summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLandon D. C. Elkind2021-04-20 14:25:04 -0600
committerGitHub2021-04-20 14:25:04 -0600
commitb8bb530a36cae219e6951152d378ca5d13fa2f3e (patch)
treef84b5f81c1ab48efd7489f73a2a010155bf57bb7
parente1fa90fe793e67af9e8a70ef8db4b8fc42b331ee (diff)
Many changes to PL.v file, proved PM axiomsHEADmaster
-rw-r--r--Jorgensen3_47.v31
-rw-r--r--Lemma5_7.v39
-rw-r--r--Nicod1_4.v19
-rw-r--r--PL.pdfbin428416 -> 435106 bytes
-rw-r--r--PL.v604
-rw-r--r--Yuelin.v39
6 files changed, 467 insertions, 265 deletions
diff --git a/Jorgensen3_47.v b/Jorgensen3_47.v
new file mode 100644
index 0000000..a473210
--- /dev/null
+++ b/Jorgensen3_47.v
@@ -0,0 +1,31 @@
+Theorem n3_47a : ∀ P Q R S : Prop,
+ ((P → R) ∧ (Q → S)) → (P ∧ Q) → R ∧ S.
+Proof. intros P Q R S.
+ specialize Simp3_26 with (P→R) (Q→S).
+ intros Simp3_26a.
+ specialize Fact3_45 with P R Q.
+ intros Fact3_45a.
+ Syll Fact3_45a Simp3_26a Sa.
+ specialize n3_22 with R Q.
+ intros n3_22a.
+ specialize Syll2_05 with (P∧Q) (R∧Q) (Q∧R).
+ intros Syll2_05a. (*Not cited by Jorgensen*)
+ MP Syl2_05a n3_22a.
+ Syll Sa Syll2_05a Sb.
+ specialize Simp3_27 with (P→R) (Q→S).
+ intros Simp3_27a.
+ specialize Fact3_45 with Q S R.
+ intros Fact3_45b.
+ Syll Simp3_26a Fact3_45b Sc.
+ specialize n3_22 with S R.
+ intros n3_22b.
+ specialize Syll2_05 with (Q∧R) (S∧R) (R∧S).
+ intros Syll2_05b. (*Not cited by Jorgensen*)
+ MP Syl2_05b n3_22b.
+ Syll Sc Syll2_05a Sd.
+ specialize n2_83 with ((P→R)∧(Q→S)) (P∧Q) (Q∧R) (R∧S).
+ intros n2_83a. (*This with MP works, but it omits Conj3_03.*)
+ MP n2_83a Sb.
+ MP n2_83a Sd.
+ apply n2_83a.
+Qed. \ No newline at end of file
diff --git a/Lemma5_7.v b/Lemma5_7.v
new file mode 100644
index 0000000..ff600cd
--- /dev/null
+++ b/Lemma5_7.v
@@ -0,0 +1,39 @@
+Theorem L5_7 : ∀ P Q R S : Prop,
+ ((P↔Q) ∧ (R↔S)) → ((P↔R) → (Q↔S)).
+Proof. intros P Q R S.
+ specialize n4_22 with Q P R.
+ intros n4_22a.
+ specialize n4_22 with Q R S.
+ intros n4_22b.
+ specialize Exp3_3 with (Q↔R) (R↔S) (Q↔S).
+ intros Exp3_3a.
+ MP Exp3_3a n4_22b.
+ Syll n4_22a Exp3_3a Sa.
+ replace (Q↔P) with (P↔Q) in Sa.
+ specialize Imp3_31 with ((P↔Q)∧(P↔R)) (R↔S) (Q↔S).
+ intros Imp3_31a.
+ MP Imp3_31a Sa.
+ replace (((P ↔ Q) ∧ (P ↔ R)) ∧ (R ↔ S)) with
+ ((P ↔ Q) ∧((P ↔ R) ∧ (R ↔ S))) in Imp3_31a.
+ replace ((P ↔ R) ∧ (R ↔ S)) with
+ ((R ↔ S) ∧ (P ↔ R)) in Imp3_31a.
+ replace ((P ↔ Q) ∧ (R ↔ S) ∧ (P ↔ R)) with
+ (((P ↔ Q) ∧ (R ↔ S)) ∧ (P ↔ R)) in Imp3_31a.
+ specialize Exp3_3 with ((P ↔ Q) ∧ (R ↔ S)) (P↔R) (Q↔S).
+ intros Exp3_3b.
+ MP Exp3_3b Imp3_31a.
+ apply Exp3_3b.
+ apply EqBi.
+ apply n4_32. (*With (P ↔ Q) (R ↔ S) (P ↔ R)*)
+ apply EqBi.
+ apply n4_3. (*With (R ↔ S) (P ↔ R)*)
+ replace ((P ↔ Q) ∧((P ↔ R) ∧ (R ↔ S))) with
+ (((P ↔ Q) ∧ (P ↔ R)) ∧ (R ↔ S)).
+ reflexivity.
+ apply EqBi.
+ specialize n4_32 with (P↔Q) (P↔R) (R↔S).
+ intros n4_32a.
+ apply n4_32a.
+ apply EqBi.
+ apply n4_21. (*With P Q*)
+Qed. \ No newline at end of file
diff --git a/Nicod1_4.v b/Nicod1_4.v
new file mode 100644
index 0000000..d32a096
--- /dev/null
+++ b/Nicod1_4.v
@@ -0,0 +1,19 @@
+Theorem N1_4 : ∀ P Q : Prop,
+ P ∨ Q → Q ∨ P.
+Proof. intros P Q.
+ specialize n2_2 with Q P.
+ intros n2_2a.
+ specialize Assoc1_5 with P Q P.
+ intros Assoc1_5a.
+ specialize Sum1_6 with P Q (Q ∨ P).
+ intros Sum1_6a.
+ MP Sum1_6a n2_2a.
+ Syll Sum1_6a Assoc1_5a Sa.
+ specialize Taut1_2 with P.
+ intros Taut1_2a.
+ specialize Sum1_6 with Q (P ∨ P) P.
+ intros Sum1_6b.
+ MP Sum1_6b Taut1_2a.
+ Syll Sa Sum1_6b Sb.
+ apply Sb.
+Qed. \ No newline at end of file
diff --git a/PL.pdf b/PL.pdf
index 9e9b13a..dc158bf 100644
--- a/PL.pdf
+++ b/PL.pdf
Binary files differ
diff --git a/PL.v b/PL.v
index 8e6bc44..cfe8b74 100644
--- a/PL.v
+++ b/PL.v
@@ -4,6 +4,7 @@ Require Import ClassicalFacts.
Require Import PropExtensionality.
Module No1.
+
Import Unicode.Utf8.
Import ClassicalFacts.
Import Classical_Prop.
@@ -13,21 +14,19 @@ Import PropExtensionality.
for the propositional calculus in *1.*)
Theorem Impl1_01 : ∀ P Q : Prop,
- (P → Q) = (¬P ∨ Q).
-Proof. intros P Q.
+ (P → Q) = (¬P ∨ Q).
+ Proof. intros P Q.
apply propositional_extensionality.
split.
apply imply_to_or.
apply or_to_imply.
Qed.
- (*This is a definition in Principia: there → is a
- defined sign and ∨, ¬ are primitive ones. So
- we will use this axiom to switch between
- disjunction and implication.*)
+ (*This is a notational definition in Principia:
+ It is used to switch between "∨" and "→".*)
Theorem MP1_1 : ∀ P Q : Prop,
(P → Q) → P → Q. (*Modus ponens*)
-Proof. intros P Q.
+ Proof. intros P Q.
intros iff_refl.
apply iff_refl.
Qed.
@@ -37,14 +36,14 @@ Qed.
Theorem Taut1_2 : ∀ P : Prop,
P ∨ P → P. (*Tautology*)
-Proof. intros P.
+ Proof. intros P.
apply imply_and_or.
apply iff_refl.
Qed.
Theorem Add1_3 : ∀ P Q : Prop,
Q → P ∨ Q. (*Addition*)
-Proof. intros P Q.
+ Proof. intros P Q.
apply or_intror.
Qed.
@@ -92,9 +91,17 @@ Qed.
(*These are all the propositional axioms of Principia.*)
+Ltac MP H1 H2 :=
+ match goal with
+ | [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
+ end.
+ (*We give this Ltac "MP" to make proofs more human-
+ readable and to more closely mirror Principia's style.*)
+
End No1.
Module No2.
+
Import No1.
(*We proceed to the deductions of of Principia.*)
@@ -103,8 +110,9 @@ Theorem Abs2_01 : ∀ P : Prop,
(P → ¬P) → ¬P.
Proof. intros P.
specialize Taut1_2 with (¬P).
- replace (¬P ∨ ¬P) with (P → ¬P).
- apply MP1_1.
+ intros Taut1_2.
+ replace (¬P ∨ ¬P) with (P → ¬P) in Taut1_2.
+ apply Taut1_2.
apply Impl1_01.
Qed.
@@ -112,8 +120,9 @@ Theorem Simp2_02 : ∀ P Q : Prop,
Q → (P → Q).
Proof. intros P Q.
specialize Add1_3 with (¬P) Q.
- replace (¬P ∨ Q) with (P → Q).
- apply (MP1_1 Q (P → Q)).
+ intros Add1_3.
+ replace (¬P ∨ Q) with (P → Q) in Add1_3.
+ apply Add1_3.
apply Impl1_01.
Qed.
@@ -121,9 +130,10 @@ Theorem Transp2_03 : ∀ P Q : Prop,
(P → ¬Q) → (Q → ¬P).
Proof. intros P Q.
specialize Perm1_4 with (¬P) (¬Q).
- replace (¬P ∨ ¬Q) with (P → ¬Q).
- replace (¬Q ∨ ¬P) with (Q → ¬P).
- apply (MP1_1 (P → ¬Q) (Q → ¬P)).
+ intros Perm1_4.
+ replace (¬P ∨ ¬Q) with (P → ¬Q) in Perm1_4.
+ replace (¬Q ∨ ¬P) with (Q → ¬P) in Perm1_4.
+ apply Perm1_4.
apply Impl1_01.
apply Impl1_01.
Qed.
@@ -132,11 +142,12 @@ Theorem Comm2_04 : ∀ P Q R : Prop,
(P → (Q → R)) → (Q → (P → R)).
Proof. intros P Q R.
specialize Assoc1_5 with (¬P) (¬Q) R.
- replace (¬Q ∨ R) with (Q → R).
- replace (¬P ∨ (Q → R)) with (P → (Q → R)).
- replace (¬P ∨ R) with (P → R).
- replace (¬Q ∨ (P → R)) with (Q → (P → R)).
- apply (MP1_1 (P → Q → R) (Q → P → R)).
+ intros Assoc1_5.
+ replace (¬Q ∨ R) with (Q → R) in Assoc1_5.
+ replace (¬P ∨ (Q → R)) with (P → (Q → R)) in Assoc1_5.
+ replace (¬P ∨ R) with (P → R) in Assoc1_5.
+ replace (¬Q ∨ (P → R)) with (Q → (P → R)) in Assoc1_5.
+ apply Assoc1_5.
apply Impl1_01.
apply Impl1_01.
apply Impl1_01.
@@ -147,9 +158,10 @@ Theorem Syll2_05 : ∀ P Q R : Prop,
(Q → R) → ((P → Q) → (P → R)).
Proof. intros P Q R.
specialize Sum1_6 with (¬P) Q R.
- replace (¬P ∨ Q) with (P → Q).
- replace (¬P ∨ R) with (P → R).
- apply (MP1_1 (Q → R) ((P → Q) → (P → R))).
+ intros Sum1_6.
+ replace (¬P ∨ Q) with (P → Q) in Sum1_6.
+ replace (¬P ∨ R) with (P → R) in Sum1_6.
+ apply Sum1_6.
apply Impl1_01.
apply Impl1_01.
Qed.
@@ -161,19 +173,16 @@ Proof. intros P Q R.
intros Comm2_04.
specialize Syll2_05 with P Q R.
intros Syll2_05.
- specialize MP1_1 with ((Q → R) → (P → Q) → P → R)
- ((P → Q) → ((Q → R) → (P → R))).
- intros MP1_1.
- apply MP1_1.
+ MP Comm2_04 Syll2_05.
apply Comm2_04.
- apply Syll2_05.
Qed.
Theorem n2_07 : ∀ P : Prop,
P → (P ∨ P).
Proof. intros P.
specialize Add1_3 with P P.
- apply MP1_1.
+ intros Add1_3.
+ apply Add1_3.
Qed.
Theorem Id2_08 : ∀ P : Prop,
@@ -183,19 +192,20 @@ Proof. intros P.
intros Syll2_05.
specialize Taut1_2 with P.
intros Taut1_2.
- specialize MP1_1 with ((P ∨ P) → P) (P → P).
- intros MP1_1.
+ MP Syll2_05 Taut1_2.
+ specialize n2_07 with P.
+ intros n2_07.
+ MP Syll2_05 n2_07.
apply Syll2_05.
- apply Taut1_2.
- apply n2_07.
Qed.
Theorem n2_1 : ∀ P : Prop,
(¬P) ∨ P.
Proof. intros P.
specialize Id2_08 with P.
+ intros Id2_08.
replace (¬P ∨ P) with (P → P).
- apply MP1_1.
+ apply Id2_08.
apply Impl1_01.
Qed.
@@ -206,9 +216,8 @@ Proof. intros P.
intros Perm1_4.
specialize n2_1 with P.
intros n2_1.
- apply (MP1_1 (¬P∨P) (P∨¬P)).
+ MP Perm1_4 n2_1.
apply Perm1_4.
- apply n2_1.
Qed.
Theorem n2_12 : ∀ P : Prop,
@@ -216,8 +225,9 @@ Theorem n2_12 : ∀ P : Prop,
Proof. intros P.
specialize n2_11 with (¬P).
intros n2_11.
- rewrite Impl1_01.
+ replace (¬P ∨ ¬¬P) with (P → ¬¬P) in n2_11.
apply n2_11.
+ apply Impl1_01.
Qed.
Theorem n2_13 : ∀ P : Prop,
@@ -227,12 +237,11 @@ Proof. intros P.
intros Sum1_6.
specialize n2_12 with (¬P).
intros n2_12.
- apply (MP1_1 (¬P→¬¬¬P) ((P∨¬P)→(P∨¬¬¬P))).
- apply Sum1_6.
- apply n2_12.
+ MP Sum1_6 n2_12.
specialize n2_11 with P.
intros n2_11.
- apply n2_11.
+ MP Sum1_6 n2_11.
+ apply Sum1_6.
Qed.
Theorem n2_14 : ∀ P : Prop,
@@ -242,10 +251,10 @@ Proof. intros P.
intros Perm1_4.
specialize n2_13 with P.
intros n2_13.
- rewrite Impl1_01.
- apply (MP1_1 (P∨¬¬¬P) (¬¬¬P∨P)).
+ MP Perm1_4 n2_13.
+ replace (¬¬¬P ∨ P) with (¬¬P → P) in Perm1_4.
apply Perm1_4.
- apply n2_13.
+ apply Impl1_01.
Qed.
Theorem Transp2_15 : ∀ P Q : Prop,
@@ -255,24 +264,23 @@ Proof. intros P Q.
intros Syll2_05a.
specialize n2_12 with Q.
intros n2_12.
+ MP Syll2_05a n2_12.
specialize Transp2_03 with (¬P) (¬Q).
intros Transp2_03.
specialize Syll2_05 with (¬Q) (¬¬P) P.
intros Syll2_05b.
+ specialize n2_14 with P.
+ intros n2_14.
+ MP Syll2_05b n2_14.
specialize Syll2_05 with (¬P → Q) (¬P → ¬¬Q) (¬Q → ¬¬P).
intros Syll2_05c.
+ MP Syll2_05c Transp2_03.
+ MP Syll2_05c Syll2_05a.
specialize Syll2_05 with (¬P → Q) (¬Q → ¬¬P) (¬Q → P).
intros Syll2_05d.
+ MP Syll2_05d Syll2_05b.
+ MP Syll2_05d Syll2_05c.
apply Syll2_05d.
- apply Syll2_05b.
- specialize n2_14 with P.
- intros n2_14.
- apply n2_14.
- apply Syll2_05c.
- apply Transp2_03.
- apply (MP1_1 (Q→¬¬Q) ((¬P→Q)→(¬P→¬¬Q))).
- apply Syll2_05a.
- apply n2_12.
Qed.
Ltac Syll H1 H2 S :=
@@ -281,11 +289,6 @@ Ltac Syll H1 H2 S :=
assert (S : P → R) by (intros p; apply (H2 (H1 p)))
end.
-Ltac MP H1 H2 :=
- match goal with
- | [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
-end.
-
Theorem Transp2_16 : ∀ P Q : Prop,
(P → Q) → (¬Q → ¬P).
Proof. intros P Q.
@@ -442,8 +445,18 @@ Proof. intros P Q R.
apply Syll2_06b.
Qed.
-Axiom Abb2_33 : ∀ P Q R : Prop,
+Theorem Abb2_33 : ∀ P Q R : Prop,
(P ∨ Q ∨ R) = ((P ∨ Q) ∨ R).
+Proof. intros P Q R.
+ apply propositional_extensionality.
+ split.
+ specialize n2_31 with P Q R.
+ intros n2_31.
+ apply n2_31.
+ specialize n2_32 with P Q R.
+ intros n2_32.
+ apply n2_32.
+Qed.
(*This definition makes the default left association.
The default in Coq is right association.*)
@@ -1017,11 +1030,33 @@ Module No3.
Import No1.
Import No2.
-Axiom Prod3_01 : ∀ P Q : Prop,
- (P ∧ Q) = ¬(¬P ∨ ¬Q).
-Axiom Abb3_02 : ∀ P Q R : Prop,
- (P → Q → R) = (P → Q) ∧ (Q → R).
+Theorem Prod3_01 : ∀ P Q : Prop,
+ (P ∧ Q) = (¬(¬P ∨ ¬Q)).
+Proof. intros P Q.
+ apply propositional_extensionality.
+ split.
+ specialize or_not_and with (P) (Q).
+ intros or_not_and.
+ specialize Transp2_03 with (¬P ∨ ¬Q) (P ∧ Q).
+ intros Transp2_03.
+ MP Transp2_03 or_not_and.
+ apply Transp2_03.
+ specialize not_and_or with (P) (Q).
+ intros not_and_or.
+ specialize Transp2_15 with (P ∧ Q) (¬P ∨ ¬Q).
+ intros Transp2_15.
+ MP Transp2_15 not_and_or.
+ apply Transp2_15.
+Qed.
+(*This is a notational definition in Principia;
+ it is used to switch between "∧" and "¬∨¬".*)
+
+(*Axiom Abb3_02 : ∀ P Q R : Prop,
+ (P → Q → R) = ((P → Q) ∧ (Q → R)).*)
+ (*Since Coq forbids such strings as ill-formed, or
+ else automatically associates to the right,
+ we leave this notational axiom commented out.*)
Theorem Conj3_03 : ∀ P Q : Prop, P → Q → (P∧Q).
Proof. intros P Q.
@@ -1485,14 +1520,22 @@ Import No1.
Import No2.
Import No3.
-Axiom Equiv4_01 : ∀ P Q : Prop,
+Theorem Equiv4_01 : ∀ P Q : Prop,
(P ↔ Q) = ((P → Q) ∧ (Q → P)).
-
-Axiom Abb4_02 : ∀ P Q R : Prop,
- (P ↔ Q ↔ R) = ((P ↔ Q) ∧ (Q ↔ R)).
-
-Axiom EqBi : ∀ P Q : Prop,
- (P = Q) ↔ (P ↔ Q).
+ Proof. intros P Q.
+ apply propositional_extensionality.
+ specialize iff_to_and with P Q.
+ intros iff_to_and.
+ apply iff_to_and.
+ Qed.
+ (*This is a notational definition in Principia;
+ it is used to switch between "↔" and "→∧←".*)
+
+(*Axiom Abb4_02 : ∀ P Q R : Prop,
+ (P ↔ Q ↔ R) = ((P ↔ Q) ∧ (Q ↔ R)).*)
+ (*Since Coq forbids ill-formed strings, or else
+ automatically associates to the right, we leave
+ this notational axiom commented out.*)
Ltac Equiv H1 :=
match goal with
@@ -1640,9 +1683,9 @@ replace (¬¬R) with R in H.
Equiv H.
apply H.
apply Equiv4_01.
-apply EqBi.
+apply propositional_extensionality.
apply n4_13b.
-apply EqBi.
+apply propositional_extensionality.
apply n4_13a.
Qed.
@@ -1685,7 +1728,7 @@ Theorem n4_15 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_13a.
Qed.
@@ -1876,21 +1919,22 @@ Theorem n4_32 : ∀ P Q R : Prop,
replace (¬(P ∧ Q → ¬R) ↔ ¬(P → ¬(Q ∧ R))) with
((P ∧ Q → ¬R) ↔ (P → ¬(Q ∧ R))).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_1a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (Q ∧ R).
intros n4_13a.
apply n4_13a.
Qed.
(*Note that the actual proof uses n4_12, but
that transposition involves transforming a
- biconditional into a conditional. This theorem
- may be a misprint. Using Transp4_1 to transpose
- a conditional and then applying n4_13 to double
- negate does secure the desired formula, though.*)
+ biconditional into a conditional. This citation
+ of the lemma may be a misprint. Using
+ Transp4_1 to transpose a conditional and
+ then applying n4_13 to double negate does
+ secure the desired formula.*)
Theorem n4_33 : ∀ P Q R : Prop,
(P ∨ (Q ∨ R)) ↔ ((P ∨ Q) ∨ R).
@@ -1908,14 +1952,27 @@ Theorem n4_33 : ∀ P Q R : Prop,
apply Equiv4_01.
Qed.
-Axiom Abb4_34 : ∀ P Q R : Prop,
- (P ∧ Q ∧ R) = ((P ∧ Q) ∧ R).
- (*This axiom ensures left association of brackets.
- Coq's default is right association. But Principia
- proves associativity of logical product as n4_32.
- So in effect, this axiom gives us a derived rule that
- allows us to shift between Coq's and Principia's
- default rules for brackets of logical products.*)
+Theorem Abb4_34 : ∀ P Q R : Prop,
+ (P ∧ Q ∧ R) = ((P ∧ Q) ∧ R).
+ Proof. intros P Q R.
+ apply propositional_extensionality.
+ specialize n4_21 with ((P ∧ Q) ∧ R) (P ∧ Q ∧ R).
+ intros n4_21.
+ replace (((P ∧ Q) ∧ R ↔ P ∧ Q ∧ R) ↔ (P ∧ Q ∧ R ↔ (P ∧ Q) ∧ R))
+ with ((((P ∧ Q) ∧ R ↔ P ∧ Q ∧ R) → (P ∧ Q ∧ R ↔ (P ∧ Q) ∧ R))
+ ∧ ((P ∧ Q ∧ R ↔ (P ∧ Q) ∧ R) → ((P ∧ Q) ∧ R ↔ P ∧ Q ∧ R)))
+ in n4_21.
+ specialize Simp3_26 with
+ (((P ∧ Q) ∧ R ↔ P ∧ Q ∧ R) → (P ∧ Q ∧ R ↔ (P ∧ Q) ∧ R))
+ ((P ∧ Q ∧ R ↔ (P ∧ Q) ∧ R) → ((P ∧ Q) ∧ R ↔ P ∧ Q ∧ R)).
+ intros Simp3_26.
+ MP Simp3_26 n4_21.
+ specialize n4_32 with P Q R.
+ intros n4_32.
+ MP Simp3_26 n4_32.
+ apply Simp3_26.
+ apply Equiv4_01.
+Qed.
Theorem n4_36 : ∀ P Q R : Prop,
(P ↔ Q) → ((P ∧ R) ↔ (Q ∧ R)).
@@ -1961,11 +2018,11 @@ Proof. intros P Q R.
replace (R ∨ P) with (P ∨ R) in n3_47a.
replace (R ∨ Q) with (Q ∨ R) in n3_47a.
apply n3_47a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with Q R.
intros n4_31a.
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P R.
intros n4_31b.
apply n4_31b.
@@ -2023,24 +2080,24 @@ Proof. intros P Q R S.
apply Equiv4_01.
apply Equiv4_01.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32d.
replace ((R → P) ∧ (Q → S) ∧ (S → Q)) with
(((R → P) ∧ (Q → S)) ∧ (S → Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32c.
replace ((R → P) ∧ (Q → S)) with ((Q → S) ∧ (R → P)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply H0.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32b.
replace ((P → R) ∧ (Q → S) ∧ (R → P) ∧ (S → Q)) with
(((P → R) ∧ (Q → S)) ∧ (R → P) ∧ (S → Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32a.
Qed.
@@ -2095,22 +2152,22 @@ Proof. intros P Q R S.
replace ((P ↔ R) ∧ (Q → S) ∧ (S → Q)) with
(((P ↔ R) ∧ (Q → S)) ∧ (S → Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32d.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32c.
replace ((R → P) ∧ (Q → S)) with ((Q → S) ∧ (R → P)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply H0.
apply Equiv4_01.
replace ((P → R) ∧ (Q → S) ∧ (R → P)) with
(((P → R) ∧ (Q → S)) ∧ (R → P)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32b.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32a.
apply Equiv4_01.
Qed.
@@ -2245,7 +2302,7 @@ Proof. intros P Q.
intros n4_4a.
replace (P ∧ (Q ∨ ¬Q)) with P in n4_4a.
apply n4_4a.
- apply EqBi.
+ apply propositional_extensionality.
apply H.
apply Equiv4_01.
Qed.
@@ -2292,7 +2349,7 @@ Proof. intros P Q.
Equiv H.
apply H.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with P.
intros n4_13a.
apply n4_13a.
@@ -2342,11 +2399,11 @@ Theorem n4_45 : ∀ P Q : Prop,
apply Equiv4_01.
specialize n4_24 with P.
intros n4_24a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_24a.
specialize n4_4 with P P Q.
intros n4_4a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_4a.
Qed.
@@ -2368,21 +2425,26 @@ Theorem n4_51 : ∀ P Q : Prop,
intros n4_5a.
specialize n4_12 with (P ∧ Q) (¬P ∨ ¬Q).
intros n4_12a.
- replace ((P∧Q ↔ ¬(¬P∨¬Q))↔(¬P∨¬Q ↔ ¬(P∧Q))) with
- ((P∧Q ↔ ¬(¬P∨¬Q)) = (¬P∨¬Q ↔ ¬(P∧Q))) in n4_12a.
- replace (P ∧ Q ↔ ¬(¬P ∨ ¬Q)) with
- (¬P ∨ ¬Q ↔ ¬(P ∧ Q)) in n4_5a.
- replace (¬P ∨ ¬Q ↔ ¬(P ∧ Q)) with
- (¬(P ∧ Q) ↔ (¬P ∨ ¬Q)) in n4_5a.
- apply n4_5a.
+ specialize Simp3_26 with
+ ((P ∧ Q ↔ ¬(¬P ∨ ¬Q)) → (¬P ∨ ¬Q ↔ ¬(P ∧ Q)))
+ ((¬P ∨ ¬Q ↔ ¬(P ∧ Q)) → ((P ∧ Q ↔ ¬(¬P ∨ ¬Q)))).
+ intros Simp3_26a.
+ replace ((P ∧ Q ↔ ¬(¬P ∨ ¬Q)) ↔ (¬P ∨ ¬Q ↔ ¬(P ∧ Q)))
+ with (((P ∧ Q ↔ ¬(¬P ∨ ¬Q)) → (¬P ∨ ¬Q ↔ ¬(P ∧ Q)))
+ ∧ ((¬P ∨ ¬Q ↔ ¬(P ∧ Q)) → ((P ∧ Q ↔ ¬(¬P ∨ ¬Q)))))
+ in n4_12a.
+ MP Simp3_26a n4_12a.
+ MP Simp3_26a n4_5a.
specialize n4_21 with (¬(P ∧ Q)) (¬P ∨ ¬Q).
intros n4_21a.
- apply EqBi.
- specialize n4_21 with (¬(P∧Q)) (¬P ∨ ¬Q).
- intros n4_21b.
- apply n4_21b.
- apply EqBi.
- apply EqBi.
+ specialize Simp3_27 with
+ (((¬(P ∧ Q) ↔ ¬P ∨ ¬Q)) → ((¬P ∨ ¬Q ↔ ¬(P ∧ Q))))
+ (((¬P ∨ ¬Q ↔ ¬(P ∧ Q))) → ((¬(P ∧ Q) ↔ ¬P ∨ ¬Q))).
+ intros Simp3_27a.
+ MP Simp3_27a n4_21a.
+ MP Simp3_27a Simp3_26a.
+ apply Simp3_27a.
+ apply Equiv4_01.
Qed.
Theorem n4_52 : ∀ P Q : Prop,
@@ -2394,7 +2456,7 @@ Theorem n4_52 : ∀ P Q : Prop,
apply n4_5a.
specialize n4_13 with Q.
intros n4_13a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_13a.
Qed.
@@ -2405,19 +2467,31 @@ Theorem n4_53 : ∀ P Q : Prop,
intros n4_52a.
specialize n4_12 with (P ∧ ¬Q) ((¬P ∨ Q)).
intros n4_12a.
- replace ((P∧¬Q ↔ ¬(¬P∨Q))↔(¬P∨Q ↔ ¬(P∧¬Q))) with
- ((P∧¬Q ↔ ¬(¬P∨Q)) = (¬P∨Q ↔ ¬(P∧¬Q))) in n4_12a.
- replace (P ∧ ¬Q ↔ ¬(¬P ∨ Q)) with
- (¬P ∨ Q ↔ ¬(P ∧ ¬Q)) in n4_52a.
- replace (¬P ∨ Q ↔ ¬(P ∧ ¬Q)) with
- (¬(P ∧ ¬Q) ↔ (¬P ∨ Q)) in n4_52a.
- apply n4_52a.
+ replace ((P ∧ ¬Q ↔ ¬(¬P ∨ Q)) ↔ (¬P ∨ Q ↔ ¬(P ∧ ¬Q)))
+ with (((P ∧ ¬Q ↔ ¬(¬P ∨ Q)) → (¬P ∨ Q ↔ ¬(P ∧ ¬Q)))
+ ∧ ((¬P ∨ Q ↔ ¬(P ∧ ¬Q)) → (P ∧ ¬Q ↔ ¬(¬P ∨ Q))))
+ in n4_12a.
+ specialize Simp3_26 with
+ ((P ∧ ¬Q ↔ ¬(¬P ∨ Q)) → (¬P ∨ Q ↔ ¬(P ∧ ¬Q)))
+ ((¬P ∨ Q ↔ ¬(P ∧ ¬Q)) → (P ∧ ¬Q ↔ ¬(¬P ∨ Q))).
+ intros Simp3_26a.
+ MP Simp3_26a n4_12a.
+ MP Simp3_26a n4_52a.
specialize n4_21 with (¬(P ∧ ¬Q)) (¬P ∨ Q).
intros n4_21a.
- apply EqBi.
- apply n4_21a.
- apply EqBi.
- apply EqBi.
+ replace ((¬(P ∧ ¬ Q) ↔ ¬P ∨ Q) ↔ (¬P ∨ Q ↔ ¬(P ∧ ¬Q)))
+ with (((¬(P ∧ ¬ Q) ↔ ¬P ∨ Q) → (¬P ∨ Q ↔ ¬(P ∧ ¬Q)))
+ ∧ ((¬P ∨ Q ↔ ¬(P ∧ ¬Q)) → (¬(P ∧ ¬ Q) ↔ ¬P ∨ Q)))
+ in n4_21a.
+ specialize Simp3_27 with
+ ((¬(P ∧ ¬ Q) ↔ ¬P ∨ Q) → (¬P ∨ Q ↔ ¬(P ∧ ¬Q)))
+ ((¬P ∨ Q ↔ ¬(P ∧ ¬Q)) → (¬(P ∧ ¬ Q) ↔ ¬P ∨ Q)).
+ intros Simp3_27a.
+ MP Simp3_27a n4_21a.
+ MP Simp3_27a Simp3_26a.
+ apply Simp3_27a.
+ apply Equiv4_01.
+ apply Equiv4_01.
Qed.
Theorem n4_54 : ∀ P Q : Prop,
@@ -2429,7 +2503,7 @@ Theorem n4_54 : ∀ P Q : Prop,
intros n4_13a.
replace (¬¬P) with P in n4_5a.
apply n4_5a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_13a.
Qed.
@@ -2447,13 +2521,13 @@ Theorem n4_55 : ∀ P Q : Prop,
apply n4_54a.
specialize n4_21 with (¬(¬P ∧ Q)) (P ∨ ¬Q).
intros n4_21a. (*Not cited*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
replace ((P∨¬Q↔¬(¬P∧Q))↔(¬P∧Q↔¬(P∨¬Q)))
with ((¬P∧Q↔¬(P∨¬Q))↔(P∨¬Q↔¬(¬P∧Q))).
apply n4_12a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P∨¬Q↔¬(¬P∧Q))
(¬P∧Q↔¬(P∨¬Q)).
intros n4_21b.
@@ -2467,7 +2541,7 @@ Theorem n4_56 : ∀ P Q : Prop,
intros n4_54a.
replace (¬¬Q) with Q in n4_54a.
apply n4_54a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with Q.
intros n4_13a.
apply n4_13a.
@@ -2487,13 +2561,13 @@ Theorem n4_57 : ∀ P Q : Prop,
apply n4_56a.
specialize n4_21 with (¬(¬P ∧ ¬Q)) (P ∨ Q).
intros n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21a.
replace ((¬P∧¬Q↔¬(P∨Q))↔(P∨Q↔¬(¬P∧¬Q))) with
((P∨Q↔¬(¬P∧¬Q))↔(¬P∧¬Q↔¬(P∨Q))) in n4_12a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_12a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with
(P ∨ Q ↔ ¬(¬P ∧ ¬Q)) (¬P ∧ ¬Q ↔ ¬(P ∨ Q)).
intros n4_21b.
@@ -2522,13 +2596,13 @@ Theorem n4_61 : ∀ P Q : Prop,
(¬(P → Q) ↔ ¬(¬P ∨ Q)) in n4_6a.
replace (¬(¬P ∨ Q)) with (P ∧ ¬Q) in n4_6a.
apply n4_6a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_52a.
replace (((P→Q)↔¬P∨Q)↔(¬(P→Q)↔¬(¬P∨Q))) with
((¬(P→Q)↔¬(¬P∨Q))↔((P→Q)↔¬P∨Q)) in Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (¬(P→Q)↔¬(¬P∨Q))
((P→Q)↔(¬P∨Q)).
intros n4_21a.
@@ -2558,14 +2632,14 @@ Theorem n4_63 : ∀ P Q : Prop,
apply n4_62a.
replace (((P→¬Q)↔¬P∨¬Q)↔(¬(P→¬Q)↔P∧Q)) with
((¬(P→¬Q)↔P∧Q)↔((P→¬Q)↔¬P∨¬Q)) in Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
specialize n4_21 with
(¬(P → ¬Q) ↔ P ∧ Q) ((P → ¬Q) ↔ ¬P ∨ ¬Q).
intros n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_5a.
Qed.
@@ -2600,11 +2674,11 @@ Theorem n4_65 : ∀ P Q : Prop,
(¬(¬P → Q) ↔ ¬(P ∨ Q)) in n4_64a.
replace (¬(P ∨ Q)) with (¬P ∧ ¬Q) in n4_64a.
apply n4_64a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_56a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (¬(¬P → Q)↔¬(P ∨ Q))
((¬P → Q)↔(P ∨ Q)).
intros n4_21a.
@@ -2632,13 +2706,13 @@ Theorem n4_67 : ∀ P Q : Prop,
intros n4_54a.
replace (¬(P ∨ ¬Q)) with (¬P ∧ Q) in n4_66a.
apply n4_66a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_54a.
replace (((¬P→¬Q)↔P∨¬Q)↔(¬(¬P→¬Q)↔¬(P∨¬Q))) with
((¬(¬P→¬Q)↔¬(P∨¬Q))↔((¬P→¬Q)↔P∨¬Q)) in Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (¬(¬P → ¬Q)↔¬(P ∨ ¬Q))
((¬P → ¬Q)↔(P ∨ ¬Q)).
intros n4_21a.
@@ -2751,13 +2825,13 @@ Theorem n4_72 : ∀ P Q : Prop,
intros n4_31a.
replace (Q ∨ P) with (P ∨ Q) in n4_22c.
apply n4_22c.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
replace (¬(¬Q ∧ ¬P) ↔ Q ∨ P) with
(Q ∨ P ↔¬(¬Q ∧ ¬P)) in n4_57a.
apply n4_57a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (Q ∨ P) (¬(¬Q ∧ ¬P)).
intros n4_21b.
apply n4_21b.
@@ -2790,11 +2864,11 @@ Theorem n4_74 : ∀ P Q : Prop,
intros n4_72a.
replace (P → Q) with (Q ↔ P ∨ Q) in n2_21a.
apply n2_21a.
- apply EqBi.
+ apply propositional_extensionality.
replace ((P → Q) ↔ (Q ↔ P ∨ Q)) with
((Q ↔ P ∨ Q) ↔ (P → Q)) in n4_72a.
apply n4_72a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (Q↔(P ∨ Q)) (P → Q).
intros n4_21a.
apply n4_21a.
@@ -2811,7 +2885,7 @@ Theorem n4_76 : ∀ P Q R : Prop,
replace ((P → Q ∧ R) ↔ (P → Q) ∧ (P → R)) with
((P → Q) ∧ (P → R) ↔ (P → Q ∧ R)) in n4_41a.
apply n4_41a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with ((P → Q) ∧ (P → R)) (P → Q ∧ R).
intros n4_21a.
apply n4_21a.
@@ -2894,7 +2968,7 @@ Theorem n4_78 : ∀ P Q R : Prop,
(P → (Q ∨ R)) in n4_2a.
apply n4_2a.
apply Impl1_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_37b.
apply Abb2_33.
replace ((¬P ∨ ¬P) ∨ Q) with (¬P ∨ ¬P ∨ Q).
@@ -2903,14 +2977,14 @@ Theorem n4_78 : ∀ P Q R : Prop,
replace ((¬P ∨ ¬P ∨ Q) ∨ R) with
(¬P ∨ (¬P ∨ Q) ∨ R).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_33b.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_37a.
replace ((Q ∨ ¬P) ∨ R) with (Q ∨ ¬P ∨ R).
reflexivity.
apply Abb2_33.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_33a.
rewrite <- Impl1_01.
rewrite <- Impl1_01.
@@ -3105,7 +3179,7 @@ Theorem n4_84 : ∀ P Q R : Prop,
replace ((Q → R) ↔ (P → R)) with
((P→ R) ↔ (Q → R)) in n3_47a.
apply n3_47a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P→R) (Q→R).
intros n4_21a.
apply n4_21a.
@@ -3163,7 +3237,7 @@ Theorem n4_86 : ∀ P Q R : Prop,
with ((P↔R)↔(Q↔R)) in Comp3_43a.
apply Comp3_43a.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with P Q.
intros n4_21a.
apply n4_21a.
@@ -3210,15 +3284,15 @@ Theorem n4_87 : ∀ P Q R : Prop,
((P → Q → R) ↔ (P → Q → R)).
intros n4_2a.
apply n4_2a.
- apply EqBi.
+ apply propositional_extensionality.
apply H1.
replace (Q→P→R) with (Q∧P→R).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply H0.
replace (P→Q→R) with (P∧Q→R).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply H.
apply Equiv4_01.
apply Equiv4_01.
@@ -3259,7 +3333,7 @@ Theorem n5_1 : ∀ P Q : Prop,
replace (P ∧ Q → (P → Q) ∧ (Q → P)) with
((P ∧ Q → P → Q) ∧ (P ∧ Q → Q → P)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_76a.
Qed.
@@ -3298,7 +3372,7 @@ Theorem n5_13 : ∀ P Q : Prop,
(¬¬(P → Q) ∨ (Q → P)) in n2_521a.
replace (¬¬(P→Q)) with (P→Q) in n2_521a.
apply n2_521a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (P→Q).
intros n4_13a. (*Not cited*)
apply n4_13a.
@@ -3321,7 +3395,7 @@ Theorem n5_14 : ∀ P Q R : Prop,
(¬¬(P→Q)∨(Q→R)) in Sa.
replace (¬¬(P→Q)) with (P→Q) in Sa.
apply Sa.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (P→Q).
intros n4_13a.
apply n4_13a.
@@ -3388,28 +3462,28 @@ Theorem n5_15 : ∀ P Q : Prop,
replace ((P ↔ ¬Q) ∨ (P ↔ Q)) with
((P ↔ Q) ∨ (P ↔ ¬Q)) in H.
apply H.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_31.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_41a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_31.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_31.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (Q→P).
intros n4_13a.
apply n4_13a.
rewrite <- Impl1_01.
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (P→Q).
intros n4_13b.
apply n4_13b.
rewrite <- Impl1_01.
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_12a.
apply Equiv4_01.
apply Equiv4_01.
@@ -3482,43 +3556,43 @@ Theorem n5_16 : ∀ P Q : Prop,
replace (¬(P ↔ Q) ∨ ¬(P ↔ ¬Q)) with
(¬((P ↔ Q) ∧ (P ↔ ¬Q))) in Exp3_3a.
apply Exp3_3a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_51b.
rewrite <- Impl1_01.
reflexivity.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_51a.
rewrite <- Impl1_01.
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_65a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with (¬P) (¬Q).
intros n4_3a.
apply n4_3a.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_32 with (P→Q) (Q→P) (P→¬Q).
intros n4_32a.
apply n4_32a.
replace (¬P) with ((P → Q) ∧ (P → ¬Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_82a.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_32 with (P→Q) (Q→P) (P→¬Q).
intros n4_32b.
apply n4_32b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with (Q→P) (P→¬Q).
intros n4_3b.
apply n4_3b.
replace ((P → Q) ∧ (P → ¬Q) ∧ (Q → P)) with
(((P → Q) ∧ (P → ¬Q)) ∧ (Q → P)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_32 with (P→Q) (P→¬Q) (Q→P).
intros n4_32a.
apply n4_32a.
@@ -3559,27 +3633,27 @@ Theorem n5_17 : ∀ P Q : Prop,
intros n4_21b.
replace (¬Q↔P) with (P↔¬Q) in n4_38a.
apply n4_38a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21b.
apply Equiv4_01.
replace (¬(P ∧ Q) ↔ (P → ¬Q)) with
(P ∧ Q ↔ ¬(P → ¬Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (P→¬Q).
intros n4_13a.
apply n4_13a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P ∧ Q) (¬(P→¬Q)).
intros n4_21b.
apply n4_21b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P Q.
intros n4_31a.
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21a.
Qed.
@@ -3599,7 +3673,7 @@ Theorem n5_18 : ∀ P Q : Prop,
replace ((P ↔ Q) ↔ ¬(P ↔ ¬Q)) with
(((P↔Q)∨(P↔¬Q))∧¬((P↔Q)∧(P↔¬Q))).
apply H.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_17a.
Qed.
@@ -3612,7 +3686,7 @@ Theorem n5_19 : ∀ P : Prop,
intros n4_2a.
replace (¬(P↔¬P)) with (P↔P).
apply n4_2a.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_18a.
Qed.
@@ -3625,7 +3699,7 @@ Theorem n5_21 : ∀ P Q : Prop,
intros Transp4_11a.
replace (¬P↔¬Q) with (P↔Q) in n5_1a.
apply n5_1a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
Qed.
@@ -3652,7 +3726,7 @@ Theorem n5_22 : ∀ P Q : Prop,
(P↔Q) in n4_39a.
apply n4_39a.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_51a.
Qed.
@@ -3674,11 +3748,11 @@ Theorem n5_23 : ∀ P Q : Prop,
replace (¬¬Q) with Q in n4_22a.
replace (¬Q ∧ ¬P) with (¬P ∧ ¬Q) in n4_22a.
apply n4_22a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with (¬P) (¬Q).
intros n4_3a.
apply n4_3a. (*with (¬P) (¬Q)*)
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with Q.
intros n4_13a.
apply n4_13a.
@@ -3700,7 +3774,7 @@ Theorem n5_24 : ∀ P Q : Prop,
apply n5_22a.
replace (¬((P ∧ Q)∨(¬P ∧ ¬Q))) with (¬(P↔Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_23a.
replace (¬(P ↔ Q) ↔ ¬(P ∧ Q ∨ ¬P ∧ ¬Q)) with
((P ↔ Q) ↔ P ∧ Q ∨ ¬P ∧ ¬Q).
@@ -3708,7 +3782,7 @@ Theorem n5_24 : ∀ P Q : Prop,
specialize Transp4_11 with
(P↔Q) (P ∧ Q ∨ ¬P ∧ ¬Q).
intros Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a. (*Not cited*)
Qed.
@@ -3815,7 +3889,7 @@ Theorem n5_32 : ∀ P Q R : Prop,
replace ((Q→R)∧(R→Q)) with (Q↔R) in n4_76a.
apply n4_76a.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with
(P→((Q→R)∧(R→Q))) ((P∧Q)↔(P∧R)).
intros n4_21a.
@@ -3823,15 +3897,15 @@ Theorem n5_32 : ∀ P Q R : Prop,
apply Equiv4_01.
replace (P ∧ R → P ∧ Q) with (P ∧ R → Q).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_3b.
- apply EqBi.
+ apply propositional_extensionality.
apply H0.
replace (P ∧ Q → P ∧ R) with (P ∧ Q → R).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_3a.
- apply EqBi.
+ apply propositional_extensionality.
apply H.
apply Equiv4_01.
apply Equiv4_01.
@@ -3862,7 +3936,7 @@ Theorem n5_33 : ∀ P Q R : Prop,
replace (Q∧P) with (P∧Q) in Sa.
MP Simp3_26a Sa.
apply Simp3_26a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with P Q.
intros n4_3a.
apply n4_3a. (*Not cited*)
@@ -3895,18 +3969,18 @@ Theorem n5_36 : ∀ P Q : Prop,
replace ((P↔Q)∧P) with (P∧(P↔Q)) in Id2_08a.
replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in Id2_08a.
apply Id2_08a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with Q (P↔Q).
intros n4_3a.
apply n4_3a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with P (P↔Q).
intros n4_3b.
apply n4_3b.
replace ((P ↔ Q) ∧ P ↔ (P ↔ Q) ∧ Q) with
(P ↔ Q → P ↔ Q).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_32a.
Qed.
(*The proof sketch cites Ass3_35 and n4_38,
@@ -3966,7 +4040,7 @@ Theorem n5_42 : ∀ P Q R : Prop,
apply Imp3_31b.
apply Exp3_3b.
Equiv H.
- apply EqBi.
+ apply propositional_extensionality.
apply H.
apply Equiv4_01.
specialize Imp3_31 with P Q R.
@@ -3978,7 +4052,7 @@ Theorem n5_42 : ∀ P Q R : Prop,
apply Imp3_31a.
apply Exp3_3a.
Equiv H.
- apply EqBi.
+ apply propositional_extensionality.
apply H.
apply Equiv4_01.
Qed.
@@ -4045,7 +4119,7 @@ Theorem n5_44 : ∀ P Q R : Prop,
specialize n4_21 with
((P→Q)∧(P→R)) ((P→Q)∧(P→(Q∧R))).
intros n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21a.
apply Equiv4_01.
Qed.
@@ -4079,7 +4153,7 @@ Theorem n5_5 : ∀ P Q : Prop,
((P→Q)↔Q) in n3_47a.
apply n3_47a.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_24 with P.
intros n4_24a. (*Not cited*)
apply n4_24a.
@@ -4121,13 +4195,13 @@ Theorem n5_501 : ∀ P Q : Prop,
replace (P→(Q→P↔Q)∧(P↔Q→Q)) with
((P→Q→P↔Q)∧(P→P↔Q→Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_76a.
apply Equiv4_01.
replace (P∧(P→Q)∧(Q→P)) with
((P∧(P→Q))∧(Q→P)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_32 with P (P→Q) (Q→P).
intros n4_32a. (*Not cited*)
apply n4_32a.
@@ -4147,12 +4221,12 @@ Theorem n5_53 : ∀ P Q R S : Prop,
((((P∨Q)∨R)→S)↔(((P→S)∧(Q→S))∧(R→S)))
in n4_77a.
apply n4_77a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with ((P ∨ Q) ∨ R → S)
(((P → S) ∧ (Q → S)) ∧ (R → S)).
intros n4_21a.
apply n4_21a. (*Not cited*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_77b.
Qed.
@@ -4186,35 +4260,35 @@ Theorem n5_54 : ∀ P Q : Prop,
replace (Q↔(P∧Q)) with ((P∧Q)↔Q) in Sa.
replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa.
apply Sa.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P∧Q) P.
intros n4_21a. (*Not cited*)
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P∧Q) Q.
intros n4_21b. (*Not cited*)
apply n4_21b.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (P ↔ (P∧Q)).
intros n4_13a. (*Not cited*)
apply n4_13a.
rewrite <- Impl1_01. (*Not cited*)
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_56 with Q (P∧Q).
intros n4_56a. (*Not cited*)
apply n4_56a.
replace (¬(Q∨P∧Q)) with (¬Q).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_44a.
replace (¬Q↔¬(Q∨P∧Q)) with (Q↔Q∨P∧Q).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply Transp4_11a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with P Q.
intros n4_3a. (*Not cited*)
apply n4_3a.
@@ -4245,29 +4319,29 @@ Theorem n5_55 : ∀ P Q : Prop,
replace ((P∨Q↔Q)∨(P∨Q↔P)) with
((P∨Q↔P)∨(P∨Q↔Q)) in Sb.
apply Sb.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with (P ∨ Q ↔ P) (P ∨ Q ↔ Q).
intros n4_31a. (*Not cited*)
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P ∨ Q) P.
intros n4_21a. (*Not cited*)
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P ∨ Q) Q.
intros n4_21b. (*Not cited*)
apply n4_21b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with (Q ↔ P ∨ Q).
intros n4_13a. (*Not cited*)
apply n4_13a.
rewrite <- Impl1_01.
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P Q.
intros n4_31b.
apply n4_31b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_25 with P.
intros n4_25a. (*Not cited*)
apply n4_25a.
@@ -4275,15 +4349,15 @@ Theorem n5_55 : ∀ P Q : Prop,
reflexivity.
replace ((P∧Q)∨P) with (P∨(P∧Q)).
replace (Q∨P) with (P∨Q).
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_41 with P P Q.
intros n4_41a. (*Not cited*)
apply n4_41a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P Q.
intros n4_31c.
apply n4_31c.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P (P ∧ Q).
intros n4_31d. (*Not cited*)
apply n4_31d.
@@ -4323,7 +4397,7 @@ Theorem n5_6 : ∀ P Q R : Prop,
apply Simp3_27a.
replace (Q ∨ R) with (¬Q → R).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_64a.
apply Equiv4_01.
apply Equiv4_01.
@@ -4344,26 +4418,26 @@ Theorem n5_61 : ∀ P Q : Prop,
replace (P ∧ ¬Q ↔ (P ∨ Q) ∧ ¬Q) with
((P ∨ Q) ∧ ¬Q ↔ P ∧ ¬Q) in n4_74a.
apply n4_74a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with ((P ∨ Q) ∧ ¬Q) (P ∧ ¬Q).
intros n4_21a. (*Not cited*)
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P Q.
intros n4_31a. (*Not cited*)
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with (Q ∨ P) (¬Q).
intros n4_3a. (*Not cited*)
apply n4_3a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with P (¬Q).
intros n4_3b. (*Not cited*)
apply n4_3b.
replace (¬Q ∧ P ↔ ¬Q ∧ (Q ∨ P)) with
(¬Q → P ↔ Q ∨ P).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n5_32a.
Qed.
@@ -4380,19 +4454,19 @@ Theorem n5_62 : ∀ P Q : Prop,
replace (P ∨ ¬Q ↔ P ∧ Q ∨ ¬Q) with
(P ∧ Q ∨ ¬Q ↔ P ∨ ¬Q) in n4_7a.
apply n4_7a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P ∧ Q ∨ ¬Q) (P ∨ ¬Q).
intros n4_21a. (*Not cited*)
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with P Q.
intros n4_3a. (*Not cited*)
apply n4_3a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P (¬Q).
intros n4_31a. (*Not cited*)
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with (Q ∧ P) (¬Q).
intros n4_31b. (*Not cited*)
apply n4_31b.
@@ -4414,23 +4488,23 @@ Theorem n5_63 : ∀ P Q : Prop,
(P ∨ Q ↔ P ∨ Q ∧ ¬P) in n5_62a.
replace (Q∧¬P) with (¬P∧Q) in n5_62a.
apply n5_62a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with (¬P) Q.
intros n4_3a.
apply n4_3a. (*Not cited*)
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P∨Q) (P∨(Q∧¬P)).
intros n4_21a. (*Not cited*)
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P (Q∧¬P).
intros n4_31a. (*Not cited*)
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with P Q.
intros n4_31b. (*Not cited*)
apply n4_31b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_13 with P.
intros n4_13a. (*Not cited*)
apply n4_13a.
@@ -4542,23 +4616,23 @@ Theorem n5_7 : ∀ P Q R : Prop,
Equiv H.
apply H.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_13. (*With R*)
rewrite <- Impl1_01. (*With (¬R) (P↔Q)*)
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_3. (*With (R ∨ Q ↔ R ∨ P) (¬R)*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_31. (*With P R*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_31. (*With Q R*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21. (*With (P ∨ R) (Q ∨ R)*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_32. (*With (P ↔ R ∨ P) (R ∨ Q ↔ Q) (R ∨ P ↔ R ∨ Q)*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_3. (*With (R ∨ Q ↔ Q) (R ∨ P ↔ R ∨ Q)*)
- apply EqBi.
+ apply propositional_extensionality.
apply n4_21. (*To commute the biconditional.*)
apply n4_32. (*With (P ↔ R ∨ P) (R ∨ P ↔ R ∨ Q) (R ∨ Q ↔ Q)*)
Qed.
@@ -4606,34 +4680,34 @@ Theorem n5_71 : ∀ P Q R : Prop,
replace ((P∧R)↔((P∨Q)∧R)) with
(((P∨Q)∧R)↔(P∧R)) in Sa.
apply Sa.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with ((P∨Q)∧R) (P∧R).
intros n4_21a. (*Not cited*)
apply n4_21a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with (P∨Q) R.
intros n4_3a.
apply n4_3a. (*Not cited*)
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_4 with R P Q.
intros n4_4a.
replace ((Q∧R)∨(P∧R)) with ((P∧R)∨(Q∧R)).
replace (Q ∧ R) with (R ∧ Q).
replace (P ∧ R) with (R ∧ P).
apply n4_4a. (*Not cited*)
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with R P.
intros n4_3a.
apply n4_3a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_3 with R Q.
intros n4_3b.
apply n4_3b.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with (P∧R) (Q∧R).
intros n4_31a. (*Not cited*)
apply n4_31a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_31 with (Q∧R) (P∧R).
intros n4_31b. (*Not cited*)
apply n4_31b.
@@ -4666,14 +4740,14 @@ Theorem n5_74 : ∀ P Q R : Prop,
replace (((P→Q)↔(P→R))↔(P→Q↔R)) with
((P→(Q↔R))↔((P→Q)↔(P→R))) in n4_38a.
apply n4_38a.
- apply EqBi.
+ apply propositional_extensionality.
specialize n4_21 with (P→Q↔R)
((P→Q)↔(P→R)).
intros n4_21a. (*Not cited*)
apply n4_21a.
replace (P→Q↔R) with ((P→Q→R)∧(P→R→Q)).
reflexivity.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_76a.
apply Equiv4_01.
apply Equiv4_01.
@@ -4746,7 +4820,7 @@ Theorem n5_75 : ∀ P Q R : Prop,
(P∧¬Q↔R) in Comp3_43c.
apply Comp3_43c.
apply Equiv4_01.
- apply EqBi.
+ apply propositional_extensionality.
apply n4_77a.
apply Equiv4_01.
apply Equiv4_01.
diff --git a/Yuelin.v b/Yuelin.v
new file mode 100644
index 0000000..e1c51b8
--- /dev/null
+++ b/Yuelin.v
@@ -0,0 +1,39 @@
+Import No1.
+Import No2.
+Import No3.
+Import No4.
+Import No5.
+
+ Theorem n3_47 : ∀ P Q R S : Prop,
+ ((P → R) ∧ (Q → S)) → (P ∧ Q) → R ∧ S.
+Proof. intros P Q R S.
+ specialize Simp3_26 with (P→R) (Q→S).
+ intros Simp3_26a. (*Yuelin's book has n2_34. This doesn't exist.*)
+ specialize Fact3_45 with P R Q.
+ intros Fact3_45a. (*Yuelin's book has n2_45. Fact3_45 is meant.*)
+ replace (R∧Q) with (Q∧R) in Fact3_45a.
+ Syll Simp3_26a Fact3_45a Sa. (*Syll2_05*)
+ specialize Simp3_27 with (P→R) (Q→S).
+ intros Simp3_27a. (*Yuelin's book has n2_36. This doesn't exist.*)
+ specialize Fact3_45 with Q S R.
+ intros Fact3_45b. (*Yuelin's book has n2_45. Fact3_45 is meant.*)
+ replace (S∧R) with (R∧S) in Fact3_45b.
+ Syll Simp3_27a Fact3_45b Sb. (*Syll2_05*)
+ clear Simp3_26a. clear Fact3_45a.
+ clear Simp3_27a. clear Fact3_45b.
+ Conj Sa Sb.
+ split.
+ apply Sa.
+ apply Sb.
+ specialize Comp3_43 with ((P→R)∧(Q→S)) ((P∧Q)→(Q∧R)) ((Q∧R)→(R∧S)).
+ intros Comp3_43a. (*Yuelin's book has n2_39. Comp3_43 is meant. PM and I have n2_83 here.*)
+ MP Comp3_43a H.
+ specialize Syll3_33 with (P∧Q) (Q∧R) (R∧S).
+ intros Syll3_33a. (*Yuelin's book has n2_39. Syll3_33 is meant. My n2_83 does this work, too.*)
+ Syll Comp3_43a Syll3_33a Sc. (*Yuelin seems to do another application of Syll3_33, citing the same number n2_39. But that would also require here, as above, Conjunction, which Yuelin does not bother citing.*)
+ apply Sc.
+ apply EqBi.
+ apply n4_3.
+ apply EqBi.
+ apply n4_3.
+Qed. \ No newline at end of file