summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLandon D. C. Elkind2021-02-05 12:20:52 -0700
committerLandon D. C. Elkind2021-02-05 12:20:52 -0700
commit3b834485e5a3627c4bc07f47c7a5e8b9ab27bea6 (patch)
treedb03086e4e4371a9729de077b7a72d70defbedc5
parenteb78edd5a812b4cfeea8972bde275fd0c92c1a23 (diff)
Added theorem names
-rw-r--r--PL.pdfbin420430 -> 420654 bytes
-rw-r--r--PL.v448
2 files changed, 224 insertions, 224 deletions
diff --git a/PL.pdf b/PL.pdf
index 7fe64e3..88770c8 100644
--- a/PL.pdf
+++ b/PL.pdf
Binary files differ
diff --git a/PL.v b/PL.v
index 687fd9b..1313a73 100644
--- a/PL.v
+++ b/PL.v
@@ -61,7 +61,7 @@ Proof. intros P Q.
apply Impl1_01.
Qed.
-Theorem n2_03 : ∀ P Q : Prop,
+Theorem Transp2_03 : ∀ P Q : Prop,
(P → ~Q) → (Q → ~P).
Proof. intros P Q.
specialize Perm1_4 with (~P) (~Q).
@@ -120,7 +120,7 @@ Proof. intros P.
apply MP1_1.
Qed.
-Theorem n2_08 : ∀ P : Prop,
+Theorem Id2_08 : ∀ P : Prop,
P → P.
Proof. intros P.
specialize Syll2_05 with P (P ∨ P) P.
@@ -137,7 +137,7 @@ Qed.
Theorem n2_1 : ∀ P : Prop,
(~P) ∨ P.
Proof. intros P.
- specialize n2_08 with P.
+ specialize Id2_08 with P.
replace (~P ∨ P) with (P → P).
apply MP1_1.
apply Impl1_01.
@@ -189,15 +189,15 @@ Proof. intros P.
apply n2_13.
Qed.
-Theorem Trans2_15 : ∀ P Q : Prop,
+Theorem Transp2_15 : ∀ P Q : Prop,
(~P → Q) → (~Q → P).
Proof. intros P Q.
specialize Syll2_05 with (~P) Q (~~Q).
intros Syll2_05a.
specialize n2_12 with Q.
intros n2_12.
- specialize n2_03 with (~P) (~Q).
- intros n2_03.
+ specialize Transp2_03 with (~P) (~Q).
+ intros Transp2_03.
specialize Syll2_05 with (~Q) (~~P) P.
intros Syll2_05b.
specialize Syll2_05 with (~P → Q) (~P → ~~Q) (~Q → ~~P).
@@ -210,7 +210,7 @@ Proof. intros P Q.
intros n2_14.
apply n2_14.
apply Syll2_05c.
- apply n2_03.
+ apply Transp2_03.
apply Syll2_05a.
apply n2_12.
Qed.
@@ -226,31 +226,31 @@ Ltac MP H1 H2 :=
| [ H1 : ?P → ?Q, H2 : ?P |- _ ] => specialize (H1 H2)
end.
-Theorem Trans2_16 : ∀ P Q : Prop,
+Theorem Transp2_16 : ∀ P Q : Prop,
(P → Q) → (~Q → ~P).
Proof. intros P Q.
specialize n2_12 with Q.
intros n2_12a.
specialize Syll2_05 with P Q (~~Q).
intros Syll2_05a.
- specialize n2_03 with P (~Q).
- intros n2_03a.
+ specialize Transp2_03 with P (~Q).
+ intros Transp2_03a.
MP n2_12a Syll2_05a.
- Syll Syll2_05a n2_03a S.
+ Syll Syll2_05a Transp2_03a S.
apply S.
Qed.
-Theorem Trans2_17 : ∀ P Q : Prop,
+Theorem Transp2_17 : ∀ P Q : Prop,
(~Q → ~P) → (P → Q).
Proof. intros P Q.
- specialize n2_03 with (~Q) P.
- intros n2_03a.
+ specialize Transp2_03 with (~Q) P.
+ intros Transp2_03a.
specialize n2_14 with Q.
intros n2_14a.
specialize Syll2_05 with P (~~Q) Q.
intros Syll2_05a.
MP n2_14a Syll2_05a.
- Syll n2_03a Syll2_05a S.
+ Syll Transp2_03a Syll2_05a S.
apply S.
Qed.
@@ -487,10 +487,10 @@ Theorem n2_45 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_2 with P Q.
intros n2_2a.
- specialize Trans2_16 with P (P∨Q).
- intros Trans2_16a.
- MP n2_2 Trans2_16a.
- apply Trans2_16a.
+ specialize Transp2_16 with P (P∨Q).
+ intros Transp2_16a.
+ MP n2_2 Transp2_16a.
+ apply Transp2_16a.
Qed.
Theorem n2_46 : ∀ P Q : Prop,
@@ -498,10 +498,10 @@ Theorem n2_46 : ∀ P Q : Prop,
Proof. intros P Q.
specialize Add1_3 with P Q.
intros Add1_3a.
- specialize Trans2_16 with Q (P∨Q).
- intros Trans2_16a.
- MP Add1_3a Trans2_16a.
- apply Trans2_16a.
+ specialize Transp2_16 with Q (P∨Q).
+ intros Transp2_16a.
+ MP Add1_3a Transp2_16a.
+ apply Transp2_16a.
Qed.
Theorem n2_47 : ∀ P Q : Prop,
@@ -578,9 +578,9 @@ Theorem n2_521 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_52 with P Q.
intros n2_52a.
- specialize Trans2_17 with Q P.
- intros Trans2_17a.
- Syll n2_52a Trans2_17a S.
+ specialize Transp2_17 with Q P.
+ intros Transp2_17a.
+ Syll n2_52a Transp2_17a S.
apply S.
Qed.
@@ -989,9 +989,9 @@ Theorem n3_1 : ∀ P Q : Prop,
(P ∧ Q) → ~(~P ∨ ~Q).
Proof. intros P Q.
replace (~(~P∨~Q)) with (P∧Q).
- specialize n2_08 with (P∧Q).
- intros n2_08a.
- apply n2_08a.
+ specialize Id2_08 with (P∧Q).
+ intros Id2_08a.
+ apply Id2_08a.
apply Prod3_01.
Qed.
@@ -999,9 +999,9 @@ Theorem n3_11 : ∀ P Q : Prop,
~(~P ∨ ~Q) → (P ∧ Q).
Proof. intros P Q.
replace (~(~P∨~Q)) with (P∧Q).
- specialize n2_08 with (P∧Q).
- intros n2_08a.
- apply n2_08a.
+ specialize Id2_08 with (P∧Q).
+ intros Id2_08a.
+ apply Id2_08a.
apply Prod3_01.
Qed.
@@ -1020,10 +1020,10 @@ Theorem n3_13 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n3_11 with P Q.
intros n3_11a.
- specialize Trans2_15 with (~P∨~Q) (P∧Q).
- intros Trans2_15a.
- MP Trans2_15a n3_11a.
- apply Trans2_15a.
+ specialize Transp2_15 with (~P∨~Q) (P∧Q).
+ intros Transp2_15a.
+ MP Transp2_15a n3_11a.
+ apply Transp2_15a.
Qed.
Theorem n3_14 : ∀ P Q : Prop,
@@ -1031,12 +1031,12 @@ Theorem n3_14 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n3_1 with P Q.
intros n3_1a.
- specialize Trans2_16 with (P∧Q) (~(~P∨~Q)).
- intros Trans2_16a.
- MP Trans2_16a n3_1a.
+ specialize Transp2_16 with (P∧Q) (~(~P∨~Q)).
+ intros Transp2_16a.
+ MP Transp2_16a n3_1a.
specialize n2_12 with (~P∨~Q).
intros n2_12a.
- Syll n2_12a Trans2_16a S.
+ Syll n2_12a Transp2_16a S.
apply S.
Qed.
@@ -1077,10 +1077,10 @@ Proof. intros P Q.
specialize n3_14 with P Q.
intros n3_14a.
Syll Ha n3_14a Hb.
- specialize Trans2_17 with (P∧Q) (Q ∧ P).
- intros Trans2_17a.
- MP Trans2_17a Hb.
- apply Trans2_17a.
+ specialize Transp2_17 with (P∧Q) (Q ∧ P).
+ intros Transp2_17a.
+ MP Transp2_17a Hb.
+ apply Transp2_17a.
Qed.
Theorem n3_24 : ∀ P : Prop,
@@ -1132,17 +1132,17 @@ Qed.
Theorem Exp3_3 : ∀ P Q R : Prop,
((P ∧ Q) → R) → (P → (Q → R)).
Proof. intros P Q R.
- specialize Trans2_15 with (~P∨~Q) R.
- intros Trans2_15a.
+ specialize Transp2_15 with (~P∨~Q) R.
+ intros Transp2_15a.
specialize Comm2_04 with (~R) P (~Q).
intros Comm2_04a.
replace (P → ~Q) with (~P ∨ ~Q) in Comm2_04a.
- Syll Trans2_15a Comm2_04a Sa.
- specialize Trans2_17 with Q R.
- intros Trans2_17a.
+ Syll Transp2_15a Comm2_04a Sa.
+ specialize Transp2_17 with Q R.
+ intros Transp2_17a.
specialize Syll2_05 with P (~R→~Q) (Q→R).
intros Syll2_05a.
- MP Syll2_05a Trans2_17a.
+ MP Syll2_05a Transp2_17a.
Syll Sa Syll2_05a Sb.
replace (~(~P ∨ ~Q)) with (P ∧ Q) in Sb.
apply Sb.
@@ -1151,7 +1151,7 @@ Proof. intros P Q R.
reflexivity.
apply Impl1_01.
Qed.
-(*The proof sketch cites n2_08, but
+(*The proof sketch cites Id2_08, but
we did not seem to need it.*)
Theorem Imp3_31 : ∀ P Q R : Prop,
@@ -1170,7 +1170,7 @@ Proof. intros P Q R.
apply Impl1_01.
apply Impl1_01.
Qed.
-(*The proof sketch cites n2_08, but
+(*The proof sketch cites Id2_08, but
we did not seem to need it.*)
Theorem Syll3_33 : ∀ P Q R : Prop,
@@ -1206,14 +1206,14 @@ Proof. intros P Q.
apply Imp3_31a.
Qed.
-Theorem n3_37 : ∀ P Q R : Prop,
+Theorem Transp3_37 : ∀ P Q R : Prop,
(P ∧ Q → R) → (P ∧ ~R → ~Q).
Proof. intros P Q R.
- specialize Trans2_16 with Q R.
- intros Trans2_16a.
+ specialize Transp2_16 with Q R.
+ intros Transp2_16a.
specialize Syll2_05 with P (Q→R) (~R→~Q).
intros Syll2_05a.
- MP Syll2_05a Trans2_16a.
+ MP Syll2_05a Transp2_16a.
specialize Exp3_3 with P Q R.
intros Exp3_3a.
Syll Exp3_3a Syll2_05a Sa.
@@ -1228,12 +1228,12 @@ Theorem n3_4 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_51 with P Q.
intros n2_51a.
- specialize Trans2_15 with (P→Q) (P→~Q).
- intros Trans2_15a.
- MP Trans2_15a n2_51a.
- replace (P→~Q) with (~P∨~Q) in Trans2_15a.
- replace (~(~P∨~Q)) with (P∧Q) in Trans2_15a.
- apply Trans2_15a.
+ specialize Transp2_15 with (P→Q) (P→~Q).
+ intros Transp2_15a.
+ MP Transp2_15a n2_51a.
+ replace (P→~Q) with (~P∨~Q) in Transp2_15a.
+ replace (~(~P∨~Q)) with (P∧Q) in Transp2_15a.
+ apply Transp2_15a.
apply Prod3_01.
replace (~P∨~Q) with (P→~Q).
reflexivity.
@@ -1313,9 +1313,9 @@ Theorem Fact3_45 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize Syll2_06 with P Q (~R).
intros Syll2_06a.
- specialize Trans2_16 with (Q→~R) (P→~R).
- intros Trans2_16a.
- Syll Syll2_06a Trans2_16a S.
+ specialize Transp2_16 with (Q→~R) (P→~R).
+ intros Transp2_16a.
+ Syll Syll2_06a Transp2_16a S.
replace (P→~R) with (~P∨~R) in S.
replace (Q→~R) with (~Q∨~R) in S.
replace (~(~P∨~R)) with (P∧R) in S.
@@ -1418,33 +1418,33 @@ Ltac Equiv H1 :=
replace ((P→Q) ∧ (Q→P)) with (P↔Q) in H1
end.
-Theorem Trans4_1 : ∀ P Q : Prop,
+Theorem Transp4_1 : ∀ P Q : Prop,
(P → Q) ↔ (~Q → ~P).
Proof. intros P Q.
- specialize Trans2_16 with P Q.
- intros Trans2_16a.
- specialize Trans2_17 with P Q.
- intros Trans2_17a.
- Conj Trans2_16a Trans2_17a.
+ specialize Transp2_16 with P Q.
+ intros Transp2_16a.
+ specialize Transp2_17 with P Q.
+ intros Transp2_17a.
+ Conj Transp2_16a Transp2_17a.
split.
- apply Trans2_16a.
- apply Trans2_17a.
+ apply Transp2_16a.
+ apply Transp2_17a.
Equiv H.
apply H.
apply Equiv4_01.
Qed.
-Theorem Trans4_11 : ∀ P Q : Prop,
+Theorem Transp4_11 : ∀ P Q : Prop,
(P ↔ Q) ↔ (~P ↔ ~Q).
Proof. intros P Q.
- specialize Trans2_16 with P Q.
- intros Trans2_16a.
- specialize Trans2_16 with Q P.
- intros Trans2_16b.
- Conj Trans2_16a Trans2_16b.
+ specialize Transp2_16 with P Q.
+ intros Transp2_16a.
+ specialize Transp2_16 with Q P.
+ intros Transp2_16b.
+ Conj Transp2_16a Transp2_16b.
split.
- apply Trans2_16a.
- apply Trans2_16b.
+ apply Transp2_16a.
+ apply Transp2_16b.
specialize n3_47 with (P→Q) (Q→P) (~Q→~P) (~P→~Q).
intros n3_47a.
MP n3_47 H.
@@ -1453,23 +1453,23 @@ Proof. intros P Q.
Syll n3_47a n3_22a Sa.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sa.
replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sa.
- clear Trans2_16a. clear H. clear Trans2_16b.
+ clear Transp2_16a. clear H. clear Transp2_16b.
clear n3_22a. clear n3_47a.
- specialize Trans2_17 with Q P.
- intros Trans2_17a.
- specialize Trans2_17 with P Q.
- intros Trans2_17b.
- Conj Trans2_17a Trans2_17b.
+ specialize Transp2_17 with Q P.
+ intros Transp2_17a.
+ specialize Transp2_17 with P Q.
+ intros Transp2_17b.
+ Conj Transp2_17a Transp2_17b.
split.
- apply Trans2_17a.
- apply Trans2_17b.
+ apply Transp2_17a.
+ apply Transp2_17b.
specialize n3_47 with (~P→~Q) (~Q→~P) (Q→P) (P→Q).
intros n3_47a.
MP n3_47a H.
specialize n3_22 with (Q→P) (P→Q).
intros n3_22a.
Syll n3_47a n3_22a Sb.
- clear Trans2_17a. clear Trans2_17b. clear H.
+ clear Transp2_17a. clear Transp2_17b. clear H.
clear n3_47a. clear n3_22a.
replace ((P → Q) ∧ (Q → P)) with (P↔Q) in Sb.
replace ((~P → ~Q) ∧ (~Q → ~P)) with (~P↔~Q) in Sb.
@@ -1489,30 +1489,30 @@ Qed.
Theorem n4_12 : ∀ P Q : Prop,
(P ↔ ~Q) ↔ (Q ↔ ~P).
Proof. intros P Q.
- specialize n2_03 with P Q.
- intros n2_03a.
- specialize Trans2_15 with Q P.
- intros Trans2_15a.
- Conj n2_03a Trans2_15a.
+ specialize Transp2_03 with P Q.
+ intros Transp2_03a.
+ specialize Transp2_15 with Q P.
+ intros Transp2_15a.
+ Conj Transp2_03a Transp2_15a.
split.
- apply n2_03a.
- apply Trans2_15a.
+ apply Transp2_03a.
+ apply Transp2_15a.
specialize n3_47 with (P→~Q) (~Q→P) (Q→~P) (~P→Q).
intros n3_47a.
MP n3_47a H.
- specialize n2_03 with Q P.
- intros n2_03b.
- specialize Trans2_15 with P Q.
- intros Trans2_15b.
- Conj n2_03b Trans2_15b.
+ specialize Transp2_03 with Q P.
+ intros Transp2_03b.
+ specialize Transp2_15 with P Q.
+ intros Transp2_15b.
+ Conj Transp2_03b Transp2_15b.
split.
- apply n2_03b.
- apply Trans2_15b.
+ apply Transp2_03b.
+ apply Transp2_15b.
specialize n3_47 with (Q→~P) (~P→Q) (P→~Q) (~Q→P).
intros n3_47b.
MP n3_47b H0.
- clear n2_03a. clear Trans2_15a. clear H. clear n2_03b.
- clear Trans2_15b. clear H0.
+ clear Transp2_03a. clear Transp2_15a. clear H. clear
+ Transp2_03b. clear Transp2_15b. clear H0.
replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47a.
replace ((Q → ~P) ∧ (~P → Q)) with (Q↔~P) in n3_47a.
replace ((P → ~Q) ∧ (~Q → P)) with (P↔~Q) in n3_47b.
@@ -1549,13 +1549,13 @@ Theorem n4_13 : ∀ P : Prop,
Theorem n4_14 : ∀ P Q R : Prop,
((P ∧ Q) → R) ↔ ((P ∧ ~R) → ~Q).
Proof. intros P Q R.
-specialize n3_37 with P Q R.
-intros n3_37a.
-specialize n3_37 with P (~R) (~Q).
-intros n3_37b.
-Conj n3_37a n3_37b.
-split. apply n3_37a.
-apply n3_37b.
+specialize Transp3_37 with P Q R.
+intros Transp3_37a.
+specialize Transp3_37 with P (~R) (~Q).
+intros Transp3_37b.
+Conj Transp3_37a Transp3_37b.
+split. apply Transp3_37a.
+apply Transp3_37b.
specialize n4_13 with Q.
intros n4_13a.
specialize n4_13 with R.
@@ -1619,10 +1619,10 @@ Theorem n4_2 : ∀ P : Prop,
Proof. intros P.
specialize n3_2 with (P→P) (P→P).
intros n3_2a.
- specialize n2_08 with P.
- intros n2_08a.
- MP n3_2a n2_08a.
- MP n3_2a n2_08a.
+ specialize Id2_08 with P.
+ intros Id2_08a.
+ MP n3_2a Id2_08a.
+ MP n3_2a Id2_08a.
Equiv n3_2a.
apply n3_2a.
apply Equiv4_01.
@@ -1775,12 +1775,12 @@ Qed.
Proof. intros P Q R.
specialize n4_15 with P Q R.
intros n4_15a.
- specialize Trans4_1 with P (~(Q ∧ R)).
- intros Trans4_1a.
- replace (~~(Q ∧ R)) with (Q ∧ R) in Trans4_1a.
+ specialize Transp4_1 with P (~(Q ∧ R)).
+ intros Transp4_1a.
+ replace (~~(Q ∧ R)) with (Q ∧ R) in Transp4_1a.
replace (Q ∧ R→~P) with (P→~(Q ∧ R)) in n4_15a.
- specialize Trans4_11 with (P ∧ Q → ~R) (P → ~(Q ∧ R)).
- intros Trans4_11a.
+ specialize Transp4_11 with (P ∧ Q → ~R) (P → ~(Q ∧ R)).
+ intros Transp4_11a.
replace ((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))) with
(~(P ∧ Q → ~R) ↔ ~(P → ~(Q ∧ R))) in n4_15a.
replace (P ∧ Q → ~R) with
@@ -1802,9 +1802,9 @@ Qed.
((P ∧ Q → ~R) ↔ (P → ~(Q ∧ R))).
reflexivity.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
apply EqBi.
- apply Trans4_1a.
+ apply Transp4_1a.
apply EqBi.
specialize n4_13 with (Q ∧ R).
intros n4_13a.
@@ -1813,7 +1813,7 @@ Qed.
(*Note that the actual proof uses n4_12, but
that transposition involves transforming a
biconditional into a conditional. This way
- of doing it - using Trans4_1 to transpose a
+ of doing it - using Transp4_1 to transpose a
conditional and then applying n4_13 to
double negate - is easier without a derived
rule for replacing a biconditional with one
@@ -2229,18 +2229,18 @@ Theorem n4_44 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n2_2 with P (P∧Q).
intros n2_2a.
- specialize n2_08 with P.
- intros n2_08a.
+ specialize Id2_08 with P.
+ intros Id2_08a.
specialize Simp3_26 with P Q.
intros Simp3_26a.
- Conj n2_08a Simp3_26a.
+ Conj Id2_08a Simp3_26a.
split.
- apply n2_08a.
+ apply Id2_08a.
apply Simp3_26a.
specialize n3_44 with P P (P ∧ Q).
intros n3_44a.
MP n3_44a H.
- clear H. clear n2_08a. clear Simp3_26a.
+ clear H. clear Id2_08a. clear Simp3_26a.
Conj n2_2a n3_44a.
split.
apply n2_2a.
@@ -2329,7 +2329,7 @@ Theorem n4_53 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n4_52 with P Q.
intros n4_52a.
- specialize n4_12 with ( P ∧ ~Q) ((~P ∨ Q)).
+ specialize n4_12 with (P ∧ ~Q) ((~P ∨ Q)).
intros n4_12a.
replace ((P∧~Q ↔ ~(~P∨Q))↔(~P∨Q ↔ ~(P∧~Q))) with
((P∧~Q ↔ ~(~P∨Q)) = (~P∨Q ↔ ~(P∧~Q))) in n4_12a.
@@ -2437,8 +2437,8 @@ Theorem n4_61 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n4_6 with P Q.
intros n4_6a.
- specialize Trans4_11 with (P→Q) (~P∨Q).
- intros Trans4_11a.
+ specialize Transp4_11 with (P→Q) (~P∨Q).
+ intros Transp4_11a.
specialize n4_52 with P Q.
intros n4_52a.
replace ((P → Q) ↔ ~P ∨ Q) with
@@ -2448,9 +2448,9 @@ Theorem n4_61 : ∀ P Q : Prop,
apply EqBi.
apply n4_52a.
replace (((P→Q)↔~P∨Q)↔(~(P→Q)↔~(~P∨Q))) with
- ((~(P→Q)↔~(~P∨Q))↔((P→Q)↔~P∨Q)) in Trans4_11a.
+ ((~(P→Q)↔~(~P∨Q))↔((P→Q)↔~P∨Q)) in Transp4_11a.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
apply EqBi.
specialize n4_21 with (~(P→Q)↔~(~P∨Q))
((P→Q)↔(~P∨Q)).
@@ -2471,18 +2471,18 @@ Theorem n4_63 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n4_62 with P Q.
intros n4_62a.
- specialize Trans4_11 with (P → ~Q) (~P ∨ ~Q).
- intros Trans4_11a.
+ specialize Transp4_11 with (P → ~Q) (~P ∨ ~Q).
+ intros Transp4_11a.
specialize n4_5 with P Q.
intros n4_5a.
- replace (~(~P ∨ ~Q)) with (P ∧ Q) in Trans4_11a.
+ replace (~(~P ∨ ~Q)) with (P ∧ Q) in Transp4_11a.
replace ((P → ~Q) ↔ ~P ∨ ~Q) with
((~(P → ~Q) ↔ P ∧ Q)) in n4_62a.
apply n4_62a.
replace (((P→~Q)↔~P∨~Q)↔(~(P→~Q)↔P∧Q)) with
- ((~(P→~Q)↔P∧Q)↔((P→~Q)↔~P∨~Q)) in Trans4_11a.
+ ((~(P→~Q)↔P∧Q)↔((P→~Q)↔~P∨~Q)) in Transp4_11a.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
specialize n4_21 with
(~(P → ~Q) ↔ P ∧ Q) ((P → ~Q) ↔ ~P ∨ ~Q).
intros n4_21a.
@@ -2513,12 +2513,12 @@ Theorem n4_65 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n4_64 with P Q.
intros n4_64a.
- specialize Trans4_11 with(~P → Q) (P ∨ Q).
- intros Trans4_11a.
+ specialize Transp4_11 with(~P → Q) (P ∨ Q).
+ intros Transp4_11a.
specialize n4_56 with P Q.
intros n4_56a.
replace (((~P→Q)↔P∨Q)↔(~(~P→Q)↔~(P∨Q))) with
- ((~(~P→Q)↔~(P∨Q))↔((~P→Q)↔P∨Q)) in Trans4_11a.
+ ((~(~P→Q)↔~(P∨Q))↔((~P→Q)↔P∨Q)) in Transp4_11a.
replace ((~P → Q) ↔ P ∨ Q) with
(~(~P → Q) ↔ ~(P ∨ Q)) in n4_64a.
replace (~(P ∨ Q)) with (~P ∧ ~Q) in n4_64a.
@@ -2526,7 +2526,7 @@ Theorem n4_65 : ∀ P Q : Prop,
apply EqBi.
apply n4_56a.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
apply EqBi.
specialize n4_21 with (~(~P → Q)↔~(P ∨ Q))
((~P → Q)↔(P ∨ Q)).
@@ -2547,8 +2547,8 @@ Theorem n4_67 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n4_66 with P Q.
intros n4_66a.
- specialize Trans4_11 with (~P → ~Q) (P ∨ ~Q).
- intros Trans4_11a.
+ specialize Transp4_11 with (~P → ~Q) (P ∨ ~Q).
+ intros Transp4_11a.
replace ((~P → ~Q) ↔ P ∨ ~Q) with
(~(~P → ~Q) ↔ ~(P ∨ ~Q)) in n4_66a.
specialize n4_54 with P Q.
@@ -2558,9 +2558,9 @@ Theorem n4_67 : ∀ P Q : Prop,
apply EqBi.
apply n4_54a.
replace (((~P→~Q)↔P∨~Q)↔(~(~P→~Q)↔~(P∨~Q))) with
- ((~(~P→~Q)↔~(P∨~Q))↔((~P→~Q)↔P∨~Q)) in Trans4_11a.
+ ((~(~P→~Q)↔~(P∨~Q))↔((~P→~Q)↔P∨~Q)) in Transp4_11a.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
apply EqBi.
specialize n4_21 with (~(~P → ~Q)↔~(P ∨ ~Q))
((~P → ~Q)↔(P ∨ ~Q)).
@@ -2577,15 +2577,15 @@ Theorem n4_7 : ∀ P Q : Prop,
(P → P) (P → Q) (P → P ∧ Q).
intros Exp3_3a.
MP Exp3_3a Comp3_43a.
- specialize n2_08 with P.
- intros n2_08a.
- MP Exp3_3a n2_08a.
+ specialize Id2_08 with P.
+ intros Id2_08a.
+ MP Exp3_3a Id2_08a.
specialize Simp3_27 with P Q.
intros Simp3_27a.
specialize Syll2_05 with P (P ∧ Q) Q.
intros Syll2_05a.
MP Syll2_05a Simp3_27a.
- clear n2_08a. clear Comp3_43a. clear Simp3_27a.
+ clear Id2_08a. clear Comp3_43a. clear Simp3_27a.
Conj Syll2_05a Exp3_3a.
split.
apply Exp3_3a.
@@ -2633,13 +2633,13 @@ Theorem n4_71 : ∀ P Q : Prop,
Theorem n4_72 : ∀ P Q : Prop,
(P → Q) ↔ (Q ↔ (P ∨ Q)).
Proof. intros P Q.
- specialize Trans4_1 with P Q.
- intros Trans4_1a.
+ specialize Transp4_1 with P Q.
+ intros Transp4_1a.
specialize n4_71 with (~Q) (~P).
intros n4_71a.
- Conj Trans4_1a n4_71a.
+ Conj Transp4_1a n4_71a.
split.
- apply Trans4_1a.
+ apply Transp4_1a.
apply n4_71a.
specialize n4_22 with
(P→Q) (~Q→~P) (~Q↔~Q ∧ ~P).
@@ -2746,19 +2746,19 @@ Theorem n4_77 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize n3_44 with P Q R.
intros n3_44a.
- specialize n2_08 with (Q ∨ R → P).
- intros n2_08a. (*Not cited*)
+ specialize Id2_08 with (Q ∨ R → P).
+ intros Id2_08a. (*Not cited*)
replace ((Q ∨ R → P) → (Q ∨ R → P)) with
- ((Q ∨ R → P) → (~(Q ∨ R) ∨ P)) in n2_08a.
- replace (~(Q ∨ R)) with (~Q ∧ ~R) in n2_08a.
+ ((Q ∨ R → P) → (~(Q ∨ R) ∨ P)) in Id2_08a.
+ replace (~(Q ∨ R)) with (~Q ∧ ~R) in Id2_08a.
replace (~Q ∧ ~R ∨ P) with
- ((~Q ∨ P) ∧ (~R ∨ P)) in n2_08a.
- replace (~Q ∨ P) with (Q → P) in n2_08a.
- replace (~R ∨ P) with (R → P) in n2_08a.
- Conj n3_44a n2_08a.
+ ((~Q ∨ P) ∧ (~R ∨ P)) in Id2_08a.
+ replace (~Q ∨ P) with (Q → P) in Id2_08a.
+ replace (~R ∨ P) with (R → P) in Id2_08a.
+ Conj n3_44a Id2_08a.
split.
apply n3_44a.
- apply n2_08a.
+ apply Id2_08a.
Equiv H.
apply H.
apply Equiv4_01.
@@ -2870,14 +2870,14 @@ Theorem n4_78 : ∀ P Q R : Prop,
Theorem n4_79 : ∀ P Q R : Prop,
((Q → P) ∨ (R → P)) ↔ ((Q ∧ R) → P).
Proof. intros P Q R.
- specialize Trans4_1 with Q P.
- intros Trans4_1a.
- specialize Trans4_1 with R P.
- intros Trans4_1b.
- Conj Trans4_1a Trans4_1b.
+ specialize Transp4_1 with Q P.
+ intros Transp4_1a.
+ specialize Transp4_1 with R P.
+ intros Transp4_1b.
+ Conj Transp4_1a Transp4_1b.
split.
- apply Trans4_1a.
- apply Trans4_1b.
+ apply Transp4_1a.
+ apply Transp4_1b.
specialize n4_39 with
(Q→P) (R→P) (~P→~Q) (~P→~R).
intros n4_39a.
@@ -2886,8 +2886,8 @@ Theorem n4_79 : ∀ P Q R : Prop,
intros n4_78a.
replace ((~P → ~Q) ∨ (~P → ~R)) with
(~P → ~Q ∨ ~R) in n4_39a.
- specialize Trans4_1 with (~P) (~Q ∨ ~R).
- intros Trans4_1c.
+ specialize Transp4_1 with (~P) (~Q ∨ ~R).
+ intros Transp4_1c.
replace (~P → ~Q ∨ ~R) with
(~(~Q ∨ ~R) → ~~P) in n4_39a.
replace (~(~Q ∨ ~R)) with
@@ -2903,15 +2903,15 @@ Theorem n4_79 : ∀ P Q R : Prop,
(~P → ~Q ∨ ~R).
reflexivity.
apply EqBi.
- apply Trans4_1c.
+ apply Transp4_1c.
replace (~P → ~Q ∨ ~R) with
((~P → ~Q) ∨ (~P → ~R)).
reflexivity.
apply EqBi.
apply n4_78a.
Qed.
- (*The proof sketch cites Trans2_15, but we did
- not need Trans2_15 as a lemma here.*)
+ (*The proof sketch cites Transp2_15, but we did
+ not need Transp2_15 as a lemma here.*)
Theorem n4_8 : ∀ P : Prop,
(P → ~P) ↔ ~P.
@@ -3236,12 +3236,12 @@ Theorem n5_14 : ∀ P Q R : Prop,
Proof. intros P Q R.
specialize Simp2_02 with P Q.
intros Simp2_02a.
- specialize Trans2_16 with Q (P→Q).
- intros Trans2_16a.
- MP Trans2_16a Simp2_02a.
+ specialize Transp2_16 with Q (P→Q).
+ intros Transp2_16a.
+ MP Transp2_16a Simp2_02a.
specialize n2_21 with Q R.
intros n2_21a.
- Syll Trans2_16a n2_21a Sa.
+ Syll Transp2_16a n2_21a Sa.
replace (~(P→Q)→(Q→R)) with
(~~(P→Q)∨(Q→R)) in Sa.
replace (~~(P→Q)) with (P→Q) in Sa.
@@ -3351,8 +3351,8 @@ Theorem n5_16 : ∀ P Q : Prop,
Proof. intros P Q.
specialize Simp3_26 with ((P→Q)∧ (P → ~Q)) (Q→P).
intros Simp3_26a.
- specialize n2_08 with ((P ↔ Q) ∧ (P → ~Q)).
- intros n2_08a.
+ specialize Id2_08 with ((P ↔ Q) ∧ (P → ~Q)).
+ intros Id2_08a.
replace (((P → Q) ∧ (P → ~Q)) ∧ (Q → P)) with
((P→Q)∧((P→~Q)∧(Q→P))) in Simp3_26a.
replace ((P → ~Q) ∧ (Q → P)) with
@@ -3361,7 +3361,7 @@ Theorem n5_16 : ∀ P Q : Prop,
(((P→Q) ∧ (Q → P)) ∧ (P → ~Q)) in Simp3_26a.
replace ((P → Q) ∧ (Q → P)) with
(P↔Q) in Simp3_26a.
- Syll n2_08a Simp3_26a Sa.
+ Syll Id2_08a Simp3_26a Sa.
specialize n4_82 with P Q.
intros n4_82a.
replace ((P → Q) ∧ (P → ~Q)) with (~P) in Sa.
@@ -3378,7 +3378,7 @@ Theorem n5_16 : ∀ P Q : Prop,
specialize Abs2_01 with Q.
intros Abs2_01a.
Syll Sb Abs2_01a Sc.
- clear Sb. clear Simp3_26a. clear n2_08a.
+ clear Sb. clear Simp3_26a. clear Id2_08a.
clear n4_82a. clear Simp3_27a. clear Syll3_33a.
clear Abs2_01a.
Conj Sa Sc.
@@ -3473,13 +3473,13 @@ Theorem n5_17 : ∀ P Q : Prop,
intros n4_63a.
replace (~(P → ~Q) ↔ P ∧ Q) with
(P ∧ Q ↔ ~(P → ~Q)) in n4_63a.
- specialize Trans4_11 with (P∧Q) (~(P→~Q)).
- intros Trans4_11a.
+ specialize Transp4_11 with (P∧Q) (~(P→~Q)).
+ intros Transp4_11a.
replace (~~(P→~Q)) with
- (P→~Q) in Trans4_11a.
+ (P→~Q) in Transp4_11a.
replace (P ∧ Q ↔ ~(P → ~Q)) with
(~(P ∧ Q) ↔ (P → ~Q)) in n4_63a.
- clear Trans4_11a. clear n4_21a.
+ clear Transp4_11a. clear n4_21a.
Conj n4_64a n4_63a.
split.
apply n4_64a.
@@ -3501,7 +3501,7 @@ Theorem n5_17 : ∀ P Q : Prop,
(P ∧ Q ↔ ~(P → ~Q)).
reflexivity.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
apply EqBi.
specialize n4_13 with (P→~Q).
intros n4_13a.
@@ -3556,12 +3556,12 @@ Theorem n5_21 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n5_1 with (~P) (~Q).
intros n5_1a.
- specialize Trans4_11 with P Q.
- intros Trans4_11a.
+ specialize Transp4_11 with P Q.
+ intros Transp4_11a.
replace (~P↔~Q) with (P↔Q) in n5_1a.
apply n5_1a.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
Qed.
Theorem n5_22 : ∀ P Q : Prop,
@@ -3638,11 +3638,11 @@ Theorem n5_24 : ∀ P Q : Prop,
replace (~(P ↔ Q) ↔ ~(P ∧ Q ∨ ~P ∧ ~Q)) with
((P ↔ Q) ↔ P ∧ Q ∨ ~P ∧ ~Q).
reflexivity.
- specialize Trans4_11 with
+ specialize Transp4_11 with
(P↔Q) (P ∧ Q ∨ ~P ∧ ~Q).
- intros Trans4_11a.
+ intros Transp4_11a.
apply EqBi.
- apply Trans4_11a. (*Not cited*)
+ apply Transp4_11a. (*Not cited*)
Qed.
Theorem n5_25 : ∀ P Q : Prop,
@@ -3821,13 +3821,13 @@ Theorem n5_36 : ∀ P Q : Prop,
Proof. intros P Q.
specialize n5_32 with (P↔Q) P Q.
intros n5_32a.
- specialize n2_08 with (P↔Q).
- intros n2_08a.
+ specialize Id2_08 with (P↔Q).
+ intros Id2_08a.
replace (P↔Q→P↔Q) with
- ((P↔Q)∧P↔(P↔Q)∧Q) in n2_08a.
- replace ((P↔Q)∧P) with (P∧(P↔Q)) in n2_08a.
- replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in n2_08a.
- apply n2_08a.
+ ((P↔Q)∧P↔(P↔Q)∧Q) in Id2_08a.
+ replace ((P↔Q)∧P) with (P∧(P↔Q)) in Id2_08a.
+ replace ((P↔Q)∧Q) with (Q∧(P↔Q)) in Id2_08a.
+ apply Id2_08a.
apply EqBi.
specialize n4_3 with Q (P↔Q).
intros n4_3a.
@@ -4088,25 +4088,25 @@ Theorem n5_54 : ∀ P Q : Prop,
intros n4_73a.
specialize n4_44 with Q P.
intros n4_44a.
- specialize Trans2_16 with Q (P↔(P∧Q)).
- intros Trans2_16a.
- MP n4_73a Trans2_16a.
- specialize Trans4_11 with Q (Q∨(P∧Q)).
- intros Trans4_11a.
+ specialize Transp2_16 with Q (P↔(P∧Q)).
+ intros Transp2_16a.
+ MP n4_73a Transp2_16a.
+ specialize Transp4_11 with Q (Q∨(P∧Q)).
+ intros Transp4_11a.
replace (Q∧P) with (P∧Q) in n4_44a.
replace (Q↔Q∨P∧Q) with
(~Q↔~(Q∨P∧Q)) in n4_44a.
- replace (~Q) with (~(Q∨P∧Q)) in Trans2_16a.
+ replace (~Q) with (~(Q∨P∧Q)) in Transp2_16a.
replace (~(Q∨P∧Q)) with
- (~Q∧~(P∧Q)) in Trans2_16a.
+ (~Q∧~(P∧Q)) in Transp2_16a.
specialize n5_1 with (~Q) (~(P∧Q)).
intros n5_1a.
- Syll Trans2_16a n5_1a Sa.
+ Syll Transp2_16a n5_1a Sa.
replace (~(P↔P∧Q)→(~Q↔~(P∧Q))) with
(~~(P↔P∧Q)∨(~Q↔~(P∧Q))) in Sa.
replace (~~(P↔P∧Q)) with (P↔P∧Q) in Sa.
- specialize Trans4_11 with Q (P∧Q).
- intros Trans4_11b.
+ specialize Transp4_11 with Q (P∧Q).
+ intros Transp4_11b.
replace (~Q↔~(P∧Q)) with (Q↔(P∧Q)) in Sa.
replace (Q↔(P∧Q)) with ((P∧Q)↔Q) in Sa.
replace (P↔(P∧Q)) with ((P∧Q)↔P) in Sa.
@@ -4120,7 +4120,7 @@ Theorem n5_54 : ∀ P Q : Prop,
intros n4_21b. (*Not cited*)
apply n4_21b.
apply EqBi.
- apply Trans4_11b.
+ apply Transp4_11b.
apply EqBi.
specialize n4_13 with (P ↔ (P∧Q)).
intros n4_13a. (*Not cited*)
@@ -4140,7 +4140,7 @@ Theorem n5_54 : ∀ P Q : Prop,
replace (~Q↔~(Q∨P∧Q)) with (Q↔Q∨P∧Q).
reflexivity.
apply EqBi.
- apply Trans4_11a.
+ apply Transp4_11a.
apply EqBi.
specialize n4_3 with P Q.
intros n4_3a. (*Not cited*)
@@ -4160,10 +4160,10 @@ Theorem n5_55 : ∀ P Q : Prop,
Syll Add1_3a n5_1a Sa.
specialize n4_74 with P Q.
intros n4_74a.
- specialize Trans2_15 with P (Q↔P∨Q).
- intros Trans2_15a. (*Not cited*)
- MP Trans2_15a n4_74a.
- Syll Trans2_15a Sa Sb.
+ specialize Transp2_15 with P (Q↔P∨Q).
+ intros Transp2_15a. (*Not cited*)
+ MP Transp2_15a n4_74a.
+ Syll Transp2_15a Sa Sb.
replace (~(Q↔(P∨Q))→(P↔(P∨Q))) with
(~~(Q↔(P∨Q))∨(P↔(P∨Q))) in Sb.
replace (~~(Q↔(P∨Q))) with (Q↔(P∨Q)) in Sb.
@@ -4411,13 +4411,13 @@ Theorem n5_7 : ∀ P Q R : Prop,
reflexivity.
apply Impl1_01. (*Not cited*)
apply EqBi.
- specialize Trans4_11 with P Q.
- intros Trans4_11a. (*Not cited*)
- apply Trans4_11a.
+ specialize Transp4_11 with P Q.
+ intros Transp4_11a. (*Not cited*)
+ apply Transp4_11a.
apply EqBi.
- specialize Trans4_11 with (R ∨ P) (R ∨ Q).
- intros Trans4_11a. (*Not cited*)
- apply Trans4_11a.
+ specialize Transp4_11 with (R ∨ P) (R ∨ Q).
+ intros Transp4_11a. (*Not cited*)
+ apply Transp4_11a.
replace (~(R∨Q)) with (~R∧~Q).
reflexivity.
apply EqBi.