diff options
| author | Landon D. C. Elkind | 2020-12-08 12:45:44 -0700 |
|---|---|---|
| committer | GitHub | 2020-12-08 12:45:44 -0700 |
| commit | 2242c3e29b7a11d66e17c0c16a290b4bc6c83b3f (patch) | |
| tree | 7763df4c4178dd3dc316080023a697cf2990fbcb /No1.v | |
| parent | 03776887e6f4b6383570e7e1a1ef29b9685036fc (diff) | |
Coq code and PDF version of *1-*5
*4-*5 are currently incomplete.
Diffstat (limited to 'No1.v')
| -rw-r--r-- | No1.v | 27 |
1 files changed, 27 insertions, 0 deletions
@@ -0,0 +1,27 @@ +Require Import Unicode.Utf8. + +Module No1. +Import Unicode.Utf8. + (*We first give the axioms of Principia +for the propositional calculus in *1.*) + +Axiom MP1_1 : ∀ P Q : Prop, + (P → Q) → P → Q. (*Modus ponens*) + + (**1.11 ommitted: it is MP for propositions containing variables. Likewise, ommitted the well-formedness rules 1.7, 1.71, 1.72*) + +Axiom Taut1_2 : ∀ P : Prop, P ∨ P→ P. (*Tautology*) + +Axiom Add1_3 : ∀ P Q : Prop, Q → P ∨ Q. (*Addition*) + +Axiom Perm1_4 : ∀ P Q : Prop, P ∨ Q → Q ∨ P. (*Permutation*) + +Axiom Assoc1_5 : ∀ P Q R : Prop, P ∨ (Q ∨ R) → Q ∨ (P ∨ R). + +Axiom Sum1_6: ∀ P Q R : Prop, (Q → R) → (P ∨ Q → P ∨ R). + (*These are all the propositional axioms of Principia Mathematica.*) + +Axiom Impl1_01 : ∀ P Q : Prop, (P → Q) = (~P ∨ Q). + (*This is a definition in Principia: there → is a defined sign and ∨, ~ are primitive ones. The purposes of giving this as an Axiom are two: first, to allow for the use of definitions in proofs, and second, to circumvent Coq's definitions of these primitive notions in Coq.*) + +End No1.
\ No newline at end of file |
