diff options
| author | Landon D. C. Elkind | 2021-02-05 12:20:52 -0700 |
|---|---|---|
| committer | Landon D. C. Elkind | 2021-02-05 12:20:52 -0700 |
| commit | 3b834485e5a3627c4bc07f47c7a5e8b9ab27bea6 (patch) | |
| tree | db03086e4e4371a9729de077b7a72d70defbedc5 | |
| parent | eb78edd5a812b4cfeea8972bde275fd0c92c1a23 (diff) | |
Added theorem names
| -rw-r--r-- | PL.pdf | bin | 420430 -> 420654 bytes | |||
| -rw-r--r-- | PL.v | 448 |
2 files changed, 224 insertions, 224 deletions
| Binary files differ @@ -61,7 +61,7 @@ Proof. intros P Q. apply Impl1_01. Qed. -Theorem n2_03 : ∀ P Q : Prop, +Theorem Transp2_03 : ∀ P Q : Prop, (P → ~Q) → (Q → ~P). Proof. intros P Q. specialize Perm1_4 with (~P) (~Q). @@ -120,7 +120,7 @@ Proof. intros P. apply MP1_1. Qed. -Theorem n2_08 : ∀ P : Prop, +Theorem Id2_08 : ∀ P : Prop, P → P. Proof. intros P. specialize Syll2_05 with P (P ∨ P) P. @@ -137,7 +137,7 @@ Qed. Theorem n2_1 : ∀ P : Prop, (~P) ∨ P. Proof. intros P. - specialize n2_08 with P. + specialize Id2_08 with P. replace (~P ∨ P) with (P → P). apply MP1_1. apply Impl1_01. @@ -189,15 +189,15 @@ Proof. intros P. apply n2_13. Qed. -Theorem Trans2_15 : ∀ P Q : Prop, +Theorem Transp2_15 : ∀ P Q : Prop, (~P → Q) → (~Q → P). Proof. intros P Q. specialize Syll2_05 with (~P) Q (~~Q). intros Syll2_05a. specialize n2_12 with Q. intros n2_12. - specialize n2_03 with (~P) (~Q). - intros n2_03. + specialize Transp2_03 with (~P) (~Q). + intros Transp2_03. specialize Syll2_05 with (~Q) (~~P) P. intros Syll2_05b. specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P). @@ -210,7 +210,7 @@ Proof. intros P Q. intros n2_14. apply n2_14. apply Syll2_05c. - apply n2_03. + apply Transp2_03. apply Syll2_05a. apply n2_12. Qed. @@ -226,31 +226,31 @@ Ltac MP H1 H2 := | [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2) end. -Theorem Trans2_16 : ∀ P Q : Prop, +Theorem Transp2_16 : ∀ P Q : Prop, (P → Q) → (~Q → ~P). Proof. intros P Q. specialize n2_12 with Q. intros n2_12a. specialize Syll2_05 with P Q (~~Q). intros Syll2_05a. - specialize n2_03 with P (~Q). - intros n2_03a. + specialize Transp2_03 with P (~Q). + intros Transp2_03a. MP n2_12a Syll2_05a. - Syll Syll2_05a n2_03a S. + Syll Syll2_05a Transp2_03a S. apply S. Qed. -Theorem Trans2_17 : ∀ P Q : Prop, +Theorem Transp2_17 : ∀ P Q : Prop, (~Q → ~P) → (P → Q). Proof. intros P Q. - specialize n2_03 with (~Q) P. - intros n2_03a. + specialize Transp2_03 with (~Q) P. + intros Transp2_03a. specialize n2_14 with Q. intros n2_14a. specialize Syll2_05 with P (~~Q) Q. intros Syll2_05a. MP n2_14a Syll2_05a. - Syll n2_03a Syll2_05a S. + Syll Transp2_03a Syll2_05a S. apply S. Qed. @@ -487,10 +487,10 @@ Theorem n2_45 : ∀ P Q : Prop, Proof. intros P Q. specialize n2_2 with P Q. intros n2_2a. - specialize Trans2_16 with P (P∨Q). - intros Trans2_16a. - MP n2_2 Trans2_16a. - apply Trans2_16a. + specialize Transp2_16 with P (P∨Q). + intros Transp2_16a. + MP n2_2 Transp2_16a. + apply Transp2_16a. Qed. Theorem n2_46 : ∀ P Q : Prop, @@ -498,10 +498,10 @@ Theorem n2_46 : ∀ P Q : Prop, Proof. intros P Q. specialize Add1_3 with P Q. intros Add1_3a. - specialize Trans2_16 with Q (P∨Q). - intros Trans2_16a. - MP Add1_3a Trans2_16a. - apply Trans2_16a. + specialize Transp2_16 with Q (P∨Q). + intros Transp2_16a. + MP Add1_3a Transp2_16a. + apply Transp2_16a. Qed. Theorem n2_47 : ∀ P Q : Prop, @@ -578,9 +578,9 @@ Theorem n2_521 : ∀ P Q : Prop, Proof. intros P Q. specialize n2_52 with P Q. intros n2_52a. - specialize Trans2_17 with Q P. - intros Trans2_17a. - Syll n2_52a Trans2_17a S. + specialize Transp2_17 with Q P. + intros Transp2_17a. + Syll n2_52a Transp2_17a S. apply S. Qed. @@ -989,9 +989,9 @@ Theorem n3_1 : ∀ P Q : Prop, (P ∧ Q) → ~(~P ∨ ~Q). Proof. intros P Q. replace (~(~P∨~Q)) with (P∧Q). - specialize n2_08 with (P∧Q). - intros n2_08a. - apply n2_08a. + specialize Id2_08 with (P∧Q). + intros Id2_08a. + apply Id2_08a. apply Prod3_01. Qed. @@ -999,9 +999,9 @@ Theorem n3_11 : ∀ P Q : Prop, ~(~P ∨ ~Q) → (P ∧ Q). Proof. intros P Q. replace (~(~P∨~Q)) with (P∧Q). - specialize n2_08 with (P∧Q). - intros n2_08a. - apply n2_08a. + specialize Id2_08 with (P∧Q). + intros Id2_08a. + apply Id2_08a. apply Prod3_01. Qed. @@ -1020,10 +1020,10 @@ Theorem n3_13 : ∀ P Q : Prop, Proof. intros P Q. specialize n3_11 with P Q. intros n3_11a. - specialize Trans2_15 with (~P∨~Q) (P∧Q). - intros Trans2_15a. - MP Trans2_15a n3_11a. - apply Trans2_15a. + specialize Transp2_15 with (~P∨~Q) (P∧Q). + intros Transp2_15a. + MP Transp2_15a n3_11a. + apply Transp2_15a. Qed. Theorem n3_14 : ∀ P Q : Prop, @@ -1031,12 +1031,12 @@ Theorem n3_14 : ∀ P Q : Prop, Proof. intros P Q. specialize n3_1 with P Q. intros n3_1a. - specialize Trans2_16 with (P∧Q) (~(~P∨~Q)). - intros Trans2_16a. - MP Trans2_16a n3_1a. + specialize Transp2_16 with (P∧Q) (~(~P∨~Q)). + intros Transp2_16a. + MP Transp2_16a n3_1a. specialize n2_12 with (~P∨~Q). intros n2_12a. - Syll n2_12a Trans2_16a S. + Syll n2_12a Transp2_16a S. apply S. Qed. @@ -1077,10 +1077,10 @@ Proof. intros P Q. specialize n3_14 with P Q. intros n3_14a. Syll Ha n3_14a Hb. - specialize Trans2_17 with (P∧Q) (Q ∧ P). - intros Trans2_17a. - MP Trans2_17a Hb. - apply Trans2_17a. + specialize Transp2_17 with (P∧Q) (Q ∧ P). + intros Transp2_17a. + MP Transp2_17a Hb. + apply Transp2_17a. Qed. Theorem n3_24 : ∀ P : Prop, @@ -1132,17 +1132,17 @@ Qed. Theorem Exp3_3 : ∀ P Q R : Prop, ((P ∧ Q) → R) → (P → (Q → R)). Proof. intros P Q R. - specialize Trans2_15 with (~P∨~Q) R. - intros Trans2_15a. + specialize Transp2_15 with (~P∨~Q) R. + intros Transp2_15a. specialize Comm2_04 with (~R) P (~Q). intros Comm2_04a. replace (P → ~Q) with (~P ∨ ~Q) in Comm2_04a. - Syll Trans2_15a Comm2_04a Sa. - specialize Trans2_17 with Q R. - intros Trans2_17a. + Syll Transp2_15a Comm2_04a Sa. + specialize Transp2_17 with Q R. + intros Transp2_17a. specialize Syll2_05 with P (~R→~Q) (Q→R). intros Syll2_05a. - MP Syll2_05a Trans2_17a. + MP Syll2_05a Transp2_17a. Syll Sa Syll2_05a Sb. replace (~(~P ∨ ~Q)) with (P ∧ Q) in Sb. apply Sb. @@ -1151,7 +1151,7 @@ Proof. intros P Q R. reflexivity. apply Impl1_01. Qed. -(*The proof sketch cites n2_08, but +(*The proof sketch cites Id2_08, but we did not seem to need it.*) Theorem Imp3_31 : ∀ P Q R : Prop, @@ -1170,7 +1170,7 @@ Proof. intros P Q R. apply Impl1_01. apply Impl1_01. Qed. -(*The proof sketch cites n2_08, but +(*The proof sketch cites Id2_08, but we did not seem to need it.*) Theorem Syll3_33 : ∀ P Q R : Prop, @@ -1206,14 +1206,14 @@ Proof. intros P Q. apply Imp3_31a. Qed. -Theorem n3_37 : ∀ P Q R : Prop, +Theorem Transp3_37 : ∀ P Q R : Prop, (P ∧ Q → R) → (P ∧ ~R → ~Q). Proof. intros P Q R. - specialize Trans2_16 with Q R. - intros Trans2_16a. + specialize Transp2_16 with Q R. + intros Transp2_16a. specialize Syll2_05 with P (Q→R) (~R→~Q). intros Syll2_05a. - MP Syll2_05a Trans2_16a. + MP Syll2_05a Transp2_16a. specialize Exp3_3 with P Q R. intros Exp3_3a. Syll Exp3_3a Syll2_05a Sa. @@ -1228,12 +1228,12 @@ Theorem n3_4 : ∀ P Q : Prop, Proof. intros P Q. specialize n2_51 with P Q. intros n2_51a. - specialize Trans2_15 with (P→Q) (P→~Q). - intros Trans2_15a. - MP Trans2_15a n2_51a. - replace (P→~Q) with (~P∨~Q) in Trans2_15a. - replace (~(~P∨~Q)) with (P∧Q) in Trans2_15a. - apply Trans2_15a. + specialize Transp2_15 with (P→Q) (P→~Q). + intros Transp2_15a. + MP Transp2_15a n2_51a. + replace (P→~Q) with (~P∨~Q) in Transp2_15a. + replace (~(~P∨~Q)) with (P∧Q) in Transp2_15a. + apply Transp2_15a. apply Prod3_01. replace (~P∨~Q) with (P→~Q). reflexivity. @@ -1313,9 +1313,9 @@ Theorem Fact3_45 : ∀ P Q R : Prop, Proof. intros P Q R. specialize Syll2_06 with P Q (~R). intros Syll2_06a. - specialize Trans2_16 with (Q→~R) (P→~R). - intros Trans2_16a. - Syll Syll2_06a Trans2_16a S. + specialize Transp2_16 with (Q→~R) (P→~R). + intros Transp2_16a. + Syll Syll2_06a Transp2_16a S. replace (P→~R) with (~P∨~R) in S. replace (Q→~R) with (~Q∨~R) in S. replace (~(~P∨~R)) with (P∧R) in S. @@ -1418,33 +1418,33 @@ Ltac Equiv H1 := replace ((P→Q) ∧ (Q→P)) with (P↔Q) in H1 end. -Theorem Trans4_1 : ∀ P Q : Prop, +Theorem Transp4_1 : ∀ P Q : Prop, (P → Q) ↔ (~Q → ~P). Proof. intros P Q. - specialize Trans2_16 with P Q. - intros Trans2_16a. - specialize Trans2_17 with P Q. - intros Trans2_17a. - Conj Trans2_16a Trans2_17a. + specialize Transp2_16 with P Q. + intros Transp2_16a. + specialize Transp2_17 with P Q. + intros Transp2_17a. + Conj Transp2_16a Transp2_17a. split. - apply Trans2_16a. - apply Trans2_17a. + apply Transp2_16a. + apply Transp2_17a. Equiv H. apply H. apply Equiv4_01. Qed. -Theorem Trans4_11 : ∀ P Q : Prop, +Theorem Transp4_11 : ∀ P Q : Prop, (P ↔ Q) ↔ (~P ↔ ~Q). Proof. intros P Q. - specialize Trans2_16 with P Q. - intros Trans2_16a. - specialize Trans2_16 with Q P. - intros Trans2_16b. - Conj Trans2_16a Trans2_16b. + specialize Transp2_16 with P Q. + intros Transp2_16a. + specialize Transp2_16 with Q P. + intros Transp2_16b. + Conj Transp2_16a Transp2_16b. split. - apply Trans2_16a. - apply Trans2_16b. + apply Transp2_16a. + apply Transp2_16b. specialize n3_47 with (P→Q) (Q→P) (~Q→~P) (~P→~Q). intros n3_47a. MP n3_47 H. @@ -1453,23 +1453,23 @@ Proof. intros P Q. Syll n3_47a n3_22a Sa. replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sa. replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sa. - clear Trans2_16a. clear H. clear Trans2_16b. + clear Transp2_16a. clear H. clear Transp2_16b. clear n3_22a. clear n3_47a. - specialize Trans2_17 with Q P. - intros Trans2_17a. - specialize Trans2_17 with P Q. - intros Trans2_17b. - Conj Trans2_17a Trans2_17b. + specialize Transp2_17 with Q P. + intros Transp2_17a. + specialize Transp2_17 with P Q. + intros Transp2_17b. + Conj Transp2_17a Transp2_17b. split. - apply Trans2_17a. - apply Trans2_17b. + apply Transp2_17a. + apply Transp2_17b. specialize n3_47 with (~P→~Q) (~Q→~P) (Q→P) (P→Q). intros n3_47a. MP n3_47a H. specialize n3_22 with (Q→P) (P→Q). intros n3_22a. Syll n3_47a n3_22a Sb. - clear Trans2_17a. clear Trans2_17b. clear H. + clear Transp2_17a. clear Transp2_17b. clear H. clear n3_47a. clear n3_22a. replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sb. replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sb. @@ -1489,30 +1489,30 @@ Qed. Theorem n4_12 : ∀ P Q : Prop, (P ↔ ~Q) ↔ (Q ↔ ~P). Proof. intros P Q. - specialize n2_03 with P Q. - intros n2_03a. - specialize Trans2_15 with Q P. - intros Trans2_15a. - Conj n2_03a Trans2_15a. + specialize Transp2_03 with P Q. + intros Transp2_03a. + specialize Transp2_15 with Q P. + intros Transp2_15a. + Conj Transp2_03a Transp2_15a. split. - apply n2_03a. - apply Trans2_15a. + apply Transp2_03a. + apply Transp2_15a. specialize n3_47 with (P→~Q) (~Q→P) (Q→~P) (~P→Q). intros n3_47a. MP n3_47a H. - specialize n2_03 with Q P. - intros n2_03b. - specialize Trans2_15 with P Q. - intros Trans2_15b. - Conj n2_03b Trans2_15b. + specialize Transp2_03 with Q P. + intros Transp2_03b. + specialize Transp2_15 with P Q. + intros Transp2_15b. + Conj Transp2_03b Transp2_15b. split. - apply n2_03b. - apply Trans2_15b. + apply Transp2_03b. + apply Transp2_15b. specialize n3_47 with (Q→~P) (~P→Q) (P→~Q) (~Q→P). intros n3_47b. MP n3_47b H0. - clear n2_03a. clear Trans2_15a. clear H. clear n2_03b. - clear Trans2_15b. clear H0. + clear Transp2_03a. clear Transp2_15a. clear H. clear + Transp2_03b. clear Transp2_15b. clear H0. replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47a. replace ((Q → ~P) ∧ (~P → Q)) with (Q↔~P) in n3_47a. replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47b. @@ -1549,13 +1549,13 @@ Theorem n4_13 : ∀ P : Prop, Theorem n4_14 : ∀ P Q R : Prop, ((P ∧ Q) → R) ↔ ((P ∧ ~R) → ~Q). Proof. intros P Q R. -specialize n3_37 with P Q R. -intros n3_37a. -specialize n3_37 with P (~R) (~Q). -intros n3_37b. -Conj n3_37a n3_37b. -split. apply n3_37a. -apply n3_37b. +specialize Transp3_37 with P Q R. +intros Transp3_37a. +specialize Transp3_37 with P (~R) (~Q). +intros Transp3_37b. +Conj Transp3_37a Transp3_37b. +split. apply Transp3_37a. +apply Transp3_37b. specialize n4_13 with Q. intros n4_13a. specialize n4_13 with R. @@ -1619,10 +1619,10 @@ Theorem n4_2 : ∀ P : Prop, Proof. intros P. specialize n3_2 with (P→P) (P→P). intros n3_2a. - specialize n2_08 with P. - intros n2_08a. - MP n3_2a n2_08a. - MP n3_2a n2_08a. + specialize Id2_08 with P. + intros Id2_08a. + MP n3_2a Id2_08a. + MP n3_2a Id2_08a. Equiv n3_2a. apply n3_2a. apply Equiv4_01. @@ -1775,12 +1775,12 @@ Qed. Proof. intros P Q R. specialize n4_15 with P Q R. intros n4_15a. - specialize Trans4_1 with P (~(Q ∧ R)). - intros Trans4_1a. - replace (~~(Q ∧ R)) with (Q ∧ R) in Trans4_1a. + specialize Transp4_1 with P (~(Q ∧ R)). + intros Transp4_1a. + replace (~~(Q ∧ R)) with (Q ∧ R) in Transp4_1a. replace (Q ∧ R→~P) with (P→~(Q ∧ R)) in n4_15a. - specialize Trans4_11 with (P ∧ Q → ~R) (P → ~(Q ∧ R)). - intros Trans4_11a. + specialize Transp4_11 with (P ∧ Q → ~R) (P → ~(Q ∧ R)). + intros Transp4_11a. replace ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))) with (~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) in n4_15a. replace (P ∧ Q → ~R) with @@ -1802,9 +1802,9 @@ Qed. ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))). reflexivity. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. apply EqBi. - apply Trans4_1a. + apply Transp4_1a. apply EqBi. specialize n4_13 with (Q ∧ R). intros n4_13a. @@ -1813,7 +1813,7 @@ Qed. (*Note that the actual proof uses n4_12, but that transposition involves transforming a biconditional into a conditional. This way - of doing it - using Trans4_1 to transpose a + of doing it - using Transp4_1 to transpose a conditional and then applying n4_13 to double negate - is easier without a derived rule for replacing a biconditional with one @@ -2229,18 +2229,18 @@ Theorem n4_44 : ∀ P Q : Prop, Proof. intros P Q. specialize n2_2 with P (P∧Q). intros n2_2a. - specialize n2_08 with P. - intros n2_08a. + specialize Id2_08 with P. + intros Id2_08a. specialize Simp3_26 with P Q. intros Simp3_26a. - Conj n2_08a Simp3_26a. + Conj Id2_08a Simp3_26a. split. - apply n2_08a. + apply Id2_08a. apply Simp3_26a. specialize n3_44 with P P (P ∧ Q). intros n3_44a. MP n3_44a H. - clear H. clear n2_08a. clear Simp3_26a. + clear H. clear Id2_08a. clear Simp3_26a. Conj n2_2a n3_44a. split. apply n2_2a. @@ -2329,7 +2329,7 @@ Theorem n4_53 : ∀ P Q : Prop, Proof. intros P Q. specialize n4_52 with P Q. intros n4_52a. - specialize n4_12 with ( P ∧ ~Q) ((~P ∨ Q)). + specialize n4_12 with (P ∧ ~Q) ((~P ∨ Q)). intros n4_12a. replace ((P∧~Q ↔ ~(~P∨Q))↔(~P∨Q ↔ ~(P∧~Q))) with ((P∧~Q ↔ ~(~P∨Q)) = (~P∨Q ↔ ~(P∧~Q))) in n4_12a. @@ -2437,8 +2437,8 @@ Theorem n4_61 : ∀ P Q : Prop, Proof. intros P Q. specialize n4_6 with P Q. intros n4_6a. - specialize Trans4_11 with (P→Q) (~P∨Q). - intros Trans4_11a. + specialize Transp4_11 with (P→Q) (~P∨Q). + intros Transp4_11a. specialize n4_52 with P Q. intros n4_52a. replace ((P → Q) ↔ ~P ∨ Q) with @@ -2448,9 +2448,9 @@ Theorem n4_61 : ∀ P Q : Prop, apply EqBi. apply n4_52a. replace (((P→Q)↔~P∨Q)↔(~(P→Q)↔~(~P∨Q))) with - ((~(P→Q)↔~(~P∨Q))↔((P→Q)↔~P∨Q)) in Trans4_11a. + ((~(P→Q)↔~(~P∨Q))↔((P→Q)↔~P∨Q)) in Transp4_11a. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. apply EqBi. specialize n4_21 with (~(P→Q)↔~(~P∨Q)) ((P→Q)↔(~P∨Q)). @@ -2471,18 +2471,18 @@ Theorem n4_63 : ∀ P Q : Prop, Proof. intros P Q. specialize n4_62 with P Q. intros n4_62a. - specialize Trans4_11 with (P → ~Q) (~P ∨ ~Q). - intros Trans4_11a. + specialize Transp4_11 with (P → ~Q) (~P ∨ ~Q). + intros Transp4_11a. specialize n4_5 with P Q. intros n4_5a. - replace (~(~P ∨ ~Q)) with (P ∧ Q) in Trans4_11a. + replace (~(~P ∨ ~Q)) with (P ∧ Q) in Transp4_11a. replace ((P → ~Q) ↔ ~P ∨ ~Q) with ((~(P → ~Q) ↔ P ∧ Q)) in n4_62a. apply n4_62a. replace (((P→~Q)↔~P∨~Q)↔(~(P→~Q)↔P∧Q)) with - ((~(P→~Q)↔P∧Q)↔((P→~Q)↔~P∨~Q)) in Trans4_11a. + ((~(P→~Q)↔P∧Q)↔((P→~Q)↔~P∨~Q)) in Transp4_11a. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. specialize n4_21 with (~(P → ~Q) ↔ P ∧ Q) ((P → ~Q) ↔ ~P ∨ ~Q). intros n4_21a. @@ -2513,12 +2513,12 @@ Theorem n4_65 : ∀ P Q : Prop, Proof. intros P Q. specialize n4_64 with P Q. intros n4_64a. - specialize Trans4_11 with(~P → Q) (P ∨ Q). - intros Trans4_11a. + specialize Transp4_11 with(~P → Q) (P ∨ Q). + intros Transp4_11a. specialize n4_56 with P Q. intros n4_56a. replace (((~P→Q)↔P∨Q)↔(~(~P→Q)↔~(P∨Q))) with - ((~(~P→Q)↔~(P∨Q))↔((~P→Q)↔P∨Q)) in Trans4_11a. + ((~(~P→Q)↔~(P∨Q))↔((~P→Q)↔P∨Q)) in Transp4_11a. replace ((~P → Q) ↔ P ∨ Q) with (~(~P → Q) ↔ ~(P ∨ Q)) in n4_64a. replace (~(P ∨ Q)) with (~P ∧ ~Q) in n4_64a. @@ -2526,7 +2526,7 @@ Theorem n4_65 : ∀ P Q : Prop, apply EqBi. apply n4_56a. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. apply EqBi. specialize n4_21 with (~(~P → Q)↔~(P ∨ Q)) ((~P → Q)↔(P ∨ Q)). @@ -2547,8 +2547,8 @@ Theorem n4_67 : ∀ P Q : Prop, Proof. intros P Q. specialize n4_66 with P Q. intros n4_66a. - specialize Trans4_11 with (~P → ~Q) (P ∨ ~Q). - intros Trans4_11a. + specialize Transp4_11 with (~P → ~Q) (P ∨ ~Q). + intros Transp4_11a. replace ((~P → ~Q) ↔ P ∨ ~Q) with (~(~P → ~Q) ↔ ~(P ∨ ~Q)) in n4_66a. specialize n4_54 with P Q. @@ -2558,9 +2558,9 @@ Theorem n4_67 : ∀ P Q : Prop, apply EqBi. apply n4_54a. replace (((~P→~Q)↔P∨~Q)↔(~(~P→~Q)↔~(P∨~Q))) with - ((~(~P→~Q)↔~(P∨~Q))↔((~P→~Q)↔P∨~Q)) in Trans4_11a. + ((~(~P→~Q)↔~(P∨~Q))↔((~P→~Q)↔P∨~Q)) in Transp4_11a. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. apply EqBi. specialize n4_21 with (~(~P → ~Q)↔~(P ∨ ~Q)) ((~P → ~Q)↔(P ∨ ~Q)). @@ -2577,15 +2577,15 @@ Theorem n4_7 : ∀ P Q : Prop, (P → P) (P → Q) (P → P ∧ Q). intros Exp3_3a. MP Exp3_3a Comp3_43a. - specialize n2_08 with P. - intros n2_08a. - MP Exp3_3a n2_08a. + specialize Id2_08 with P. + intros Id2_08a. + MP Exp3_3a Id2_08a. specialize Simp3_27 with P Q. intros Simp3_27a. specialize Syll2_05 with P (P ∧ Q) Q. intros Syll2_05a. MP Syll2_05a Simp3_27a. - clear n2_08a. clear Comp3_43a. clear Simp3_27a. + clear Id2_08a. clear Comp3_43a. clear Simp3_27a. Conj Syll2_05a Exp3_3a. split. apply Exp3_3a. @@ -2633,13 +2633,13 @@ Theorem n4_71 : ∀ P Q : Prop, Theorem n4_72 : ∀ P Q : Prop, (P → Q) ↔ (Q ↔ (P ∨ Q)). Proof. intros P Q. - specialize Trans4_1 with P Q. - intros Trans4_1a. + specialize Transp4_1 with P Q. + intros Transp4_1a. specialize n4_71 with (~Q) (~P). intros n4_71a. - Conj Trans4_1a n4_71a. + Conj Transp4_1a n4_71a. split. - apply Trans4_1a. + apply Transp4_1a. apply n4_71a. specialize n4_22 with (P→Q) (~Q→~P) (~Q↔~Q ∧ ~P). @@ -2746,19 +2746,19 @@ Theorem n4_77 : ∀ P Q R : Prop, Proof. intros P Q R. specialize n3_44 with P Q R. intros n3_44a. - specialize n2_08 with (Q ∨ R → P). - intros n2_08a. (*Not cited*) + specialize Id2_08 with (Q ∨ R → P). + intros Id2_08a. (*Not cited*) replace ((Q ∨ R → P) → (Q ∨ R → P)) with - ((Q ∨ R → P) → (~(Q ∨ R) ∨ P)) in n2_08a. - replace (~(Q ∨ R)) with (~Q ∧ ~R) in n2_08a. + ((Q ∨ R → P) → (~(Q ∨ R) ∨ P)) in Id2_08a. + replace (~(Q ∨ R)) with (~Q ∧ ~R) in Id2_08a. replace (~Q ∧ ~R ∨ P) with - ((~Q ∨ P) ∧ (~R ∨ P)) in n2_08a. - replace (~Q ∨ P) with (Q → P) in n2_08a. - replace (~R ∨ P) with (R → P) in n2_08a. - Conj n3_44a n2_08a. + ((~Q ∨ P) ∧ (~R ∨ P)) in Id2_08a. + replace (~Q ∨ P) with (Q → P) in Id2_08a. + replace (~R ∨ P) with (R → P) in Id2_08a. + Conj n3_44a Id2_08a. split. apply n3_44a. - apply n2_08a. + apply Id2_08a. Equiv H. apply H. apply Equiv4_01. @@ -2870,14 +2870,14 @@ Theorem n4_78 : ∀ P Q R : Prop, Theorem n4_79 : ∀ P Q R : Prop, ((Q → P) ∨ (R → P)) ↔ ((Q ∧ R) → P). Proof. intros P Q R. - specialize Trans4_1 with Q P. - intros Trans4_1a. - specialize Trans4_1 with R P. - intros Trans4_1b. - Conj Trans4_1a Trans4_1b. + specialize Transp4_1 with Q P. + intros Transp4_1a. + specialize Transp4_1 with R P. + intros Transp4_1b. + Conj Transp4_1a Transp4_1b. split. - apply Trans4_1a. - apply Trans4_1b. + apply Transp4_1a. + apply Transp4_1b. specialize n4_39 with (Q→P) (R→P) (~P→~Q) (~P→~R). intros n4_39a. @@ -2886,8 +2886,8 @@ Theorem n4_79 : ∀ P Q R : Prop, intros n4_78a. replace ((~P → ~Q) ∨ (~P → ~R)) with (~P → ~Q ∨ ~R) in n4_39a. - specialize Trans4_1 with (~P) (~Q ∨ ~R). - intros Trans4_1c. + specialize Transp4_1 with (~P) (~Q ∨ ~R). + intros Transp4_1c. replace (~P → ~Q ∨ ~R) with (~(~Q ∨ ~R) → ~~P) in n4_39a. replace (~(~Q ∨ ~R)) with @@ -2903,15 +2903,15 @@ Theorem n4_79 : ∀ P Q R : Prop, (~P → ~Q ∨ ~R). reflexivity. apply EqBi. - apply Trans4_1c. + apply Transp4_1c. replace (~P → ~Q ∨ ~R) with ((~P → ~Q) ∨ (~P → ~R)). reflexivity. apply EqBi. apply n4_78a. Qed. - (*The proof sketch cites Trans2_15, but we did - not need Trans2_15 as a lemma here.*) + (*The proof sketch cites Transp2_15, but we did + not need Transp2_15 as a lemma here.*) Theorem n4_8 : ∀ P : Prop, (P → ~P) ↔ ~P. @@ -3236,12 +3236,12 @@ Theorem n5_14 : ∀ P Q R : Prop, Proof. intros P Q R. specialize Simp2_02 with P Q. intros Simp2_02a. - specialize Trans2_16 with Q (P→Q). - intros Trans2_16a. - MP Trans2_16a Simp2_02a. + specialize Transp2_16 with Q (P→Q). + intros Transp2_16a. + MP Transp2_16a Simp2_02a. specialize n2_21 with Q R. intros n2_21a. - Syll Trans2_16a n2_21a Sa. + Syll Transp2_16a n2_21a Sa. replace (~(P→Q)→(Q→R)) with (~~(P→Q)∨(Q→R)) in Sa. replace (~~(P→Q)) with (P→Q) in Sa. @@ -3351,8 +3351,8 @@ Theorem n5_16 : ∀ P Q : Prop, Proof. intros P Q. specialize Simp3_26 with ((P→Q)∧ (P → ~Q)) (Q→P). intros Simp3_26a. - specialize n2_08 with ((P ↔ Q) ∧ (P → ~Q)). - intros n2_08a. + specialize Id2_08 with ((P ↔ Q) ∧ (P → ~Q)). + intros Id2_08a. replace (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)) with ((P→Q)∧((P→~Q)∧(Q→P))) in Simp3_26a. replace ((P → ~Q) ∧ (Q → P)) with @@ -3361,7 +3361,7 @@ Theorem n5_16 : ∀ P Q : Prop, (((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_26a. replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Simp3_26a. - Syll n2_08a Simp3_26a Sa. + Syll Id2_08a Simp3_26a Sa. specialize n4_82 with P Q. intros n4_82a. replace ((P → Q) ∧ (P → ~Q)) with (~P) in Sa. @@ -3378,7 +3378,7 @@ Theorem n5_16 : ∀ P Q : Prop, specialize Abs2_01 with Q. intros Abs2_01a. Syll Sb Abs2_01a Sc. - clear Sb. clear Simp3_26a. clear n2_08a. + clear Sb. clear Simp3_26a. clear Id2_08a. clear n4_82a. clear Simp3_27a. clear Syll3_33a. clear Abs2_01a. Conj Sa Sc. @@ -3473,13 +3473,13 @@ Theorem n5_17 : ∀ P Q : Prop, intros n4_63a. replace (~(P → ~Q) ↔ P ∧ Q) with (P ∧ Q ↔ ~(P → ~Q)) in n4_63a. - specialize Trans4_11 with (P∧Q) (~(P→~Q)). - intros Trans4_11a. + specialize Transp4_11 with (P∧Q) (~(P→~Q)). + intros Transp4_11a. replace (~~(P→~Q)) with - (P→~Q) in Trans4_11a. + (P→~Q) in Transp4_11a. replace (P ∧ Q ↔ ~(P → ~Q)) with (~(P ∧ Q) ↔ (P → ~Q)) in n4_63a. - clear Trans4_11a. clear n4_21a. + clear Transp4_11a. clear n4_21a. Conj n4_64a n4_63a. split. apply n4_64a. @@ -3501,7 +3501,7 @@ Theorem n5_17 : ∀ P Q : Prop, (P ∧ Q ↔ ~(P → ~Q)). reflexivity. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. apply EqBi. specialize n4_13 with (P→~Q). intros n4_13a. @@ -3556,12 +3556,12 @@ Theorem n5_21 : ∀ P Q : Prop, Proof. intros P Q. specialize n5_1 with (~P) (~Q). intros n5_1a. - specialize Trans4_11 with P Q. - intros Trans4_11a. + specialize Transp4_11 with P Q. + intros Transp4_11a. replace (~P↔~Q) with (P↔Q) in n5_1a. apply n5_1a. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. Qed. Theorem n5_22 : ∀ P Q : Prop, @@ -3638,11 +3638,11 @@ Theorem n5_24 : ∀ P Q : Prop, replace (~(P ↔ Q) ↔ ~(P ∧ Q ∨ ~P ∧ ~Q)) with ((P ↔ Q) ↔ P ∧ Q ∨ ~P ∧ ~Q). reflexivity. - specialize Trans4_11 with + specialize Transp4_11 with (P↔Q) (P ∧ Q ∨ ~P ∧ ~Q). - intros Trans4_11a. + intros Transp4_11a. apply EqBi. - apply Trans4_11a. (*Not cited*) + apply Transp4_11a. (*Not cited*) Qed. Theorem n5_25 : ∀ P Q : Prop, @@ -3821,13 +3821,13 @@ Theorem n5_36 : ∀ P Q : Prop, Proof. intros P Q. specialize n5_32 with (P↔Q) P Q. intros n5_32a. - specialize n2_08 with (P↔Q). - intros n2_08a. + specialize Id2_08 with (P↔Q). + intros Id2_08a. replace (P↔Q→P↔Q) with - ((P↔Q)∧P↔(P↔Q)∧Q) in n2_08a. - replace ((P↔Q)∧P) with (P∧(P↔Q)) in n2_08a. - replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in n2_08a. - apply n2_08a. + ((P↔Q)∧P↔(P↔Q)∧Q) in Id2_08a. + replace ((P↔Q)∧P) with (P∧(P↔Q)) in Id2_08a. + replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in Id2_08a. + apply Id2_08a. apply EqBi. specialize n4_3 with Q (P↔Q). intros n4_3a. @@ -4088,25 +4088,25 @@ Theorem n5_54 : ∀ P Q : Prop, intros n4_73a. specialize n4_44 with Q P. intros n4_44a. - specialize Trans2_16 with Q (P↔(P∧Q)). - intros Trans2_16a. - MP n4_73a Trans2_16a. - specialize Trans4_11 with Q (Q∨(P∧Q)). - intros Trans4_11a. + specialize Transp2_16 with Q (P↔(P∧Q)). + intros Transp2_16a. + MP n4_73a Transp2_16a. + specialize Transp4_11 with Q (Q∨(P∧Q)). + intros Transp4_11a. replace (Q∧P) with (P∧Q) in n4_44a. replace (Q↔Q∨P∧Q) with (~Q↔~(Q∨P∧Q)) in n4_44a. - replace (~Q) with (~(Q∨P∧Q)) in Trans2_16a. + replace (~Q) with (~(Q∨P∧Q)) in Transp2_16a. replace (~(Q∨P∧Q)) with - (~Q∧~(P∧Q)) in Trans2_16a. + (~Q∧~(P∧Q)) in Transp2_16a. specialize n5_1 with (~Q) (~(P∧Q)). intros n5_1a. - Syll Trans2_16a n5_1a Sa. + Syll Transp2_16a n5_1a Sa. replace (~(P↔P∧Q)→(~Q↔~(P∧Q))) with (~~(P↔P∧Q)∨(~Q↔~(P∧Q))) in Sa. replace (~~(P↔P∧Q)) with (P↔P∧Q) in Sa. - specialize Trans4_11 with Q (P∧Q). - intros Trans4_11b. + specialize Transp4_11 with Q (P∧Q). + intros Transp4_11b. replace (~Q↔~(P∧Q)) with (Q↔(P∧Q)) in Sa. replace (Q↔(P∧Q)) with ((P∧Q)↔Q) in Sa. replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa. @@ -4120,7 +4120,7 @@ Theorem n5_54 : ∀ P Q : Prop, intros n4_21b. (*Not cited*) apply n4_21b. apply EqBi. - apply Trans4_11b. + apply Transp4_11b. apply EqBi. specialize n4_13 with (P ↔ (P∧Q)). intros n4_13a. (*Not cited*) @@ -4140,7 +4140,7 @@ Theorem n5_54 : ∀ P Q : Prop, replace (~Q↔~(Q∨P∧Q)) with (Q↔Q∨P∧Q). reflexivity. apply EqBi. - apply Trans4_11a. + apply Transp4_11a. apply EqBi. specialize n4_3 with P Q. intros n4_3a. (*Not cited*) @@ -4160,10 +4160,10 @@ Theorem n5_55 : ∀ P Q : Prop, Syll Add1_3a n5_1a Sa. specialize n4_74 with P Q. intros n4_74a. - specialize Trans2_15 with P (Q↔P∨Q). - intros Trans2_15a. (*Not cited*) - MP Trans2_15a n4_74a. - Syll Trans2_15a Sa Sb. + specialize Transp2_15 with P (Q↔P∨Q). + intros Transp2_15a. (*Not cited*) + MP Transp2_15a n4_74a. + Syll Transp2_15a Sa Sb. replace (~(Q↔(P∨Q))→(P↔(P∨Q))) with (~~(Q↔(P∨Q))∨(P↔(P∨Q))) in Sb. replace (~~(Q↔(P∨Q))) with (Q↔(P∨Q)) in Sb. @@ -4411,13 +4411,13 @@ Theorem n5_7 : ∀ P Q R : Prop, reflexivity. apply Impl1_01. (*Not cited*) apply EqBi. - specialize Trans4_11 with P Q. - intros Trans4_11a. (*Not cited*) - apply Trans4_11a. + specialize Transp4_11 with P Q. + intros Transp4_11a. (*Not cited*) + apply Transp4_11a. apply EqBi. - specialize Trans4_11 with (R ∨ P) (R ∨ Q). - intros Trans4_11a. (*Not cited*) - apply Trans4_11a. + specialize Transp4_11 with (R ∨ P) (R ∨ Q). + intros Transp4_11a. (*Not cited*) + apply Transp4_11a. replace (~(R∨Q)) with (~R∧~Q). reflexivity. apply EqBi. |
