ∧ Q) ∨ (¬P ∧ ¬Q))) in n5_22a.
apply n5_22a.
- replace (~((P ∧ Q)∨(~P ∧ ~Q))) with (~(P↔Q)).
+ replace (¬((P ∧ Q)∨(¬P ∧ ¬Q))) with (¬(P↔Q)).
reflexivity.
apply EqBi.
apply n5_23a.
- replace (~(P ↔ Q) ↔ ~(P ∧ Q ∨ ~P ∧ ~Q)) with
- ((P ↔ Q) ↔ P ∧ Q ∨ ~P ∧ ~Q).
+ replace (¬(P ↔ Q) ↔ ¬(P ∧ Q ∨ ¬P ∧ ¬Q)) with
+ ((P ↔ Q) ↔ P ∧ Q ∨ ¬P ∧ ¬Q).
reflexivity.
specialize Transp4_11 with
- (P↔Q) (P ∧ Q ∨ ~P ∧ ~Q).
+ (P↔Q) (P ∧ Q ∨ ¬P ∧ ¬Q).
intros Transp4_11a.
apply EqBi.
apply Transp4_11a. (*Not cited*)
@@ -3842,8 +3853,8 @@ Theorem n5_36 : ∀ P Q : Prop,
apply EqBi.
apply n5_32a.
Qed.
- (*The proof sketch cites Ass3_35 and n4_38, but
- the sketch was indecipherable.*)
+ (*The proof sketch cites Ass3_35 and n4_38,
+ but the sketch was indecipherable.*)
Theorem n5_4 : ∀ P Q : Prop,
(P → (P → Q)) ↔ (P → Q).
@@ -3921,57 +3932,65 @@ Theorem n5_44 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize n4_76 with P Q R.
intros n4_76a.
- replace ((P→Q)∧(P→R)↔(P→Q∧R)) with
- (((P→Q)∧(P→R)→(P→Q∧R))
- ∧
- ((P→Q∧R)→(P→Q)∧(P→R))) in n4_76a.
+ rewrite Equiv4_01 in n4_76a.
specialize Simp3_26 with
- ((P→Q)∧(P→R)→(P→Q∧R))
- ((P→Q∧R)→(P→Q)∧(P→R)).
- intros Simp3_26a. (*Not cited*)
+ (((P→Q)∧(P→R))→(P→(Q∧R)))
+ ((P→(Q∧R))→((P→Q)∧(P→R))).
+ intros Simp3_26a.
MP Simp3_26a n4_76a.
- specialize Exp3_3 with (P→Q) (P→R) (P→Q∧R).
- intros Exp3_3a. (*Not cited*)
- MP Exp3_3a Simp3_26a.
specialize Simp3_27 with
- ((P→Q)∧(P→R)→(P→Q∧R))
- ((P→Q∧R)→(P→Q)∧(P→R)).
- intros Simp3_27a. (*Not cited*)
+ (((P→Q)∧(P→R))→(P→(Q∧R)))
+ ((P→(Q∧R))→((P→Q)∧(P→R))).
+ intros Simp3_27a.
MP Simp3_27a n4_76a.
- specialize Simp3_26 with (P→R) (P→Q).
+ specialize Simp3_27 with (P→Q) (P→Q∧R).
+ intros Simp3_27d.
+ Syll Simp3_27d Simp3_27a Sa.
+ specialize n5_3 with (P→Q) (P→R) (P→(Q∧R)).
+ intros n5_3a.
+ rewrite Equiv4_01 in n5_3a.
+ specialize Simp3_26 with
+ ((((P→Q)∧(P→R))→(P→(Q∧R)))→
+ (((P→Q)∧(P→R))→((P→Q)∧(P→(Q∧R)))))
+ ((((P→Q)∧(P→R))→((P→Q)∧(P→(Q∧R))))
+ →(((P→Q)∧(P→R))→(P→(Q∧R)))).
intros Simp3_26b.
- replace ((P→Q)∧(P→R)) with
- ((P→R)∧(P→Q)) in Simp3_27a.
- Syll Simp3_27a Simp3_26b Sa.
- specialize Simp2_02 with (P→Q) ((P→Q∧R)→P→R).
- intros Simp2_02a. (*Not cited*)
- MP Simp2_02a Sa.
- clear Sa. clear Simp3_26b. clear Simp3_26a.
- clear n4_76a. clear Simp3_27a.
- Conj Exp3_3a Simp2_02a.
+ MP Simp3_26b n5_3a.
+ specialize Simp3_27 with
+ ((((P→Q)∧(P→R))→(P→(Q∧R)))→
+ (((P→Q)∧(P→R))→((P→Q)∧(P→(Q∧R)))))
+ ((((P→Q)∧(P→R))→((P→Q)∧(P→(Q∧R))))
+ →(((P→Q)∧(P→R))→(P→(Q∧R)))).
+ intros Simp3_27b.
+ MP Simp3_27b n5_3a.
+ MP Simp3_26a Simp3_26b.
+ MP Simp3_27a Simp3_27b.
+ clear n4_76a. clear Simp3_26a. clear Simp3_27a.
+ clear Simp3_27b. clear Simp3_27d. clear n5_3a.
+ Conj Simp3_26b Sa.
split.
- apply Exp3_3a.
- apply Simp2_02a.
- specialize n4_76 with (P→Q)
- ((P→R)→(P→(Q∧R))) ((P→(Q∧R))→(P→R)).
- intros n4_76b. (*Second use not indicated*)
- replace
- (((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R))
- with
- ((P→Q)→((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) in H.
- replace (((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) with
- ((P→R)↔(P→Q∧R)) in H.
- apply H.
- apply Equiv4_01.
- replace ((P→Q)→((P→R)→P→Q∧R)∧((P→Q∧R)→P→R)) with
- (((P→Q)→(P→R)→P→Q∧R)∧((P→Q)→(P→Q∧R)→P→R)).
- reflexivity.
- apply EqBi.
- apply n4_76b.
+ apply Sa.
+ apply Simp3_26b.
+ Equiv H.
+ specialize n5_32 with (P→Q) (P→R) (P→(Q∧R)).
+ intros n5_32a.
+ rewrite Equiv4_01 in n5_32a.
+ specialize Simp3_27 with
+ (((P → Q) → (P → R) ↔ (P → Q ∧ R))
+ → (P → Q) ∧ (P → R) ↔ (P → Q) ∧ (P → Q ∧ R))
+ ((P → Q) ∧ (P → R) ↔ (P → Q) ∧ (P → Q ∧ R)
+ → (P → Q) → (P → R) ↔ (P → Q ∧ R)).
+ intros Simp3_27c.
+ MP Simp3_27c n5_32a.
+ replace (((P→Q)∧(P→(Q∧R)))↔((P→Q)∧(P→R)))
+ with (((P→Q)∧(P→R))↔((P→Q)∧(P→(Q∧R)))) in H.
+ MP Simp3_27c H.
+ apply Simp3_27c.
+ specialize n4_21 with
+ ((P→Q)∧(P→R)) ((P→Q)∧(P→(Q∧R))).
+ intros n4_21a.
apply EqBi.
- specialize n4_3 with (P→R) (P→Q).
- intros n4_3a.
- apply n4_3a. (*Not cited*)
+ apply n4_21a.
apply Equiv4_01.
Qed.
@@ -4095,19 +4114,19 @@ Theorem n5_54 : ∀ P Q : Prop,
intros Transp4_11a.
replace (Q∧P) with (P∧Q) in n4_44a.
replace (Q↔Q∨P∧Q) with
- (~Q↔~(Q∨P∧Q)) in n4_44a.
- replace (~Q) with (~(Q∨P∧Q)) in Transp2_16a.
- replace (~(Q∨P∧Q)) with
- (~Q∧~(P∧Q)) in Transp2_16a.
- specialize n5_1 with (~Q) (~(P∧Q)).
+ (¬Q↔¬(Q∨P∧Q)) in n4_44a.
+ replace (¬Q) with (¬(Q∨P∧Q)) in Transp2_16a.
+ replace (¬(Q∨P∧Q)) with
+ (¬Q∧¬(P∧Q)) in Transp2_16a.
+ specialize n5_1 with (¬Q) (¬(P∧Q)).
intros n5_1a.
Syll Transp2_16a n5_1a Sa.
- replace (~(P↔P∧Q)→(~Q↔~(P∧Q))) with
- (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) in Sa.
- replace (~~(P↔P∧Q)) with (P↔P∧Q) in Sa.
+ replace (¬(P↔P∧Q)→(¬Q↔¬(P∧Q))) with
+ (¬¬(P↔P∧Q)∨(¬Q↔¬(P∧Q))) in Sa.
+ replace (¬¬(P↔P∧Q)) with (P↔P∧Q) in Sa.
specialize Transp4_11 with Q (P∧Q).
intros Transp4_11b.
- replace (~Q↔~(P∧Q)) with (Q↔(P∧Q)) in Sa.
+ replace (¬Q↔¬(P∧Q)) with (Q↔(P∧Q)) in Sa.
replace (Q↔(P∧Q)) with ((P∧Q)↔Q) in Sa.
replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa.
apply Sa.
@@ -4125,19 +4144,17 @@ Theorem n5_54 : ∀ P Q : Prop,
specialize n4_13 with (P ↔ (P∧Q)).
intros n4_13a. (*Not cited*)
apply n4_13a.
- replace (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) with
- (~(P↔P∧Q)→~Q↔~(P∧Q)).
+ rewrite <- Impl1_01. (*Not cited*)
reflexivity.
- apply Impl1_01. (*Not cited*)
apply EqBi.
specialize n4_56 with Q (P∧Q).
intros n4_56a. (*Not cited*)
apply n4_56a.
- replace (~(Q∨P∧Q)) with (~Q).
+ replace (¬(Q∨P∧Q)) with (¬Q).
reflexivity.
apply EqBi.
apply n4_44a.
- replace (~Q↔~(Q∨P∧Q)) with (Q↔Q∨P∧Q).
+ replace (¬Q↔¬(Q∨P∧Q)) with (Q↔Q∨P∧Q).
reflexivity.
apply EqBi.
apply Transp4_11a.
@@ -4164,9 +4181,9 @@ Theorem n5_55 : ∀ P Q : Prop,
intros Transp2_15a. (*Not cited*)
MP Transp2_15a n4_74a.
Syll Transp2_15a Sa Sb.
- replace (~(Q↔(P∨Q))→(P↔(P∨Q))) with
- (~~(Q↔(P∨Q))∨(P↔(P∨Q))) in Sb.
- replace (~~(Q↔(P∨Q))) with (Q↔(P∨Q)) in Sb.
+ replace (¬(Q↔(P∨Q))→(P↔(P∨Q))) with
+ (¬¬(Q↔(P∨Q))∨(P↔(P∨Q))) in Sb.
+ replace (¬¬(Q↔(P∨Q))) with (Q↔(P∨Q)) in Sb.
replace (Q↔(P∨Q)) with ((P∨Q)↔Q) in Sb.
replace (P↔(P∨Q)) with ((P∨Q)↔P) in Sb.
replace ((P∨Q↔Q)∨(P∨Q↔P)) with
@@ -4188,10 +4205,8 @@ Theorem n5_55 : ∀ P Q : Prop,
specialize n4_13 with (Q ↔ P ∨ Q).
intros n4_13a. (*Not cited*)
apply n4_13a.
- replace (~~(Q↔P∨Q)∨(P↔P∨Q)) with
- (~(Q↔P∨Q)→P↔P∨Q).
+ rewrite <- Impl1_01.
reflexivity.
- apply Impl1_01.
apply EqBi.
specialize n4_31 with P Q.
intros n4_31b.
@@ -4219,28 +4234,28 @@ Theorem n5_55 : ∀ P Q : Prop,
Qed.
Theorem n5_6 : ∀ P Q R : Prop,
- ((P ∧ ~Q) → R) ↔ (P → (Q ∨ R)).
+ ((P ∧ ¬Q) → R) ↔ (P → (Q ∨ R)).
Proof. intros P Q R.
- specialize n4_87 with P (~Q) R.
+ specialize n4_87 with P (¬Q) R.
intros n4_87a.
specialize n4_64 with Q R.
intros n4_64a.
specialize n4_85 with P Q R.
intros n4_85a.
- replace (((P∧~Q→R)↔(P→~Q→R))↔((~Q→P→R)↔(~Q∧P→R)))
+ replace (((P∧¬Q→R)↔(P→¬Q→R))↔((¬Q→P→R)↔(¬Q∧P→R)))
with
- ((((P∧~Q→R)↔(P→~Q→R))→((~Q→P→R)↔(~Q∧P→R)))
+ ((((P∧¬Q→R)↔(P→¬Q→R))→((¬Q→P→R)↔(¬Q∧P→R)))
- ((((~Q→P→R)↔(~Q∧P→R)))→(((P∧~Q→R)↔(P→~Q→R)))))
+ ((((¬Q→P→R)↔(¬Q∧P→R)))→(((P∧¬Q→R)↔(P→¬Q→R)))))
in n4_87a.
specialize Simp3_27 with
- (((P∧~Q→R)↔(P→~Q→R)→(~Q→P→R)↔(~Q∧P→R)))
- (((~Q→P→R)↔(~Q∧P→R)→(P∧~Q→R)↔(P→~Q→R))).
+ (((P∧¬Q→R)↔(P→¬Q→R)→(¬Q→P→R)↔(¬Q∧P→R)))
+ (((¬Q→P→R)↔(¬Q∧P→R)→(P∧¬Q→R)↔(P→¬Q→R))).
intros Simp3_27a.
MP Simp3_27a n4_87a.
- specialize Imp3_31 with (~Q) P R.
+ specialize Imp3_31 with (¬Q) P R.
intros Imp3_31a.
- specialize Exp3_3 with (~Q) P R.
+ specialize Exp3_3 with (¬Q) P R.
intros Exp3_3a.
Conj Imp3_31a Exp3_3a.
split.
@@ -4248,9 +4263,9 @@ Theorem n5_6 : ∀ P Q R : Prop,
apply Exp3_3a.
Equiv H.
MP Simp3_27a H.
- replace (~Q→R) with (Q∨R) in Simp3_27a.
+ replace (¬Q→R) with (Q∨R) in Simp3_27a.
apply Simp3_27a.
- replace (Q ∨ R) with (~Q → R).
+ replace (Q ∨ R) with (¬Q → R).
reflexivity.
apply EqBi.
apply n4_64a.
@@ -4259,22 +4274,22 @@ Theorem n5_6 : ∀ P Q R : Prop,
Qed.
Theorem n5_61 : ∀ P Q : Prop,
- ((P ∨ Q) ∧ ~Q) ↔ (P ∧ ~Q).
+ ((P ∨ Q) ∧ ¬Q) ↔ (P ∧ ¬Q).
Proof. intros P Q.
specialize n4_74 with Q P.
intros n4_74a.
- specialize n5_32 with (~Q) P (Q∨P).
+ specialize n5_32 with (¬Q) P (Q∨P).
intros n5_32a.
- replace (~Q → P ↔ Q ∨ P) with
- (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) in n4_74a.
- replace (~Q∧P) with (P∧~Q) in n4_74a.
- replace (~Q∧(Q∨P)) with ((Q∨P)∧~Q) in n4_74a.
- replace (Q∨P) with (P∨Q) in n4_74a.
- replace (P ∧ ~Q ↔ (P ∨ Q) ∧ ~Q) with
- ((P ∨ Q) ∧ ~Q ↔ P ∧ ~Q) in n4_74a.
+ replace (¬Q → P ↔ Q ∨ P) with
+ (¬Q ∧ P ↔ ¬Q ∧ (Q ∨ P)) in n4_74a.
+ replace (¬Q ∧ P) with (P ∧ ¬Q) in n4_74a.
+ replace (¬Q ∧ (Q ∨ P)) with ((Q ∨ P) ∧ ¬Q) in n4_74a.
+ replace (Q ∨ P) with (P ∨ Q) in n4_74a.
+ replace (P ∧ ¬Q ↔ (P ∨ Q) ∧ ¬Q) with
+ ((P ∨ Q) ∧ ¬Q ↔ P ∧ ¬Q) in n4_74a.
apply n4_74a.
apply EqBi.
- specialize n4_21 with ((P∨Q)∧~Q) (P∧~Q).
+ specialize n4_21 with ((P ∨ Q) ∧ ¬Q) (P ∧ ¬Q).
intros n4_21a. (*Not cited*)
apply n4_21a.
apply EqBi.
@@ -4282,35 +4297,35 @@ Theorem n5_61 : ∀ P Q : Prop,
intros n4_31a. (*Not cited*)
apply n4_31a.
apply EqBi.
- specialize n4_3 with (Q∨P) (~Q).
+ specialize n4_3 with (Q ∨ P) (¬Q).
intros n4_3a. (*Not cited*)
apply n4_3a.
apply EqBi.
- specialize n4_3 with P (~Q).
+ specialize n4_3 with P (¬Q).
intros n4_3b. (*Not cited*)
apply n4_3b.
- replace (~Q ∧ P ↔ ~Q ∧ (Q ∨ P)) with
- (~Q → P ↔ Q ∨ P).
+ replace (¬Q ∧ P ↔ ¬Q ∧ (Q ∨ P)) with
+ (¬Q → P ↔ Q ∨ P).
reflexivity.
apply EqBi.
apply n5_32a.
Qed.
Theorem n5_62 : ∀ P Q : Prop,
- ((P ∧ Q) ∨ ~Q) ↔ (P ∨ ~Q).
+ ((P ∧ Q) ∨ ¬Q) ↔ (P ∨ ¬Q).
Proof. intros P Q.
specialize n4_7 with Q P.
intros n4_7a.
- replace (Q→P) with (~Q∨P) in n4_7a.
- replace (Q→(Q∧P)) with (~Q∨(Q∧P)) in n4_7a.
- replace (~Q∨(Q∧P)) with ((Q∧P)∨~Q) in n4_7a.
- replace (~Q∨P) with (P∨~Q) in n4_7a.
+ replace (Q→P) with (¬Q∨P) in n4_7a.
+ replace (Q→(Q∧P)) with (¬Q∨(Q∧P)) in n4_7a.
+ replace (¬Q∨(Q∧P)) with ((Q∧P)∨¬Q) in n4_7a.
+ replace (¬Q∨P) with (P∨¬Q) in n4_7a.
replace (Q∧P) with (P∧Q) in n4_7a.
- replace (P ∨ ~Q ↔ P ∧ Q ∨ ~Q) with
- (P ∧ Q ∨ ~Q ↔ P ∨ ~Q) in n4_7a.
+ replace (P ∨ ¬Q ↔ P ∧ Q ∨ ¬Q) with
+ (P ∧ Q ∨ ¬Q ↔ P ∨ ¬Q) in n4_7a.
apply n4_7a.
apply EqBi.
- specialize n4_21 with (P ∧ Q ∨ ~Q) (P ∨ ~Q).
+ specialize n4_21 with (P ∧ Q ∨ ¬Q) (P ∨ ¬Q).
intros n4_21a. (*Not cited*)
apply n4_21a.
apply EqBi.
@@ -4318,49 +4333,41 @@ Theorem n5_62 : ∀ P Q : Prop,
intros n4_3a. (*Not cited*)
apply n4_3a.
apply EqBi.
- specialize n4_31 with P (~Q).
+ specialize n4_31 with P (¬Q).
intros n4_31a. (*Not cited*)
apply n4_31a.
apply EqBi.
- specialize n4_31 with (Q ∧ P) (~Q).
+ specialize n4_31 with (Q ∧ P) (¬Q).
intros n4_31b. (*Not cited*)
apply n4_31b.
- replace (~Q ∨ Q ∧ P) with (Q → Q ∧ P).
+ rewrite <- Impl1_01.
reflexivity.
- apply EqBi.
- specialize n4_6 with Q (Q∧P).
- intros n4_6a. (*Not cited*)
- apply n4_6a.
- replace (~Q ∨ P) with (Q → P).
+ rewrite <- Impl1_01.
reflexivity.
- apply EqBi.
- specialize n4_6 with Q P.
- intros n4_6b. (*Not cited*)
- apply n4_6b.
Qed.
Theorem n5_63 : ∀ P Q : Prop,
- (P ∨ Q) ↔ (P ∨ (~P ∧ Q)).
+ (P ∨ Q) ↔ (P ∨ (¬P ∧ Q)).
Proof. intros P Q.
- specialize n5_62 with Q (~P).
+ specialize n5_62 with Q (¬P).
intros n5_62a.
- replace (~~P) with P in n5_62a.
+ replace (¬¬P) with P in n5_62a.
replace (Q ∨ P) with (P ∨ Q) in n5_62a.
- replace ((Q∧~P)∨P) with (P∨(Q∧~P)) in n5_62a.
- replace (P ∨ Q ∧ ~P ↔ P ∨ Q) with
- (P ∨ Q ↔ P ∨ Q ∧ ~P) in n5_62a.
- replace (Q∧~P) with (~P∧Q) in n5_62a.
+ replace ((Q∧¬P)∨P) with (P∨(Q∧¬P)) in n5_62a.
+ replace (P ∨ Q ∧ ¬P ↔ P ∨ Q) with
+ (P ∨ Q ↔ P ∨ Q ∧ ¬P) in n5_62a.
+ replace (Q∧¬P) with (¬P∧Q) in n5_62a.
apply n5_62a.
apply EqBi.
- specialize n4_3 with (~P) Q.
+ specialize n4_3 with (¬P) Q.
intros n4_3a.
apply n4_3a. (*Not cited*)
apply EqBi.
- specialize n4_21 with (P∨Q) (P∨(Q∧~P)).
+ specialize n4_21 with (P∨Q) (P∨(Q∧¬P)).
intros n4_21a. (*Not cited*)
apply n4_21a.
apply EqBi.
- specialize n4_31 with P (Q∧~P).
+ specialize n4_31 with P (Q∧¬P).
intros n4_31a. (*Not cited*)
apply n4_31a.
apply EqBi.
@@ -4376,89 +4383,168 @@ Theorem n5_63 : ∀ P Q : Prop,
Theorem n5_7 : ∀ P Q R : Prop,
((P ∨ R) ↔ (Q ∨ R)) ↔ (R ∨ (P ↔ Q)).
Proof. intros P Q R.
- specialize n5_32 with (~R) (~P) (~Q).
- intros n5_32a. (*Not cited*)
- replace (~R∧~P) with (~(R∨P)) in n5_32a.
- replace (~R∧~Q) with (~(R∨Q)) in n5_32a.
- replace ((~(R∨P))↔(~(R∨Q))) with
- ((R∨P)↔(R∨Q)) in n5_32a.
- replace ((~P)↔(~Q)) with (P↔Q) in n5_32a.
- replace (~R→(P↔Q)) with
- (~~R∨(P↔Q)) in n5_32a.
- replace (~~R) with R in n5_32a.
- replace (R∨P) with (P∨R) in n5_32a.
- replace (R∨Q) with (Q∨R) in n5_32a.
- replace ((R∨(P↔Q))↔(P∨R↔Q∨R)) with
- ((P∨R↔Q∨R)↔(R∨(P↔Q))) in n5_32a.
- apply n5_32a. (*Not cited*)
- apply EqBi.
- specialize n4_21 with ((P∨R)↔(Q∨R)) (R∨(P↔Q)).
- intros n4_21a.
- apply n4_21a. (*Not cited*)
+ specialize n4_74 with R P.
+ intros n4_74a.
+ specialize n4_74 with R Q.
+ intros n4_74b. (*Greg's suggestion*)
+ Conj n4_74a n4_74b.
+ split.
+ apply n4_74a.
+ apply n4_74b.
+ specialize Comp3_43 with
+ (¬R) (P↔R∨P) (Q↔R∨Q).
+ intros Comp3_43a.
+ MP Comp3_43a H.
+ specialize n4_22 with P (R∨P) (R∨Q).
+ intros n4_22a.
+ specialize n4_22 with P (R∨Q) Q.
+ intros n4_22b.
+ specialize Exp3_3 with (P↔(R∨Q))
+ ((R∨Q)↔Q) (P↔Q).
+ intros Exp3_3a.
+ MP Exp3_3a n4_22b.
+ Syll n4_22a Exp3_3a Sa.
+ specialize Imp3_31 with ((P↔(R∨P))∧
+ ((R ∨ P) ↔ (R ∨ Q))) ((R∨Q)↔Q) (P↔Q).
+ intros Imp3_31a.
+ MP Imp3_31a Sa.
+ replace (((P↔(R∨P))∧((R ∨ P) ↔
+ (R ∨ Q))) ∧ ((R∨Q)↔Q)) with
+ ((P↔(R∨P))∧(((R ∨ P) ↔
+ (R ∨ Q)) ∧ ((R∨Q)↔Q))) in Imp3_31a.
+ replace ((R ∨ P ↔ R ∨ Q) ∧ (R ∨ Q ↔ Q)) with
+ ((R ∨ Q ↔ Q) ∧ (R ∨ P ↔ R ∨ Q)) in Imp3_31a.
+ replace ((P↔(R∨P)) ∧
+ ((R ∨ Q ↔ Q) ∧ (R ∨ P ↔ R ∨ Q))) with
+ (((P↔(R∨P)) ∧ (R ∨ Q ↔ Q)) ∧
+ (R ∨ P ↔ R ∨ Q)) in Imp3_31a.
+ specialize Exp3_3 with
+ ((P↔(R∨P))∧(R∨Q↔Q))
+ (R ∨ P ↔ R ∨ Q) (P ↔ Q).
+ intros Exp3_3b.
+ MP Exp3_3b Imp3_31a.
+ replace (Q↔R∨Q) with (R∨Q↔Q) in Comp3_43a.
+ Syll Comp3_43a Exp3_3b Sb.
+ replace (R∨P) with (P∨R) in Sb.
+ replace (R∨Q) with (Q∨R) in Sb.
+ specialize Imp3_31 with (¬R) (P∨R↔Q∨R) (P↔Q).
+ intros Imp3_31b.
+ MP Imp3_31b Sb.
+ replace (¬R ∧ (P ∨ R ↔ Q ∨ R)) with
+ ((P ∨ R ↔ Q ∨ R) ∧ ¬R) in Imp3_31b.
+ specialize Exp3_3 with
+ (P ∨ R ↔ Q ∨ R) (¬R) (P ↔ Q).
+ intros Exp3_3c.
+ MP Exp3_3c Imp3_31b.
+ replace (¬R→(P↔Q)) with
+ (¬¬R∨(P↔Q)) in Exp3_3c.
+ replace (¬¬R) with R in Exp3_3c.
+ specialize Add1_3 with P R.
+ intros Add1_3a.
+ specialize Add1_3 with Q R.
+ intros Add1_3b.
+ Conj Add1_3a Add1_3b.
+ split.
+ apply Add1_3a.
+ apply Add1_3b.
+ specialize Comp3_43 with (R) (P∨R) (Q∨R).
+ intros Comp3_43b.
+ MP Comp3_43b H0.
+ specialize n5_1 with (P ∨ R) (Q ∨ R).
+ intros n5_1a.
+ Syll Comp3_43b n5_1a Sc.
+ specialize n4_37 with P Q R.
+ intros n4_37a.
+ Conj Sc n4_37a.
+ split.
+ apply Sc.
+ apply n4_37a.
+ specialize n4_77 with (P ∨ R ↔ Q ∨ R)
+ R (P↔Q).
+ intros n4_77a.
+ rewrite Equiv4_01 in n4_77a.
+ specialize Simp3_26 with
+ ((R → P ∨ R ↔ Q ∨ R) ∧
+ (P ↔ Q → P ∨ R ↔ Q ∨ R)
+ → R ∨ (P ↔ Q) → P ∨ R ↔ Q ∨ R)
+ ((R ∨ (P ↔ Q) → P ∨ R ↔ Q ∨ R)
+ → (R → P ∨ R ↔ Q ∨ R) ∧
+ (P ↔ Q → P ∨ R ↔ Q ∨ R)).
+ intros Simp3_26a.
+ MP Simp3_26 n4_77a.
+ MP Simp3_26a H1.
+ clear n4_77a. clear H1. clear n4_37a. clear Sa.
+ clear n5_1a. clear Comp3_43b. clear H0.
+ clear Add1_3a. clear Add1_3b. clear H. clear Imp3_31b.
+ clear n4_74a. clear n4_74b. clear Comp3_43a.
+ clear Imp3_31a. clear n4_22a. clear n4_22b.
+ clear Exp3_3a. clear Exp3_3b. clear Sb. clear Sc.
+ Conj Exp3_3c Simp3_26a.
+ split.
+ apply Exp3_3c.
+ apply Simp3_26a.
+ Equiv H.
+ apply H.
+ apply Equiv4_01.
apply EqBi.
- specialize n4_31 with Q R.
- intros n4_31a. (*Not cited*)
- apply n4_31a.
+ apply n4_13. (*With R*)
+ rewrite <- Impl1_01. (*With (¬R) (P↔Q)*)
+ reflexivity.
apply EqBi.
- specialize n4_31 with P R.
- intros n4_31b. (*Not cited*)
- apply n4_31b.
+ apply n4_3. (*With (R ∨ Q ↔ R ∨ P) (¬R)*)
apply EqBi.
- specialize n4_13 with R.
- intros n4_13a. (*Not cited*)
- apply n4_13a.
- replace (~~R∨(P↔Q)) with (~R→P↔Q).
- reflexivity.
- apply Impl1_01. (*Not cited*)
+ apply n4_31. (*With P R*)
apply EqBi.
- specialize Transp4_11 with P Q.
- intros Transp4_11a. (*Not cited*)
- apply Transp4_11a.
+ apply n4_31. (*With Q R*)
apply EqBi.
- specialize Transp4_11 with (R ∨ P) (R ∨ Q).
- intros Transp4_11a. (*Not cited*)
- apply Transp4_11a.
- replace (~(R∨Q)) with (~R∧~Q).
- reflexivity.
+ apply n4_21. (*With (P ∨ R) (Q ∨ R)*)
apply EqBi.
- specialize n4_56 with R Q.
- intros n4_56a. (*Not cited*)
- apply n4_56a.
- replace (~(R∨P)) with (~R∧~P).
- reflexivity.
+ apply n4_32. (*With (P ↔ R ∨ P) (R ∨ Q ↔ Q) (R ∨ P ↔ R ∨ Q)*)
apply EqBi.
- specialize n4_56 with R P.
- intros n4_56b. (*Not cited*)
- apply n4_56b.
- Qed.
- (*The proof sketch was indecipherable, but an
- easy proof was available through n5_32.*)
+ apply n4_3. (*With (R ∨ Q ↔ Q) (R ∨ P ↔ R ∨ Q)*)
+ apply EqBi.
+ apply n4_21. (*To commute the biconditional.*)
+ apply n4_32. (*With (P ↔ R ∨ P) (R ∨ P ↔ R ∨ Q) (R ∨ Q ↔ Q)*)
+Qed.
Theorem n5_71 : ∀ P Q R : Prop,
- (Q → ~R) → (((P ∨ Q) ∧ R) ↔ (P ∧ R)).
+ (Q → ¬R) → (((P ∨ Q) ∧ R) ↔ (P ∧ R)).
Proof. intros P Q R.
- specialize n4_4 with R P Q.
- intros n4_4a.
specialize n4_62 with Q R.
intros n4_62a.
specialize n4_51 with Q R.
intros n4_51a.
- replace (~Q∨~R) with (~(Q∧R)) in n4_62a.
- replace ((Q→~R)↔~(Q∧R)) with
- (((Q→~R)→~(Q∧R))
- ∧
- (~(Q∧R)→(Q→~R))) in n4_62a.
+ specialize n4_21 with (¬(Q∧R)) (¬Q∨¬R).
+ intros n4_21a.
+ rewrite Equiv4_01 in n4_21a.
specialize Simp3_26 with
- ((Q→~R)→~(Q∧R)) (~(Q∧R)→(Q→~R)).
+ ((¬(Q∧R)↔(¬Q∨¬R))→((¬Q∨¬R)↔¬(Q∧R)))
+ (((¬Q∨¬R)↔¬(Q∧R))→(¬(Q∧R)↔(¬Q∨¬R))).
intros Simp3_26a.
- MP Simp3_26a n4_62a.
+ MP Simp3_26a n4_21a.
+ MP Simp3_26a n4_51a.
+ clear n4_21a. clear n4_51a.
+ Conj n4_62a Simp3_26a.
+ split.
+ apply n4_62a.
+ apply Simp3_26a.
+ specialize n4_22 with
+ (Q→¬R) (¬Q∨¬R) (¬(Q∧R)).
+ intros n4_22a.
+ MP n4_22a H.
+ replace ((Q→¬R)↔¬(Q∧R)) with
+ (((Q→¬R)→¬(Q∧R))
+ ∧
+ (¬(Q∧R)→(Q→¬R))) in n4_22a.
+ specialize Simp3_26 with
+ ((Q→¬R)→¬(Q∧R)) (¬(Q∧R)→(Q→¬R)).
+ intros Simp3_26b.
+ MP Simp3_26b n4_22a.
specialize n4_74 with (Q∧R) (P∧R).
intros n4_74a.
Syll Simp3_26a n4_74a Sa.
- replace (R∧P) with (P∧R) in n4_4a.
- replace (R∧Q) with (Q∧R) in n4_4a.
replace ((P∧R)∨(Q∧R)) with
- ((Q∧R)∨(P∧R)) in n4_4a.
+ ((Q∧R)∨(P∧R)) in Sa.
replace ((Q∧R)∨(P∧R)) with (R∧(P∨Q)) in Sa.
replace (R∧(P∨Q)) with ((P∨Q)∧R) in Sa.
replace ((P∧R)↔((P∨Q)∧R)) with
@@ -4473,22 +4559,29 @@ Theorem n5_71 : ∀ P Q R : Prop,
intros n4_3a.
apply n4_3a. (*Not cited*)
apply EqBi.
+ specialize n4_4 with R P Q.
+ intros n4_4a.
+ replace ((Q∧R)∨(P∧R)) with ((P∧R)∨(Q∧R)).
+ replace (Q ∧ R) with (R ∧ Q).
+ replace (P ∧ R) with (R ∧ P).
apply n4_4a. (*Not cited*)
apply EqBi.
- specialize n4_31 with (Q∧R) (P∧R).
- intros n4_31a. (*Not cited*)
- apply n4_31a.
- apply EqBi.
- specialize n4_3 with Q R.
- intros n4_3a. (*Not cited*)
+ specialize n4_3 with R P.
+ intros n4_3a.
apply n4_3a.
apply EqBi.
- specialize n4_3 with P R.
- intros n4_3b. (*Not cited*)
+ specialize n4_3 with R Q.
+ intros n4_3b.
apply n4_3b.
- apply Equiv4_01.
apply EqBi.
- apply n4_51a.
+ specialize n4_31 with (P∧R) (Q∧R).
+ intros n4_31a. (*Not cited*)
+ apply n4_31a.
+ apply EqBi.
+ specialize n4_31 with (Q∧R) (P∧R).
+ intros n4_31b. (*Not cited*)
+ apply n4_31b.
+ apply Equiv4_01.
Qed.
Theorem n5_74 : ∀ P Q R : Prop,
@@ -4507,8 +4600,8 @@ Theorem n5_74 : ∀ P Q R : Prop,
(P→Q→R) (P→R→Q).
intros n4_38a.
MP n4_38a H.
- replace (((P→Q)→(P→R))∧((P→R)→(P→Q))) with
- ((P→Q)↔(P→R)) in n4_38a.
+ replace (((P→Q)→(P→R))∧((P→R)→(P→Q)))
+ with ((P→Q)↔(P→R)) in n4_38a.
specialize n4_76 with P (Q→R) (R→Q).
intros n4_76a.
replace ((Q→R)∧(R→Q)) with (Q↔R) in n4_76a.
@@ -4518,7 +4611,8 @@ Theorem n5_74 : ∀ P Q R : Prop,
((P→(Q↔R))↔((P→Q)↔(P→R))) in n4_38a.
apply n4_38a.
apply EqBi.
- specialize n4_21 with (P→Q↔R) ((P→Q)↔(P→R)).
+ specialize n4_21 with (P→Q↔R)
+ ((P→Q)↔(P→R)).
intros n4_21a. (*Not cited*)
apply n4_21a.
replace (P→Q↔R) with ((P→Q→R)∧(P→R→Q)).
@@ -4530,27 +4624,30 @@ Theorem n5_74 : ∀ P Q R : Prop,
Qed.
Theorem n5_75 : ∀ P Q R : Prop,
- ((R → ~Q) ∧ (P ↔ Q ∨ R)) → ((P ∧ ~Q) ↔ R).
+ ((R → ¬Q) ∧ (P ↔ Q ∨ R)) → ((P ∧ ¬Q) ↔ R).
Proof. intros P Q R.
specialize n5_6 with P Q R.
intros n5_6a.
- replace ((P∧~Q→R)↔(P→Q∨R)) with
- (((P∧~Q→R)→(P→Q∨R))
- ∧
- ((P→Q∨R)→(P∧~Q→R))) in n5_6a.
+ replace ((P∧¬Q→R)↔(P→Q∨R)) with
+ (((P∧¬Q→R)→(P→Q∨R)) ∧
+ ((P→Q∨R)→(P∧¬Q→R))) in n5_6a.
specialize Simp3_27 with
- ((P∧~Q→R)→(P→Q∨R)) ((P→Q∨R)→(P∧~Q→R)).
+ ((P∧¬Q→R)→(P→Q∨R))
+ ((P→Q∨R)→(P∧¬Q→R)).
intros Simp3_27a.
MP Simp3_27a n5_6a.
- specialize Simp3_26 with (P→(Q∨R)) ((Q∨R)→P).
+ specialize Simp3_26 with
+ (P→(Q∨R)) ((Q∨R)→P).
intros Simp3_26a.
replace ((P→(Q∨R))∧((Q∨R)→P)) with
(P↔(Q∨R)) in Simp3_26a.
Syll Simp3_26a Simp3_27a Sa.
- specialize Simp3_27 with (R→~Q) (P↔(Q∨R)).
+ specialize Simp3_27 with
+ (R→¬Q) (P↔(Q∨R)).
intros Simp3_27b.
Syll Simp3_27b Sa Sb.
- specialize Simp3_27 with (P→(Q∨R)) ((Q∨R)→P).
+ specialize Simp3_27 with
+ (P→(Q∨R)) ((Q∨R)→P).
intros Simp3_27c.
replace ((P→(Q∨R))∧((Q∨R)→P)) with
(P↔(Q∨R)) in Simp3_27c.
@@ -4561,33 +4658,36 @@ Theorem n5_75 : ∀ P Q R : Prop,
specialize Simp3_27 with (Q→P) (R→P).
intros Simp3_27d.
Syll Sa Simp3_27d Sd.
- specialize Simp3_26 with (R→~Q) (P↔(Q∨R)).
+ specialize Simp3_26 with (R→¬Q) (P↔(Q∨R)).
intros Simp3_26b.
Conj Sd Simp3_26b.
split.
apply Sd.
apply Simp3_26b.
specialize Comp3_43 with
- ((R→~Q)∧(P↔(Q∨R))) (R→P) (R→~Q).
+ ((R→¬Q)∧(P↔(Q∨R))) (R→P) (R→¬Q).
intros Comp3_43a.
MP Comp3_43a H.
- specialize Comp3_43 with R P (~Q).
+ specialize Comp3_43 with R P (¬Q).
intros Comp3_43b.
Syll Comp3_43a Comp3_43b Se.
- clear n5_6a. clear Simp3_27a. clear Simp3_27b.
- clear Simp3_27c. clear Simp3_27d. clear Simp3_26a.
- clear Simp3_26b. clear Comp3_43a. clear Comp3_43b.
- clear Sa. clear Sc. clear Sd. clear H. clear n4_77a.
+ clear n5_6a. clear Simp3_27a.
+ clear Simp3_27c. clear Simp3_27d.
+ clear Simp3_26a. clear Comp3_43b.
+ clear Simp3_26b. clear Comp3_43a.
+ clear Sa. clear Sc. clear Sd. clear H.
+ clear n4_77a. clear Simp3_27b.
Conj Sb Se.
split.
apply Sb.
apply Se.
specialize Comp3_43 with
- ((R→~Q)∧(P↔Q∨R)) (P∧~Q→R) (R→P∧~Q).
+ ((R→¬Q)∧(P↔Q∨R))
+ (P∧¬Q→R) (R→P∧¬Q).
intros Comp3_43c.
MP Comp3_43c H.
- replace ((P∧~Q→R)∧(R→P∧~Q)) with
- (P∧~Q↔R) in Comp3_43c.
+ replace ((P∧¬Q→R)∧(R→P∧¬Q)) with
+ (P∧¬Q↔R) in Comp3_43c.
apply Comp3_43c.
apply Equiv4_01.
apply EqBi.